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Preface 

Motivation 

“Ladies and Gentlemen, as you certainly know, two fundamental theories in physics exist 

on which the foundations of our science are built. These are the Theories of General Rela-

tivity and Quantum Mechanics. Today we know that at least one of these theories cannot 

be true, because they exclude each other. As a representative of quantum mechanics my 

statement is that because of many positive and coherent experiments we are sure, that we 

are on the right side. So, let’s get started.” 

 This was the statement of the professor right at the start of the lecture in quantum me-

chanics during the summer session in 2014 at the University of Bonn (Theoretical Physics 

III). I never experienced a situation in a lecture, that there was absolute silence. Here it was 

the case. 

 The statement of the “competitors” teaching General Relativity during summer 2015 

were quite different. Responding to a question from a student concerning this matter it was 

stated, that at present there are ongoing works to improve the theory to resolve the ap-

pearing contradictions. 

 This situation encouraged me to find my own view concerning this debate. Because of 

my status as a “senior student” (born 1953) with a lot of freedom compared to others and 

no obligations to pass examinations it was possible for me to spend some time to study 

these problems. My main interest went to the Theory of Special Relativity, which is the basis 

for all further considerations, and I found some interesting results inside this theory which 

will be presented in the following. 

Short summary 

Detailed investigations on the Theory of Special Relativity (SRT) show that the phenome-

non of “invariance of phase velocity of light” is of great importance. However, although it is 

well-known since a long time this concept was not used in a comprehensive way for inter-

pretation up to now. When this phenomenon is applied to classical experiments, where 

usually interactions between light beams coming and going to mirrors are investigated, the 

comparison between resulting frequencies makes no sense. In this elaboration relevant ex-

periments are interpreted in a new way and interesting results were found. For the 
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Michelson-Morley experiment only small corrections are required, the Kennedy-Thorn-

dike-experiment, however, showed a much higher significance of the results than expected 

before. 

Further on considerations about the exchange of signals between moving observers and 

examinations concerning momentum and energy are made. Using again the invariance of 

phase velocity it can be shown in any case, that the assumption of the existence of a system 

at absolute rest as a frame is just a special case inside the infinite possibilities of SRT and 

not, as sometimes argued, contradictions to experimental findings appear. The existence of 

the isotropic cosmic background radiation, known since some decades, is a strong indica-

tion for the existence of a system at absolute rest. However, although effort was made by 

many scientists, up to now no unambiguously clear experimental evidence was found in-

side the classical frame, which could possibly help to decide whether it really exists or not. 

This could change, when in addition quantum mechanical tunneling experiments are in-

corporated. Theoretical considerations show that superluminal transport of information, 

e.g. by transmission of a simple pulse, is in accordance with a state of absolute rest but is 

violating the more general concept of SRT. A proposal was made for the set-up of an exper-

iment that could help to decide, which of the different theories is valid. Furthermore, two 

new experiments are discussed; the most important could finally provide direct experi-

mental evidence about the existence of the “relativity of simultaneously”, which is an es-

sential part of the Lorentz equations. 

Beside the considerations concerning theory and experiments, for readers with interest 

in history of science a short overview was added to show in a general way, how, from an-

cient times to Galileo and finally Einstein, the development of SRT took place. 

Warning Notice 

Please be careful, this presentation contains mathematics! Fortunately, it is a small dose; 

an advanced course at school will be sufficient to understand the fundamental principles, 

after the first semester in physics everything will go easy. Should it be impossible to under-

stand one of the details, it is not necessary for the understanding of the following chapters 

and the related part can be skipped. In particular the use of the tensor calculus, which is 

often utilized, was avoided, because it is not necessary to understand the principle theoret-

ical foundations outlined here. It was decided instead to include specific examples with 

connected calculations to support the general understanding of important details. 

 Any external references are marked, and a publication list is added. 

 Although all considerations were carried out with due care it can be possible, that parts 

of this presentation include mistakes. In such a case and of cause when a discussion is re-

quested, I would be glad to get feedback. 

 

 

Alfter, April 2019          Gerhard W. Borst 
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Preface to the 3rd Revision 

As a result of the discussions in the two years since the book was first published, it has 

become clear that the results should be summarized even more concisely and clearly. Alt-

hough the basic message has not changed, the main results have therefore been restated 

here in line with the wording on the website. 

 

Results of the Investigations 

The main result of this investigation is that the phase velocity of light and not speed of light 

must be applied to classical experiments, where light beams going and coming are observed 

in moving systems. The comparisons usually made by determining interference patterns 

are remaining incomplete without further considerations. Re-evaluation according to the 

concept presented here for the Michelson-Morley and Kennedy-Thorndike experiments 

lead to different results. This change in the point of view has a substantial effect on other 

main subjects, as it is the case for the Theory of Special Relativity (SRT). 

For the formulation of SRT, Einstein chose an approach whose foundations are the "prin-

ciple of relativity" and the "constancy of the speed of light" and which does not contain any 

physical formula in its origin. From this "top-down" concept the Lorentz Transformation, 

and the relationship for the relativistic increase of the kinetic energy, later also called rela-

tivistic mass increase, can be derived. 

It is surprising that until today there is no uniform formulation of the two central prin-

ciples. Every author of a publication about SRT chooses his own approach for this. The rep-

resentations can be divided basically into "objective observation criterion" and "axiom". 

First, objective criterion means for the principle of relativity: 

1. The execution of any physical experiment leads to the same result in all inertial systems. 

This approach was also chosen by Einstein. The representation as "axiom" contains the 

statement, "All inertial systems are equal". In newer publications rather (but not exclu-

sively) the axiomatic concept is used. With exact interpretation, however, this already con-

tains the statement that a system of absolute rest cannot exist, for which there is no exper-

imental proof until today (but also no counterproof). To keep this open, in the following the 

classical concept for this basic principle is chosen. 

If as second criterion the velocity of light is considered, the same is valid here as already 

shown before; here also the statements "no differences can be determined" and "the veloc-

ity of light is always the same" for different inertial frames are in use. As an essential result 

of the investigations carried out here it shows, however, that with the observation of oscil-

lations of one light source from any arbitrarily inertial system moved to each other the 

phase velocity of light is the only reasonable possibility to achieve contradiction-free re-

sults. If instead the velocity of light is used - as it is still usual today - different interpreta-

tions concerning the number of oscillations from this source arise for the differently moved 

observers and connected with this also the view on interference patterns. 

The proposal for a contradiction-free and unambiguous formulation of the second prin-

ciple of the SRT reads thus: 
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2. The phase velocity of light is invariant in all inertial systems and its speed is equal to the 

value of the velocity of light measurable in every inertial frame. 

However, the investigations presented here have also shown that a “bottom-up” ap-

proach with an Extended Lorentz-Theory is also possible. Using this concept, the necessary 

basic physical laws are defined, and the relativity principle can then be derived from them. 

This approach reads as follows: 

1. From the unlimited number of existing inertial systems, one is selected as base system 

and marked with index 0. 

2. In this basic system, measurements of the speed of light show the same value c in all 

directions. 

3. The properties of all other inertial systems are defined by their relative velocity 𝑣 to the 
base system, and the following relations are valid for time t, displacement x and mass m 

a)  𝑡 = 𝛾 (𝑡0 − 
𝑣

𝑐2
𝑥0) , 𝑥 = 𝛾(𝑥0 − 𝑣𝑡0) 

b)  𝑚 = 𝛾𝑚0 

𝑤𝑖𝑡ℎ:          𝛾 =
1

√1 −
𝑣2

𝑐2

     

In this representation, special relativity and the extended Lorentz approach are mathe-

matically completely equivalent. However, the Theory of Special Relativity excludes with 

usual interpretation the existence of a system of absolute rest, which can be integrated in 

the extended Lorentz approach by simple choice of the basic system without further as-

sumptions or restrictions. The since some decades known completely uniform cosmic back-

ground radiation has already led many times to considerations to reconcile this with the 

existence of an absolutely resting space and SRT. So far this was not successful and always 

led to contradictions with experimental findings. It is of great advantage that the approach 

shown here allows a completely problem-free integration. However, since up to now no 

experimental proof has succeeded with conventional approaches, a decision cannot be 

made at present. 

This could change if quantum mechanical tunneling experiments are included. Theoret-

ical considerations show that faster-than-light transmissions of signals, e.g. by sending a 

simple pulse, are compatible with the extended Lorentz theory but not with SRT. An exper-

iment is proposed, which allows an unambiguous decision concerning the different ap-

proaches. Furthermore, two other experiments are presented for discussion, of which the 

most important is the direct proof of the "relativity of simultaneity", which is an integral 

part of the Lorentz equations. 
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1.  Introduction 

In this investigation first the basic principles of the theory of Special Relativity will be pre-

sented in detail. In further steps the consequences derived out of the theory and later the 

existing limits will be discussed. A major contribution for the understanding of the discus-

sions arising during the presentation of the theory is taking a close view on the historical 

development. To realize this, three important parts of physical science were chosen (clas-

sical mechanics, light and its radiation, electromagnetism) and connected with this, im-

portant persons are presented, who had major influence on the developments. The pre-

sented selection out of numerous researchers is most probably partly unfair but must be 

limited for obvious reasons because of the almost unlimited number. 

1.1  General historical preconditions 

After the fall of the Roman Empire as a result of the barbarian migration a general loss of 

transferred knowledge of Greece and Roman origin was observed in Europe. Many old 

scripts were saved only, because they were translated and interpreted by Arabian scientists 

who were at that time part of scientific communities with generally much higher standards 

compared to those in Europe. The situation did not change until the end of the millennial 

when a warm epoch began, which had a high impact on the development of the society. 

Until the year 1300 the population tripled, land was reclaimed on a large scale and many 

new cities were founded. 

 For the “dawn of mankind” and the connected explosion of knowledge many different 

reasons are considered to be important (for further studies the very interesting book “The 

Morning of the World” [1] by Bernd Roeck is strongly recommended). First in the cities with 

sufficient supply of food and other necessary things for daily life a group was established 

which we would today call “middle class” and was formed by craftsmen and merchants. 

This structure can be defined as “horizontal”, because it was not dominated by aristocratic 

authorities and was therefore able to develop in a free manner [1]. Furthermore, during the 

12th century, the first universities were founded (starting in Bologna, followed by Paris and 

Oxford) and with the appearance of the professor at these universities the class of the in-

tellectual was founded. The skills of the men appointed for this purpose (women were ex-

cluded from this profession and also from studying) certainly did not meet our expectations 

of the quality of a professor today in most cases, but the procedures of discussion and 
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application of logic originating from the Greek/Roman tradition were generally used. In 

general, it can be stated, that in Europe starting from the foundation of the first universities 

until the end of the17th century science and the structures for teaching were quite uniform. 

 Academic studies included − according to the ancient ideal − the seven liberal arts of 

classic antiquity comprising the Trivium (grammar, dialectic, and rhetoric, finishing with 

nomination as “bakkalaureus”) and further the Quadrivium (arithmetic, geometry, music 

and astronomy [including astrology], nomination as magister). In a further step the higher 

faculties (theological, juridical, and medical) could award the degree of a doctor. The lan-

guage used was generally Latin, which was of great advantage in the linguistic fragmented 

environment of that time. Knowledge was generally acquired through the study of the Holy 

Bible and using scripts of ancient origin mainly from Greek philosophers; experimental 

work as it is established today was generally not common. 

 Beside the already presented general issues further advantageous developments oc-

curred towards the end of the 13th century. Important inventions were made, which had a 

great impact on the progress of science and technology. The most important included quite 

different subjects like the production of paper and gunpowder (both based on ideas im-

ported from Asia), also the invention of the mechanical clock and of spectacles (and con-

nected with this the knowledge to produce glass of sufficient quality). During the following 

little ice age starting with the beginning of the 14th century and lasting for over 500 years 

which caused hunger and distress, developments were possible which improved science in 

an important and positive way. 

 Paper showed a clear advantage compared to the parchment used before which was pro-

duced out of animal skin, and it was possible to produce it at lower costs and with a better 

quality and higher quantity. Combined with the letterpress printing invented by Gutenberg 

and the developing postal services an information exchange was possible not imaginable 

before. In addition, the use of gunpowder had a great influence on the development of met-

allurgy and metal machining necessary to produce firearms and a first nucleus of a sector 

later called “heavy industry” appeared. 

 It is often said that letterpress printing and the use of gun powder are the major facts for 

the explanation of the developments happening at that time. The progress of science, how-

ever, is also connected with the permanent improvement of precision mechanics which led 

e.g., to the production of clocks with increasing accuracy which are for obvious reasons nec-

essary for quantitative measurements of physical parameters. This long-term development 

was also witnessed for the production and processing of lenses. In contrast to this at the 

beginning of the 17th century the knowledge about the inventions of telescope and micro-

scope spread over Europe in a very short time and had a great influence on natural science. 

Further the first introduction of property rights (copyright, patents) was also responsible 

for important promotion effects. 

 With the beginning of the 17th century first scientists questioned the opinion, that 

knowledge could only be acquired by studying old scripts but that it was also possible to 

expand it by own considerations and observations. Francis Bacon (1561-1626) was the first 

to propose an empiric approach for the development of science. He was sure that 

knowledge of mankind is cumulative (his considerations finally led to the expression: 

“knowledge is power”). Initiated by René Descartes (1596-1650) mathematical procedures 



1.2  Classical mechanics 

3 

were identified as an important instrument to derive scientific progress. He was the first to 

use equations which are quite similar to the form we know today. He used, however, a sym-

bol similar to „ӕ“ (derived from the Latin word „aequalis“), the equality sign “=” was used 

for the first time by the Welsh mathematician Robert Recorde (1510-1558) It did not 

spread over Europe before 1700 but finally became the standard for the formulation in sci-

entific publications. Together with the “invention” of the figure zero at the end of the 13th 

century, which slowly found its way into mathematics, these were no necessary require-

ments but led to enormous accelerations in the progress of natural science. 

 The sociologist Robert K. Merton (1910-2003) made further interesting statements con-

cerning the developments of that time [2]. First, he expressed the opinion that changes and 

progress in natural science were caused by an accumulation of observations, improved ex-

perimental techniques and also the development of additional methodic approaches; this 

concept is apparently corresponding to the thesis of Roeck [1]. In further considerations he 

is arguing that the revolution in natural science during the 17th and 18th century was 

mainly promoted by Protestantism, in particular by English puritans and German pietists. 

This was not changing before the French Revolution happened and the disempowerment 

of the Catholic Church was enforced by Napoleon after the conquest of almost complete 

Europe. This thesis is not without dispute and is for sure partly unfair against many im-

portant scientists of that time. It is symptomatic, however, that publications of Descartes 

and Galilei (after 1633) banned by the Catholic Church could only be printed by the pub-

lishing house Elsevier because it was situated in the protestant town of Leiden and was 

therefore not under the jurisdiction of the Catholic Church. 

1.2  Classical mechanics 

One of the most important founders of modern natural science is Galileo Galilei (1564-

1642). From 1609 on he improved the technique of the telescope which was invented a year 

before by Hans Lipperhey (1570-1619) by own production of better lenses and the use of 

enhancements in the construction. He was the first to monitor the sky in a systematic way 

and discovered already in 1610 the moons of Jupiter, which could not be seen before with 

the naked eye. It was of great influence on the view of the world that beside earth now an-

other planet possessed moons. He also discovered that the Milky Way is formed as a cluster 

of many stars and is not a shiny band as it was believed to be before and that planets are 

not point-shaped but show the form of a disk during observation. He calculated the height 

of the mountains on the moon by the visible shadows and estimated the value to 8000m 

[3]. Further he performed experiments concerning the free fall of objects. It is sometimes 

claimed that these were conducted at the leaning tower of Pisa, but this is most probably 

not true, he presumably used spheres made of different matter and measured their accel-

eration rolling down a ramp. 

 It shall be mentioned that Lipperhey was not able to have his invention patented, be-

cause in the following months other competitors on their part claimed it as theirs. Obvi-

ously, the time was ripe for the invention of the telescope and further for the microscope 

shortly before and soon a broad distribution of these important instruments took place. 
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 However, the most important finding of Galilei concerning the following discussion was 

the first definition of the principle of relativity. The easiest way to understand this is to have 

a look on his book 

 Dialogo di Galileo Galilei sopra i due Massimi Sistemi del Mondo Tolemaico e 

 Copernicano (Dialogue of Galileo Galilei about the most important systems of the world,  

 the Ptolemaic and the Copernican), first edition 1632. 

 In the following the “case Galileo Galilei” shall be discussed briefly. The book was not 

written in Latin but in Italian language and was supposed to attract a wide educated audi-

ence. It was not structured like a typical scientific publication at that time but is arranged 

as a conversation between three persons. 

 The names of these persons were Salviati, Salgredo and Simplicio. While Salvati and 

Salgredo were the names of old friends of Galilei deceased long ago [4a] and had access to 

wide range of knowledge, Simplicio is acting as the simple-minded. It can be clearly seen, 

that Salvati, and partly also Simplicio, is taking the role of Galilei while Salgredo is an ordi-

nary but well-educated person [4b]. Salvati is also explaining the relativity principle already 

mentioned before. Fig. 1.1 shows in an English translation by Thomas Salusbury the rele-

vant passage [5]. It dates to the year 1661 and was one of many translations in different 

languages written shortly after the first publication by Galilei. It is a prosaic form at its best 

and surely can be understood without using a single equation. 

 The scientific conclusions of the book are today generally outdated. For the understand-

ing of the thinking and the state of knowledge at that time a later translation by Erich 

Strauss shall be recommended, were a comprehensive introduction and interpretations of 

the intentions and actions of the involved persons are added [4]. 

 The form of a dialogue was chosen because the acting persons could argue in an open 

way and so it was possible to discuss positions not obeying the official doctrine. Although 

the publications of Copernicus about the heliocentric world system were banned by the 

Catholic Church it was allowed to use his calculations for the planetary motion, which were 

much easier and more precise compared to the equations utilized before, when in a sepa-

rate statement it was claimed that these were only founded on a hypothetic basis and the 

Ptolemaic world system with earth in the center was really valid [4]. Galilei believed that 

he had obeyed this rule when he passed this obligation to Simplicio. As well-known this 

went wrong in a disastrous way. 

 Although his book first got the imprimatur by the inquisition, which means that he was 

officially allowed to print it, Galilei was charged with blasphemy. Main reason for this was 

most probably the animosity with the Jesuits; this originated because Galilei was in a fierce 

controversy with a member of this order named Christoph Schreiner (1573-1650) concern-

ing the first observation of sunspots. 

 After Pope Urban VIII withdrew his grace (allegedly because his vanity was offended by 

statements made by Galilei) he was eventually put to court. Galilei had to retract his state-

ments and was sentenced to life-long dungeon imprisonment. Shortly later this was 

changed to house detention, and so he was not allowed to leave his premises until the end 

of his life even not for medical consultations he asked for later. In addition, after his death 

a dignified funeral was refused. 
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Fig. 1.1 First formulation of the principle of relativity by Galileo Galilei  

  Translation by Thomas Salusbury [5] dating back to 1661. 
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 Although the verdict did not include an explicit publication-ban his main work finalized 

later concerning the foundation of kinematics and the science of strength of materials could 

not be published in Italy but was presented by the publishing house Elsevier in Leiden. 

 Is not easy to explain the principle of relativity presented by Galilei using “gnats, flies 

and other small winged creatures” for a presentation based on equations. To maintain the 

basis of a moving ship, in the following the situation shall be discussed, that this is passing 

a harbor mole were at the same time a flag is rising with constant velocity and is finally 

reaching the top at time 𝑡0. For an observer at the mole the movement of the flag appears 

to be vertical (coordinates 𝑥 = 0, 𝑦 and time 𝑡 with variable values) whereas in view from 

the ship, which is moving with the velocity 𝑣, the flag relative to the coordinates of the ship 

(connected to the coordinates 𝑥′, 𝑦′, 𝑡′) is falling behind by the factor 𝑣 · 𝑡0 (see Fig. 1.2) 

 

   

Fig. 1.2: Varying perceptions of the same event observed from different 

  reference systems 

 

It is thus possible to carry out coordinate transformations using the following calculations: 

 

𝑥′ = 𝑥 −  𝑣𝑡,     𝑦′ = 𝑦,      𝑧′ = 𝑧     𝑡′ = 𝑡                                     (1.01) 

 

 If on the other hand a flag is rising on the ship the reverse effect will occur and in view 

of the observer at the mole the flag is moving in 𝑥-direction 

 

𝑥 = 𝑥′ +  𝑣𝑡,     𝑦 = 𝑦′,     𝑧 = 𝑧′    𝑡 =  𝑡′                                    (1.02) 

 

 The description requires only a simple conversion of Eq. (1.01). This equation system is 

called the “Galilei-Transformation” of classical mechanics. It is important that only a varia-

tion in the direction of the movement occurs, all other spatial directions are not affected 

and in addition time is constant for all systems. 

 This interpretation was taken as a priori valid for centuries because it is conforming to 

daily experience of human life, and thus was not questioned for a long time. It will be pre-

sented later that according to today’s knowledge the validity is only (approximately) 

granted when the velocity of the system (in this case the speed of the ship in 𝑥-direction) is 

far lower than the speed of light. 
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 Although an important foundation was created by Galilei the main work to complete 

classical mechanics was done by another great scientist. In the year 1687 Isaac Newton 

(1643-1727) published his book 

 Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural 

 Philosophy) 

which is certainly one of the most important books in modern science. It contains the axi-

oms later named after Newton and also many comprehensive calculations and arguments. 

For the presentation the form of a continuous text was used, and it is hard to understand 

from today’s point of view, not only because it is written in Latin, but also because no equa-

tions using the equality sign were used (see Fig. 1.3). The publication is available as original 

and in several modern transcriptions; a remarkably interesting example is the original book 

used by Newton with his handwritten remarks which is provided by Cambridge University 

and is available online. 

 

  

Fig. 1.3: Extract of Newton’s Philosophiae Naturalis Principia Mathematica 

  Left:       First and second axiom 

  Right:    Typical text with diagram and calculation without using 

      the equality sign “=” 

 In this book for the first time the fundamental laws of classical mechanics were defined 

which we today call Newton’s Axioms. In the following they will be described in detail. Do-

ing this a modern wording is used and in addition the connected equations will be 
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presented using vectors. The definition of physical parameters as vectors, i.e. the combina-

tion of magnitude and direction was first used by the German teacher Herrmann Günter 

Graßmann (1809-1877) and was therefore not established in the 17th century. Although 

Newton could not know this kind of presentation, it is today’s standard and therefore it 

shall be utilized here. 

1. The Principle of Inertia 

An object with constant mass either remains in a state at rest or continues to move 

at a constant velocity, unless acted upon by force. 

𝑣 = 𝑐𝑜𝑛𝑠𝑡.     𝑖𝑓 ∑ 𝐹⃗𝑖
𝑖

= 0                                                 (1.03) 

This determination needs a high degree of abstraction because all motions, that can 

be observed in daily life, are more or less superimposed by effects like friction or 

gravitation. 

2. The Basic Principle of Dynamics 

The rate of change of momentum is directly proportional to a force applied. For con-

stant mass systems, force is mass multiplied by acceleration. 

     𝐹⃗ = 𝑚𝑎⃗                                                              (1.04) 

3. The Principle of Reaction 

When one body exerts a force on a second body, the second body simultaneously 

exerts a force equal in magnitude and opposite in direction on the first body. 

𝐹⃗12 = −𝐹⃗12                                                          (1.05) 

or generally „action is equal to reaction“. 

There is a further basic principle that can be derived out of the publication, but this was 

not assessed as an axiom by Newton. It is also particularly important and therefore today 

often referred to as Newton’s 4th axiom. 

4. The Principle of Superposition 

If several forces interact, they add up like vectors. 

𝐹⃗𝑟𝑒𝑠 =∑𝐹⃗𝑖
𝑖

                                                         (1.06) 

 These 4 axioms form the foundation of classical mechanics, where all processes can be 

referred to. 

 It is worth mentioning that the imprimatur for the Philosophiae was granted by Samuel 

Pepys (1633-1703). Newton belonged to his large circle of friends. Different to countries 

controlled by the Catholic Church, where representatives of the inquisition were responsi-

ble for the approval of publications, in England this was his duty as the president of the 
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Royal Society. Pepys is well known until today for his secret dairies written between 1660 

and 1669, which were found shortly after his death and then published. They contain inter-

esting reports e.g. about the Plague 1665 and the great fire in London 1666. Further on the 

drastic comments on his fellow citizens and the notes about his many extramarital relations 

are to be mentioned which he described in any detail. He is one of the most important au-

thors of that time and his books are still published today. 

 Beside his publications Newton also created the first reflecting telescope, which was 

much valued by the scientific community. Further on he was co-founder of the infinitesimal 

calculus. This led to a bitter dispute with Gottfried Wilhelm Leibniz (1646-1716) about the 

first priority of the discovery. He brought him to the court of the Royal Society − whose 

president he was at that time − accusing him of plagiarism and not surprisingly Leibniz lost 

the struggle. Newton vaunted himself later that he had broken his heart. Today Newton and 

Leibniz are considered the independent co-founders of this part of mathematics. 

 However, beside his epoch-making discoveries Newton’s main passion belonged to al-

chemy, on which he concentrated a broad part of his research work. A major part of the 

books belonging to his heritage, now preserved by the Kings College in London, is dealing 

with themes connected to alchemy. Further, he served as Warden (1696-1700) and Master 

(1700-1727) of the Royal Mint in London. So, he finally was not able to produce gold or 

silver, but this appointment brought him into a position to rule money. 

 Due to his special character Newton carried out his job at the Royal Mint in a very serious 

way. One of the main problems of this institution at that time was the coining of counterfeit 

money. The silver coins minted by the Royal Crown were fined down and the produced 

swarf was remelted and coined into false money. He persecuted the offenders in a rigorous 

way and brought them to court, what at that time generally meant that they were sentenced 

to death. This and many other additional occurrences are presented in the very unorthodox 

book of F. Freistetter (Newton, the way an asshole reinvented the world, in German lan-

guage [83]). 

1.3  Light and radiation 

Beside classical mechanics further important foundations for the following considerations 

are the nature of light and the basic physical principles of radiation. Early history shows, 

dependent on the particular cultural background, that different myths exist to describe the 

origin of light and corresponding to it the ability for man to see. In Greek mythology goddess 

Aphrodite created the eyesight out of the four elements earth, water, wind and fire; the 

main understanding of this divine gift was, that light was leaving the eyes, and, in a reaction, 

different objects became visible. 

 About 300 BC the important Greek Philosopher Euclid started examinations concerning 

the behavior of light and found out, that light beams travel in straight paths and in a further 

approach he also discovered the laws of reflection. In addition, he concluded that it is not 

reasonable to adhere to the opinion that light leaves the eye because in such a case no dif-

ferences between day and night would be possible. Although these observations paved the 

way for further discoveries and improvements of the theory, it took about 2000 years to 

take the next steps. 
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 Newton followed the idea, that light is consisting of small corpuscles with different sizes 

and properties. He carried out experiments with mirrors, lenses, and prisms to verify the 

laws of reflection and to discover the general nature of light. He was partly successful, but 

his theory using corpuscles was not able to explain some of the experimental results; espe-

cially the nature of interferences caused conflicts to his approach which could not be solved. 

 In the year 1690 the Dutchmen Christiaan Huygens (1629-1695) developed the first 

complete wave-theory of light. With this comprehensive theoretical approach, it was possi-

ble for the first time to explain the phenomena of reflection and refraction of light without 

discrepancies. Beside his pioneering work concerning the wave-theory he was also very 

successful as astronomer; he was the first to discover Titan, the moon of Saturn, and he 

identified the rings of Saturn. For this purpose, he used an improved telescope, which he 

had constructed and built co-working with his brother Constantijn. He also developed 

mathematical basics concerning the figure 𝜋 using arithmetic series, further to the applica-

tion of logarithms and he is co-founder of the calculus of probabilities. 

 The wave-theory of light was discussed highly controversial for a long time, especially 

because the theory using corpuscles was the idea of the great Isaac Newton. One of the main 

arguments of supporters of Newton’s theory was that light is completely shielded by barri-

ers and no wave can be seen behind it, like e.g. visible on a water surface when a wave is 

passing an obstacle. It was not known at that time that the wavelengths of light are very 

small (approx. 400-700 nanometers). It was not before the double-slit experiment was per-

formed by Thomas Young (1773-1829) at the beginning of the 19th century, which sup-

ported the contention that light is composed of waves, that the discussion ended. Young 

also solved the problem to explain the effect of polarization, because he interpreted light as 

a transversal wave. According to our today’s vocabulary this means, that the vectors of the 

electric and magnetic field are perpendicular to each other and also to the propagation di-

rection (see Fig. 1.4). This contrasts with the behavior of a sound wave which is propagating 

longitudinal; this means that the transporting medium e.g. air or water is oscillating in mov-

ing direction and thus no polarization is possible. Linear polarization of light is observed 

when many superimposing waves show the same orientation. 

 In the year 1676 Ole Christian Rømer (1644-1710) was the first to provide evidence that 

the velocity of light is limited. He observed the eclipse of the Jupiter-moon Io, which occurs 

during perigee (shortest distance to earth) earlier than during apogee (farthest distance). 

This result was in contradiction to the established understanding of many others, from Ar-

istotle to Descartes, who were convinced that the speed of light was unlimited, so it was 

only reluctantly accepted. The results found by Rømer, who just measured the time delay, 

were converted by Huygens 1678 using calculations to a velocity of approx. 212000km/s, 

which is approximately 70% of the correct value. Evaluated in comparison to the available 

resources at that time the result was already remarkable exact. 

 According to the understanding of that time it was presumed that light needs a transpor-

tation medium for propagation. This idea was transferred from the knowledge about the 

conditions valid for the transport of sound, where atoms resp. molecules are forced to os-

cillate. The center of the oscillation is always constant, which means that atoms or mole-

cules in an observation of the average position are not moving but that just energy is trans-

ported by the waves. 
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Fig. 1.4: Propagation of an electromagnetic wave with the components of the 

  electric and magnetic field (E and M) 

 First knowledge concerning this was collected by Otto von Guericke (1602-1686). In the 

year 1649 he invented the vacuum pump and used it for many experiments. The most spec-

tacular was surely the demonstration of the action of force caused by air pressure. He pro-

duced two half spheres made of copper (diam. approx. 42 cm) and during the Reichstag 

1657 held in Regensburg he combined these with a sealing and used his pumps for evacua-

tion. In presence of Kaiser Ferdinand III, it was shown that eight harnessed horses at each 

side were not able to tear the combination apart. This experiment was so impressing to the 

audience, that Archbishop Johann Philip von Schönborn bought and passed it to his Jesuit 

College at Würzburg. Beside this spectacular experiments Guericke also performed basic 

investigations and was able to show that a vacuum is not conducting sound, but that light 

is passing. 

 The medium that, according to the knowledge of that time, was needed to transport light 

was called “luminiferous ether” or just “ether”. The word is originating from the Greek 

myths and is in its genuine sense describing the (blue) sky. In contrast to the four earthly 

elements (these are earth, wind, water, and fire which are interestingly complementary to 

the conditions of aggregation solid, liquid, gaseous and ionized), ether was the 5th element, 

which stood in relation to heaven and therefore in contrast to the others was inalterable 

[4d]. 

 During the passing centuries, many theories were developed to describe the nature of 

ether. As its main characteristics it was expected to permeate anything but not to produce 

any resistance to objects, because in this case it would influence physical laws. It was the 

general view that light is transported by ether in the same way as sound by air. However, 

there were two observations from experiments which prevented a distinct determination 

because they are in fundamental contradiction: 

1. The effect of stellar aberration first detected in the year 1725 by James Bradley (1693-

1762). 
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2. The effect observed in moving transparent media (e.g. glass or water) of dragging light 

in the direction of motion. This effect is dependent on the refraction index of the me-

dia. 

Point 1: 

Stellar aberration is a definition used in astronomy to describe a small apparent shifting of 

the position of stars, when an observer is moving in transverse direction. Earth is travelling 

around the sun with a speed of about 30km/s; this means that after half a year a measuring 

effect of 60km/s compared to the position of an unmoved sky will appear. This is causing a 

misalignment for the incoming light, which was first detected by Bradley with precision 

measurements using a zenith telescope. This type of telescope is designed to point straight 

up to or near to the zenith. Bradley installed it in his house along the chimney and spent 

most of his observation time upon a bench underneath the instrument. 

 The major precondition for the occurring of an aberration effect is that the speed of light 

is limited. Bradley was able to measure that the speed of light is 10210-times higher than 

the velocity of the earth orbiting the sun. He achieved a remarkable precision of 2% com-

pared to the exact value we know today. Furthermore, he concluded that ether could not be 

affected by mass like that of earth. If earth would drag ether with it, then no aberration 

effect could be detected. 

 This effect must not be mixed up with the measurement of the parallax, i.e. the deviation 

of the angle of a star relatively close to earth depending on the position of earth to the sun 

during the year. Such a measurement was first successfully completed by Friedrich Wilhelm 

Bessel (1784-1846) in the year 1838 during observation the star 61 Cygni. Out of the meas-

ured angle he calculated a distance of 10.28 lightyears to the sun (today’s value is 11.4 

lightyears). The parallax effect is approx. 2 orders of magnitude smaller than that of aber-

ration. 

 Distance determinations are an essential part of cosmology today. However, the meas-

urement of the parallax is possible with earthbound telescopes only up to distances of about 

100 light-years. In 1912 Henrietta S. Leavitt (1868-1921) found out by extensive investiga-

tions on stars of the Magellanic Clouds that the absolute value of the maximum brightness 

of periodically changing stars is directly related to their period. Since there are enough var-

iable stars in the near-earth region, a first calibration was possible, and the extent of our 

galaxy could be determined (100,000 light years) and consequently the distances to the 

Large and Small Magellanic Cloud (163,000 and 200,000 Lj. respectively) and later by Ed-

win Hubble (1889-1953) to the Andromeda Galaxy (2.5 million Lj.). 

 

Point 2: 

In the year 1810 Francois Arago (1786-1853) made an experiment where he used a prism 

for aberration measurements. The expected alteration effect, however, could not be ob-

served. Already in 1818, a theory was presented by Augustin Jean Fresnel (1788-1827), 

that light is partly dragged by the medium in moving direction and that the appearing effect 

is dependent on the refraction index of the media. 
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 In the year 1851 Hyppolyte Fizeau (1819-1896) performed an experiment where he 

measured the speed of light in running water. He found the result that the speed of light is 

increasing when the examined beam has an orientation in moving direction of the water 

and decreasing when the direction is opposite. He also verified the equations first postu-

lated by Fresnel. This result changed the view on ether and the characteristic of a dragging 

effect by matter was added. 

 Because of the fundamental importance of the presented experiments these will be dis-

cussed in detail. Aberration is presented in chapter 2.1.2 and the dragging effect in moving 

transparent media in chapter 4.2. 

 Towards the end of the 19th century due to the inconsistent experimental results many 

different ether-theories were discussed, who should be able to explain the complex situa-

tion. Even Einstein, in his most probably first publication as a youth discussed an approach 

to the problem. Looking at the situation at that time it can be summarized, that no consen-

sus on the nature of ether could be achieved, but that nobody seriously denied the existence. 

1.4  Electromagnetism 

Phenomena connected to electrostatic effects were already known to Greek philosophers 

in ancient times. When amber (Greek: electron) is rubbed with a fur or cloth it will show 

visible effects like e.g. the emission of sparks or attraction of dust and other small particles. 

Also, magnetism is well known since a long time; in this case the observed phenomena were 

generally connected to the availability of magnetic iron ore named magnetite. The origin of 

the word is deriving from the Greek region called Magnesia, where these stones were found 

already in ancient times. A practical use was solely for application as a compass, which was 

known in China already in pre-Christian times and in Europe from the beginning of the 13th 

century on. 

 This did not change before the electrostatic generator was invented. Otto v. Guericke 

made experiments using a rotating Sulphur sphere and tried to find evidence for the exist-

ence of cosmic forces. The experimental set-up is referred to as the first electrostatic gen-

erator; although Guericke found attracting and repelling force, he had most probably no 

idea about the background of his experiment. Later constructions by successors using glass 

and leather were able to create quite high voltages. A further progress was made when the 

“Leiden Jar” was developed. This is the early form of a capacitor and from now on it was 

possible to generate and to store charges. Although now first experiments were possible 

and different electrical phenomena became known the invention was mostly used for spec-

tacular presentations to an interested audience. It was e.g. immensely popular to pass elec-

tric shocks to a crowd of people who were taking each other by the hand. 

 However, during the 18th century also some new scientific perceptions were derived, 

e.g. the frog leg experiment by Luigi Galvani (1737-1798), where he found that a leg of a 

dead frog is kicking as if alive when it is touched with an electrostatic generator. Further 

the experiments of Benjamin Franklin (1706-1790) proving that lightning is a form of elec-

tricity shall be mentioned. However, because of the limited experimental capabilities these 

approaches were exceptions, and it is not reasonable to talk about a comprehensive scien-

tific approach concerning this matter. 
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 A turning point was reached when in the year 1799 Alessandro Volta (1745-1827) con-

structed the first stable electric power supply in form of a battery, which was later called 

“Volta’s pile”. For the pile he used elements made of copper and zinc, which were separated 

by pieces of leather or paper soaked with sulfuric acid and so electrochemical cells were 

built. The pile was consisting of several cells and so it was possible to produce more than 

100 Volt (a physical unit later named after him). It is for sure one of the most important 

inventions of all time and the public paid high tribute to him. He also drew admiration from 

Napoleon Bonaparte for his invention and in 1810 he was made a count. 

 This invention laid the basis for many new experiments and subsequently to further im-

portant discoveries. Namely Faraday, Ampère, Heavyside and Lorentz are to be mentioned, 

who examined the properties of electric charge, electrical current and the relation to mag-

netism. André-Marie Ampère (1775-1836) was the first to introduce the concept of a field 

and discovered an electromagnetic relationship, which was of great importance for scien-

tific progress. 

 Further knowledge was established by theoretical considerations of James Clerk Max-

well (1831-1879) who was able to show, that the existence of electric and magnetic effects 

is connected. He also used for the first time the expression of electromagnetic fields. Max-

well demonstrated that electric and magnetic fields travel through space as waves moving 

at the speed of light. He proposed that light is an undulation in the same medium that is the 

cause of electric and magnetic phenomena; this medium was supposed to be the “luminif-

erous ether”. A further important result of his investigation was that the relations he devel-

oped, which later were called “Maxwell-Equations”, are not conform to the Galilei-Trans-

formation and so this was in contradiction to classical theories. 

 The experimental work of Heinrich Hertz (1857-1894) later confirmed that the shining 

of light can in fact be interpreted as propagation of electromagnetic waves. From 1889 until 

his death, he was professor for physics at the University of Bonn. To this very day the ex-

periments built by him are working and presented during the lectures of experimental 

physics. They provide an impressing view at the technical possibilities of that time. 

 Towards the end of the 19th century knowledge concerning electromagnetic effects had 

improved significantly. The gathered knowledge both on theoretical and experimental ba-

sis made clear for anybody that ether for the transport of electromagnetic waves must exist. 

This view was generally also expanded to gravitation. 

1.5  The Michelson-Morley Experiment and first interpretation 

Albert A. Michelson (1852-1931) was one of the most important physicists at the end of the 

19th century. In the year 1869 he joined the US Naval Academy and graduated in 1873. 

After 2 years at sea, he became instructor in physics and chemistry at the naval academy 

until 1879. Then he was posted to the Nautical Almanac Office in Washington and in the 

following year he obtained leave of absence to continue his studies in Europe (Berlin, Hei-

delberg, and Paris). In the year 1877 he married the daughter of a wealthy stockbroker and 

so he achieved financial independency. He was extremely interested in physical experi-

ments, especially in measurements of the speed of light; his special knowledge as a naval 

officer was very helpful, because during his duty one of his tasks was the measurement of 
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distances by optical means. In the year 1881 he resigned from the navy and started his sci-

entific career. In 1907 he was the first American to receive the Nobel Prize in physics. 

 The first experiment by Michelson to provide evidence of “luminiferous ether” per-

formed 1881 at the Helmholtz’ laboratory in Berlin was not successful, because the vibra-

tions of the city traffic made it impossible. It was repeated at the observatory in Potsdam 

and there he found a zero result [6]. Due to experimental shortcomings in the execution the 

result was first generally rejected by most scientists. Together with Eduard W. Morley 

(1838-1923) the apparatus was improved, and the experiment was repeated in Cleveland 

in 1887 [7]. It was now detected and verified without doubt, that the measurement of the 

speed of light led to the same results in every direction, irrespective of the movement of the 

measuring device in comparison to the supposed ether. Because of the paramount im-

portance of the experiment the set-up of the device and the interpretation of the results will 

be discussed in detail (see chapter 9.1). 

 During the following years, the experiment was widely discussed and addressed in many 

publications, of which the most important shall be mentioned shortly here. George F. Fitz-

Gerald proposed already in 1889 the idea, that the length of material bodies is contracting 

at velocities close to the speed of light [8]. He expected this contraction to be dependent on 

the square of the ratio of their velocities. The same issue was also predicted independently 

by Hendrik A. Lorentz (1853-1928) three years later [9]. Because of further contradictions 

Lorentz and also Henri Poincaré (1854-1912) introduced in the year 1900 the concept of 

“local time” [10]. This means, that in view of an observer at rest the clocks of other moved 

observers show different times during a synchronization process depending on their dis-

tance. It was now possible to perform calculations between systems with different veloci-

ties. The basic equations were converted into their modern appearance by H. Poincaré, who 

also created the name “Lorentz-Transformation [11]. It was shown that contraction of 

space and dilatation of time is covered by the same factor (Poincaré named it 𝑘, Einstein 𝛽 

today usually the Symbol 𝛾 is used). 

 The transformation equations are 

 

𝑡′ = 𝛾 (𝑡 − 
𝑣

𝑐2
𝑥)                                                         (1.07) 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)                                                             (1.08) 

with 

𝛾 =
1

√1 −
𝑣2

𝑐2

                                                              (1.09) 

 In these equations 𝑥 and 𝑡 are the coordinates of a reference system and 𝑥′ and 𝑡′ the 

coordinates of another system moving constantly relative to this, the coordinates in 𝑦- and 

𝑧-direction are not changing. These relations today are normally called Lorentz-Transfor-

mation (LT) or “Lorentz-boost”. Although the term “boost” implies the existence of an ac-

celerated system this is not the case. In contradiction to this the equations describe 
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relations between systems, which are constantly moving relative to each other and are not 

subject to acceleration or rotation. Furthermore, these equations show similar characteris-

tics compared to the Maxwell equations which are valid for the interpretation of electro-

magnetic fields. 

 A detailed derivation of the equations will be presented later. It must be mentioned fur-

ther, that at velocities 𝑣 ≪ 𝑐 the factor 𝛾 is approaching 1 and the equations are merging 

with the Galilei-Transformation in Eq. (1.01). 

1.6  Einstein’s Theory of Special Relativity 

In the year 1905 Albert Einstein published his famous paper “On the electrodynamics of 

moving bodies” and presented a main contribution to the theory of relativity (later called 

“Special Relativity” or SRT). For an exact representation it is necessary first to introduce the 

concept of an inertial system. Inertial systems are defined by the fact that they are moving 

in arbitrary speed to each other but are not accelerated or show a rotational motion. 

Fundamentals of SRT are the principle of relativity and the principle of constancy of the 

speed of light. In the original version Einstein has chosen the following formulation [12]: 

“Principle of Relativity: The laws by which the states of physical systems undergo change 

are not affected, whether these changes of state be referred to the one or the other of 

two systems in uniform translatory motion relative to each other. 

Principle of constancy of the speed of light: Every light ray moves in the "resting" coor-

dinate system with a certain speed V, independent of whether this light ray is emitted by 

a resting or a moving body. Here is 

velocity =
lightpath

time period
 

where "time period" is to be understood in the sense of the definition of § 1.” 

The interpretation is not easy, also because Einstein speaks here of a "resting" system. 

But the meaning, especially of the 2nd paragraph, is clear, when it is considered that the 

procedure chosen in the further text, especially the application of the synchronization pro-

cedure (today: Einstein synchronization, see chapters 3.4 and 12.2). Because of the com-

plexity, details will be discussed later in this paper. 

Important here is the radical break with the previous approach to the establishment of 

a physical theory. While Lorentz and Poincaré interpreted the available experimental re-

sults, derived the transformation equations from them and then found the principle of rel-

ativity, Einstein put this first and was able to derive the equations in a relatively simple way. 

Generally speaking, these are the principles bottom-up (Lorentz, Poincaré) and top-down 

(Einstein). 

Lorentz in 1892 first assumed that there must be an absolutely resting fundamental sys-

tem [9]; then in 1910 he was of the opinion that it would never be possible to distinguish 

between the two approaches [13]. Independently, however, he welcomed Einstein's formu-

lation of relativity and became its advocate [14,15], especially because of the "boldness" of 

the approach [14]. 
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At the time of development, it was not foreseeable that a metrological verification of the 

theory would ever be possible. In the following decades, however, new experiments were 

added, the most important of which are those of Kennedy-Thorndike [16] and Ives-Stilwell 

[17,18], which will be discussed in detail later. In addition, the measurement accuracies 

were improved more and more; modern measurements with very high precision showed 

among other things the validity of the time dilation formulated by Lorentz impressively 

[19,20,21]. On the other hand, however, the Theory of Special Relativity in its general form 

cannot be proved in principle. Every positive experiment strengthens the theory, but a sin-

gle unambiguous counterexample would lead to the fact that it must be considered as dis-

proved. 

In the first part of his publication, Einstein derived the transformation equations from 

the principles already mentioned. However, since these had already been discovered by 

Lorentz before, they are generally called "Lorentz equations" today. Einstein's publication 

does not contain any literature references and thus a parallel development to Lorentz can 

be concluded. Moreover, it is clearly the merit of Einstein to have combined the photoelec-

tric effect with these relations and thus to have been able to break completely with the ether 

concept. 

In further considerations of the principle of relativity, Einstein also predicted already in 

1905 the effect that the kinetic energy of a moving mass at higher velocities according to 

the formula 

𝐸𝑘𝑖𝑛 = 𝑚0𝑐
2(𝛾 − 1)                                                           (1.10) 

must increase [22]. This effect has been experimentally confirmed and is now commonly 

referred to as relativistic mass increase. It is important to see here that the designations are 

different. Lorentz chose 𝑥, 𝑡 for the reference system, while Einstein used 𝑚0. In Einstein's 

probably best-known formula 

𝐸 = 𝑚𝑐2                                                                             (1.11) 

the total mass m includes the part of the kinetic energy defined in Eq. (1.10). Also, the mass 

increases with higher velocity by the factor 𝛾. Both representations are used in parallel until 

today. 

 Lorentz-equations Relativistic mass increase 

Equation 𝑡′ = 𝛾 (𝑡 −  
𝑣

𝑐2
𝑥) 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡) 

𝑚 = 𝛾𝑚0 

{𝐸 = 𝑚𝑐2 = 𝛾𝑚0𝑐
2} 

Reference system 𝑥,  𝑡 𝑚0 

Moving system 𝑥′,  𝑡′ 𝑚 

These relations together form the basis for the Theory of Special Relativity. 

For the description of the principles postulated by Einstein, today often called Einstein 

axioms, there is no uniform definition, and it is chosen differently in every publication. In 

some cases, the description for both axioms are descriptive ("no differences can be found 
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in measurements"), in others the properties are put in the foreground ("the speed of light 

is the same in all inertial frames", "all inertial frames are equivalent"). Although these ex-

pressions are identical at first sight, there are important differences which have to be dis-

cussed in more detail in the following. The already mentioned relativistic increase of mass 

is not mentioned in the axioms, but without this effect the statement concerning the princi-

ple of relativity would not be possible. 

However, the principle of relativity formulated by Einstein also requires a precise inter-

pretation. First, this can be divided into the following detailed statements: 

a) If identical experiments are carried out by different observers in reference systems 

moving uniformly relative to each other, the results will be the same. 

b) An observer can describe results of any experiment in another inertial system that 

shows a constant relative movement using only the Lorentz transformation equa-

tions and the relativistic increase of mass. In particular, the observation of the time 

sequence of events is the same in all cases. 

c) All systems moving uniformly relative to each other are equivalent and there is no 

absolute "system at rest". 

The statement a) will now be defined as “principle of identity”, b) as “principle of equiv-

alent observations” and c) as “principle of complete equivalence of all inertial systems”. 

While points a) and b) are backed up by multiple test results, this must be considered in a 

differentiated manner for point c). Although there is a wide consensus about the validity of 

the SRT within the physical research community, there are still many theoretical and ex-

perimental attempts to refute individual points. This concerns in particular measurements 

concerning minor violations of the Lorentz equations, which have been predicted by theo-

retical considerations concerning a general, unified theory of all laws occurring in nature. 

Furthermore, a possibility to integrate a state of absolute rest is still searched for. 

Finally, some interesting historical questions should be addressed. Einstein became in-

volved with physical topics at an early age. At the age of 16, he wrote a letter to his uncle in 

which he outlined possible experiments to prove the existence of ether [99]. In 1901, 

around 6 years later, he already had more far-reaching ideas and wrote about himself and 

his future wife Mileva Marić, whom he met while studying physics and mathematics at the 

ETH in Zurich: " How happy and proud will I be, when we both together have brought our 

work on the theory of relativity victoriously to an end". She was the only woman in this field 

of natural science, which was clearly dominated by men at the time. However, her contri-

bution to the development of the theory is unclear, and it is also doubted whether the ether 

theory had already been overcome at this time [85]. In the epilogue to his work, Einstein 

expressively thanked his friend and fellow M. Besso that he was faithfully standing at his 

side during the work and that he owes him valuable suggestions; his wife was not men-

tioned at all [12]. 

Although there is no clear evidence, it seems very plausible that Einstein had the exten-

sive support of his wife in 1905, the year in which he submitted his dissertation and wrote 

another 4 publications in addition to his work at the patent office. In 2005, Mileva Marić 

was officially honored as a co-founder of the theory of relativity by the university ETH Zur-

ich [84]. However, there are a large number of publications on this topic and also dissenting 
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opinions (e.g., [85]). In 2003, television stations in the USA broadcast the documentary 

“Einstein's wife”. During and after the broadcast, viewers were asked online for their opin-

ion and 75% of viewers were convinced that his wife had indeed collaborated with him. 

However, “history is not a matter for democratic voting” [85]. Due to the lack of sources, it 

must be stated today that we simply do not know the details. 

This also applies to information about her first child. Mileva Marić gave birth to a girl in 

1902, before her wedding (which took place in 1903). For this purpose, she returned alone 

to her parents in Novi Sad (today Serbia, then Austrian Monarchy); it is not clear whether 

the child died there or was given up for adoption. Even though Einstein was a public figure 

as the most famous scientist of his time, there are mysteries about this early period that will 

probably never be disclosed. 

1.7  Current discussions 

Already at the beginning of the second half of the last century it became clear that the back-

ground radiation of the Big Bang, which was discovered at that time, runs completely iso-

tropic and constant in all space directions. This has made it possible to measure a velocity 

relative to this background radiation. Recent measurements with extreme accuracy have 

shown that our sun moves with 369.1 ± 0.9 km/s relative to it [23]. It should be noted here 

that the sun is orbiting the galactic center at a speed of approx. 220 km/s, and that the ve-

locity is directed almost opposite to it. This means, that our galaxy is moving with a speed 

of approximately 600 km/s relative to the detected background radiation [19]. 

In particular because of these observations there have been considerations to bring spe-

cial relativity in accordance with a state of absolute rest (i.e. “relativity without relativity” 

[24]). None of these theories were able to show results without severe discrepancies to ex-

perimental findings. Details are summarized in chapter 12.1. 

Moreover, a problem has recently arisen from the measurements of velocities faster than 

that of light. Experiments carried out by different research groups for several years already 

show that such velocities can be measured in connection with tunnelling experiments. 

However, there are great differences in the interpretation of these results. While some re-

searchers are convinced that despite of observed superluminal velocities no information 

can be transmitted with this speed, others expect this to be the case. If the latter is true, this 

is basically not compatible with the theory of special relativity. The effects will be discussed 

in detail. 

Further theoretical considerations disclose a severe problem, which is a fascinating part 

of today’s discussion within physics: It is broad agreement that the fundamental physical 

theories of our time, the theory of (general) relativity and quantum mechanics are in con-

tradiction [20]. The problems which occur are presented in a very comprehensive way by 

T. Müller [25]. 

Generally, it can be stated, that after more than 110 years since the first presentation of 

Special Relativity many questions are still open. It is the aim of this presentation to develop 

proposals for a modification. 
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1.8  Contents of this presentation 

Today, the Theory of Special Relativity (SRT) represents a fundamental standard within 

physics. There is an almost unmanageable number of books, literature, and lecture notes 

on this subject. This paper is intended as a supplement to other books on this subject, in 

particular the excellent work of Max Born (1882 -1970), a contemporary and friend of Ein-

stein [26]. The book was first published in 1920 and is still reprinted today with some nec-

essary additions. In addition to the theoretical part, which is deliberately kept simple for 

training purposes, the developments in physics that took place in the 19th century are also 

very accurately reproduced here. This also applies to the important subject of electromag-

netism, which is only briefly touched upon here. 

Usually, papers on special relativity follow the scheme that first the results of classical 

experiments are presented and based on them the theory is formulated. In the present case, 

however, the theory shall be chosen as axiomatic framework and then the consequences 

resulting from it shall be discussed. As will be shown, this systematic approach also cap-

tures effects that otherwise are not in focus but are of great importance. The resulting cal-

culations partly require the use of numerical methods. Their execution is described in detail 

in an appendix (A to D). 

The central approach of the presented investigations is the following: First, all investi-

gated phenomena are presented from the point of view of an observer at rest. Based on this, 

it will be evaluated how the same facts arise for a moving observer; for this, exclusively the 

formalism of the Lorentz transformation and the relativistic mass increase will be used. It 

will be shown for a large number of investigated relations that the same results are ob-

tained for both observers and that no counter example exists. 

In the following, first an exact representation of the connections within special relativity 

is given. This begins with investigations to the signal exchange between two observers 

moved relatively to each other. Afterwards the Lorentz transformation is derived from the 

basics of Special Relativity (equivalence of all inertial systems and constancy of the speed 

of light). 

In addition, the important item of the synchronization of events is considered in more 

detail. This is done first on the basis of synchronization by means of signal exchange, later 

also by exchange of clocks. Subsequently, the relations between several moving observers 

are the subject of considerations. In addition, the relations of signal exchange in moving 

transparent media are also investigated. In all examples it can be stated that the validity of 

the equations developed by Lorentz is guaranteed without restrictions. 

The synchronization with slow clock transport presented in detail in chapter 5 contains 

some new approaches for the unambiguous proof of a zero result. 

In chapters 6 and 7 considerations of relativistic influences on mass, momentum, force, 

and energy are made. Further the situation of observers exchanging signals with others 

during acceleration and afterwards will be investigated. For this purpose, the conditions 

during elastic relativistic collisions are investigated, and the relationship for a relativistic 

rocket equation is derived from this. It is also shown here in all cases that there are no dif-

ferences in the considerations for an observer assumed to be at rest or to be moving. 
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Further investigations on the conditions during the exchange of light signals with con-

stant frequency show new aspects for the interpretation of classical experiments (chapter 

8). It will be shown that at the transition between systems with a movement relative to each 

other not the speed of light, but the phase velocity of light is the relevant parameter. As a 

consequence, classical experiments like the Michelson-Morley experiment and also the 

Kennedy-Thorndike experiment have to be re-evaluated, although their basic statements 

remain the same. 

Furthermore, the case is discussed, when superluminal velocities occur, which are ob-

served in connection with tunnelling experiments. If it is possible to transfer information 

in this case faster than light, contradictions will occur between identity and equivalence 

principle. 

A proposal is developed, how these contradictions can be eliminated. In contrast to the 

basic idea developed by Einstein, a top-down concept with given principles, a different ap-

proach is chosen. Instead, the Lorentz equations are used as a basis and, in addition, the 

concept of relativistic mass increase with increasing relative velocities derived by Einstein 

from the principle of relativity. Their combination into an "Extended Lorentz Theory" al-

lows to describe all phenomena occurring in nature in the same way as the Theory of Spe-

cial Relativity. Absolute precondition is that information is transmitted at the speed of light. 

If a transport should ever be possible with superluminal velocity, then SRT is proofed to be 

false, for the Extended Lorentz Theory then the opportunity would arise to determine the 

position of a system of absolute rest. 

Finally, on basis of these considerations, different experiments will be proposed. With 

their help, clear statements on the validity of the proposed theory could be made.  
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2.  Relations between two moving observers 

It was already mentioned before in the introduction of this presentation, that in the follow-

ing the Theory of Special Relativity (SRT) will be placed first in an axiomatic way to discuss 

general physical relationships. Using this basis, different combinations for the exchange of 

signals between two observers will be examined first. This will start with point-shaped ob-

servers before they will be looked at as containing an extended space. Subsequently the 

relations of angles between moving observers during the exchange of signals will be inves-

tigated. 

 The consequences derived will be discussed and compared with observations and calcu-

lations presented in the literature. It will be shown that the results do not contain any con-

tradictions. Furthermore, additional considerations concerning the calculations of angles 

will be derived. These are based on geometric calculations and lead first to the expected 

result that a defined contraction of space must exist. It will also be shown that the contrac-

tion must be considered as symmetric in moving direction and opposite to it. This will be-

come important later for the examination of alternative theories, which will be discussed in 

chapter 11.1. 

 Following the historical development, the participating observers performing experi-

ments will first be specified as “at rest” and “moved”. In further considerations it will be-

come clear, that these definitions in general can be replaced by “relatively moving against 

each other”. This approach is not used very often today, but sometimes it still can be found 

in new literature [21]. 

2.1  Exchange of signals between point-shaped observers 

Although the first considerations and deductions presented here will be trivial at first sight, 

these simple approaches are already providing clear evidence of the limits of classical me-

chanics. To avoid discrepancies, it is even necessary for simple constellations, like these are 

valid for the exchange of signals between two point-shaped observers, to implement the 

calculations of the Lorentz-Transformation. 

 In the following this will be shown for some simple examples before more complex con-

siderations will be discussed in detail. 
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2.1.1 Movement decreasing or increasing the distance 

When two observers A and B decrease or increase their distance without acceleration, the 

transmission of light signals periodically emitted is of general interest. Following the clas-

sical theory according to Newton it is apparent, that the moved observer will detect a larger 

interval compared to the observer at rest, although the period of emission is the same for 

both (see Fig. 2.1). 

 

 
 
Fig. 2.1: Differences in the intervals of detected light signals by an observer at rest  

and a moving observer according to classical theory. 

 Observers have contact at 𝑡 = 0, 
 Signal interval 𝛥𝑡 = 1 𝑇𝑈 (time unit), 

 Example for 𝑣 = 0,5𝑐 
 

 In this example with 𝑣 = 0,5 𝑐 the moving observer would detect a signal every 2 time 

units (𝑇𝑈), whereas the observer at rest would find a difference of 1,5 𝑇𝑈. According to 

these considerations both observers would be able to calculate their velocity by the meas-

urement of the signals from the partner. This is in clear contradiction to the experimental 

observation, that the results of trials like these are always independent of the state of mo-

tion. 

 In Fig. 2.2 the possibilities for the state of motion between a moved observer and an ob-

server at rest are put together. Furthermore, in Tab 2.1 the fundamental relations are pre-

sented. 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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Fig. 2.2 Space-time diagrams for possibilities of light signal exchange 

 
 

a) 

𝛥𝑡𝐵 = 𝛥𝑡0
1

1 −
𝑣
𝑐

 

c) 

𝛥𝑡𝐵 = 𝛥𝑡0
1

1 +
𝑣
𝑐

 

e) 

𝛥𝑡𝐵 = 𝛥𝑡0 

𝛥𝑡𝐴 = 𝛥𝑡0
1 +

𝑣
𝑐

1 −
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0
1 −

𝑣
𝑐

1 +
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0 

b) 

𝛥𝑡𝐵 = 𝛥𝑡0 (1 +
𝑣

𝑐
) 

d) 

𝛥𝑡𝐵 = 𝛥𝑡0 (1 −
𝑣

𝑐
) 

f) 

𝛥𝑡𝐵 = 𝛥𝑡0 

𝛥𝑡𝐴 = 𝛥𝑡0
1 +

𝑣
𝑐

1 −
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0
1 −

𝑣
𝑐

1 +
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0 

 
Tab. 2.1 Time intervals for the signal exchanges presented in Fig. 2.2 

 

 In the following the conditions for an exchange of light signals from A to B and vice versa 

according to Fig. 2.1 shall be presented in a simple space-time-diagram (see Fig 2.3). To 

realize this, the variations a) and b) from Fig. 2.2 will be combined. 

x 

t 
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Fig. 2.3: Space-time-diagram for a signal exchange between observers A 

  (at rest) and B (increasing the distance), Example for 𝑣 = 0,5𝑐 

  a) conventional (acc. to Galilei/Newton) 

  b) relativistic (acc. to Lorentz) 

 In case a) the conventional situation (acc. to Galilei/Newton) is presented. Both observ-

ers are emitting their signals at time 𝑡 = 1𝑇𝑈 and these are detected at A1 resp. B1 by the 

partner. This diagram is valid e.g. for the exchange of acoustic waves, when A is at rest 

against a medium (i. e. air or water). But it was already mentioned before that this could 

not be detected by any experiments conducted using light signals. 

 Already at the end of the 19th century a solution for this (inside classical mechanics acc. 

to Newton existing) problem was presented by H. A. Lorentz. To realize this, it is necessary 

to assume, that at higher velocities an effect of time dilatation will be present. This means 

that time is running slower for the moved observer. This effect is integrated in part b) of 

the diagram. For observer B the time is running slower and therefore B is sending his signal 

later; this will arrive at the partner at A1
′ . Because of the time dilatation the additional effect 

occurs that B is subjectively detecting the signal sent from A earlier. This effect is presented 

in the diagram by the transition from B1 to B1
′ . 

 The exact parameter of the time dilatation can be calculated in an easy way according to 

Fig. 2.2, cases a) and b). For the transition from a system at rest to a moved observer for ∆𝑡0 

the relation is valid 

∆𝑡𝐴𝐵 = ∆𝑡0  
1

1 −
𝑣
𝑐

                                                             (2.01) 

In opposite direction it is 

∆𝑡𝐵𝐴  = ∆𝑡0 (1 + 
𝑣

𝑐
 )                                                          (2.02) 
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To match ∆𝑡𝐴𝐵 and ∆𝑡𝐵𝐴 it is necessary to expand the equations (2.01) and (2.02) by the 

parameter 𝛾 (where ∆𝑡𝐴𝐵 will be smaller and ∆𝑡𝐵𝐴 will be larger) and the equations develop 

to 

1

𝛾
 ·

1

1 −
𝑣
𝑐

=  (1 + 
𝑣

𝑐
 ) · 𝛾                                                          ( 2.03) 

with 

𝛾 =
1

√1 −
𝑣2

𝑐2

                                                                   (2.04) 

 
The parameter 𝛾 calculated here is the same as the Lorentz-Factor of Eq. (1.03). 

 It is therefore not possible for observers A and B to decide, whether they are moving or 

at rest. This implies that observer B also has the impression, that the time is running slow 

for A compared to his perception. 

 The example presented here for observers who increase their distance can also easily 

transformed to the view of observers which are approaching each other (see. Fig. 2.4, larger 

scale compared to Fig. 2.3). 

  
 
Fig. 2.4: Space-time-diagram for a signal exchange between observers A 

  (at rest) and B (approaching), Example for 𝑣 = 0,5𝑐 

  a) Conventional (acc. to Newton) 

  b) Relativistic (acc. to Lorentz) 

 For the transition from a system at rest to a moving observer the time ∆𝑡0 is according 

to case c) and d) presented in Fig. 2.2 

∆𝑡𝐴𝐵 = ∆𝑡0  
1

1 +
𝑣
𝑐

                                                          (2.05) 
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and in opposite direction 

∆𝑡𝐵𝐴  = ∆𝑡0 (1 − 
𝑣

𝑐
 )                                                        (2.06) 

The equations (2.05) and (2.06) must again be expanded by the parameter 𝛾 (∆𝑡𝐴𝐵 smaller 

and ∆𝑡𝐵𝐴 larger) and it follows 

1

𝛾
 ·

1

1 +
𝑣
𝑐

=  (1 − 
𝑣

𝑐
 ) · 𝛾                                                    (2.07) 

with the same result for 𝛾 as shown in Eq. (2.04). 

 It shall be stated again that the time dilatation of the moving observer is necessary to 

avoid discrepancies. Without this effect it would always be possible to distinguish a moving 

observer from an observer at rest by simple experiments. 

2.1.2 Movement in arbitrary directions 

It was established so far, that it is not possible for two observers increasing their distance 

or approaching each other to decide by measurements regarding the exchange of light sig-

nals whether they are moving or at rest. When the velocity vectors of the observers are not 

parallel, and they are passing by with the minimum distance 𝑎 the situation changes, and 

more effort is necessary to verify that the observations of all participants are equivalent. 

 The following examination set-up shall be chosen: 

1. Both observers will send out signals, the (subjective) interval is ∆𝑡. 

2. For an incoming signal the angle referring to the direction of the sending observer is 

determined. 

3. If the incoming signal is exact transverse to the moving direction of the sender a re-

sponse signal with a special designation will be sent. 

4. The signals are coded in a defined way to realize a final evaluation at the end of the 

trial. After the exchange of all data it is possible to find out, at what time the signals 

were sent which were detected as coming in exactly from the transverse direction. 

First a moving observer B is considered, which is passing the observer at rest (A) in a 

minimum distance 𝑎 with the speed 𝑣. In this case A will detect the signals sent from B in a 

(subjective) interval 𝛾∆𝑡. Compared to this observer B has a completely different view. 

Caused by the aberration effect B will measure the angle of the signal according to the equa-

tion 

𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛 ( 
𝑣

𝑐
 ) = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝛾 ·

𝑣

𝑐
 )                                         (2 .10) 

as coming in from the transverse direction (see Fig. 2.5). Here 𝑣 = 0,5𝑐 is chosen and the 

measured angle is 𝛿 = 30°. Further discussions concerning the measurements of angles dif-

ferent to the transverse direction require additional geometric considerations which are 

presented in detail in chapter 2.3. 
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Fig. 2.5: Aberration effect: Measurement of angle 𝛿 caused by the movement of the re-

ceiver of a signal. 

 In the following it will be discussed, which values will be measured for the interval ∆𝑡 

and other relevant time measurements according to the situation presented in Fig. 2.6 for 

the moving observer and a system at rest. 

 

Fig. 2.6: Exchange of signals between A and B, example for 𝑣 = 0,5𝑐, 𝛿 = 30° 
Details for signal ∆𝑡𝐵: see Fig. 2.7; Total running time: Fig 2.8 

a) Measurement of signal interval 

As already shown the intervals between the signals emitted by the moving observer B will 

be measured by observer A at rest as ∆𝑡𝐴 = 𝛾∆𝑡. This is caused by the effect of time dilata-

tion valid for B. 

𝑣 = 0,5𝑐 

𝑣 = 0,5 𝑐 
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The value ∆𝑡𝐵 measured by B can be calculated using an approximation calculation ac-

cording to the scheme presented in Fig. 2.7. At the beginning a signal is sent by A and this is 

received at point B0, the next signal is following after time ∆𝑡0. When it arrives at point B0, 

then the observer has already moved on to point B1 and the additional time for the extended 

way must be added. If it is presumed that ∆𝑡0 ≪ 𝑡1 then it is possible for the calculation to 

shift the signals sent by A parallel in direction of B1 without changing the value of 𝛿. When 

the signal arrives at point B1 then an additional movement to B2 took place and the calcu-

lation must be repeated accordingly. 

 
 

Fig. 2.7: Scheme for calculation of signal interval ∆𝑡𝐵 (for ∆𝑡0 ≪ 𝑡1). Presentation of the 

first 3 steps. 

The single values can be summarized 

∆𝑡𝐵 = ∆𝑡0 +∑∆𝑡𝑖−1
𝑣

𝑐
𝑠𝑖𝑛𝛿

∞

𝑖=1

= ∆𝑡0∑(
𝑣

𝑐
𝑠𝑖𝑛𝛿)

𝑖
∞

𝑖=0

                             (2.11) 

In this case a geometrical series of the form 

𝑆𝑛 =∑𝑞𝑖
𝑛

𝑖=0

                                                                 (2.12) 

is derived, where 𝑆𝑛 is the limit value and 

  𝑞 =
𝑣

𝑐
𝑠𝑖𝑛𝛿                                                                (2.13) 

With 𝑛 → ∞ and 𝑞 < 1 it follows 

𝑆∞ =
1

1 − 𝑞
                                                                (2.14) 

∆𝑡𝐵1 = ∆𝑡0
𝑣

𝑐
𝑠𝑖𝑛𝛿 

 

∆𝑡𝐵2 = ∆𝑡𝐵1
𝑣

𝑐
𝑠𝑖𝑛𝛿 = ∆𝑡0 (

𝑣

𝑐
𝑠𝑖𝑛𝛿)

2

 
 

∆𝑡𝐵3 = ∆𝑡𝐵2
𝑣

𝑐
𝑠𝑖𝑛𝛿 = ∆𝑡0 (

𝑣

𝑐
𝑠𝑖𝑛𝛿)

3

 

𝑐 · ∆𝑡𝐵1 

𝑣 · ∆𝑡0 

𝐵0 

𝐵1 

Detail Step 1 

Step 1 

𝑣 = 0,5𝑐 
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Because B is subjectively realizing that the signal is arriving from the transverse direc-

tion Eq. (2.10) is valid 

𝑠𝑖𝑛𝛿 =
𝑣

𝑐
                                                                  (2.15) 

Hence 

𝑆∞ =
1

1 −
𝑣2

𝑐2

= 𝛾2                                                          (2.16) 

The combination with (2.11) reveals 

∆𝑡𝐵 = 𝛾
2 · ∆𝑡0                                                             (2.17) 

The calculation shows that the moving observer B will measure (subjective) a value of 

𝛾∆𝑡, because he is subject to time dilatation himself. Thus, it is verified that observers A and 

B are measuring the same values for the intervals of incoming signals. 

 

b) Measuring of total running time of signals 

The running time of a signal emitted by A and identified by B as transverse to his moving 

direction is 𝛾𝑡1 (see Fig. 2.6). 

 

Fig. 2.8: Signal path B → A → B and definition of distances travelled. 

 Because B is sending the signal back the same way the total running time is 2𝛾𝑡1. For B 

the first value is 𝑡1 (see Fig. 2.6), the way back 𝑡4 must be calculated. To do this some im-

portant definitions are necessary (see Fig. 2.8). 

 The distance 𝑑 (corresponding to the time 𝑡4) is derived by 

𝑎2 + (
𝑣

𝑐
𝑎 +

𝑣

𝑐
𝑑)

2

= 𝑑2                                                     (2.18) 

𝑣 = 0,5𝑐 
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Completing the square shows 

𝑎 = 𝑑

(

 
 
−

𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
± √(

𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
)

2

+
1 −

𝑣2

𝑐2

1 +
𝑣2

𝑐2
)

 
 
                       (2.19) 

Considering only positive values, it is achieved after simplification 

𝑎 = 𝑑(−
𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
+ √

𝑣4

𝑐4
+ (1 +

𝑣2

𝑐2
)(1 −

𝑣2

𝑐2
))                        (2.20) 

 

= 𝑑(−
𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
+ 1) = 𝑑(

1 −
𝑣2

𝑐2

1 +
𝑣2

𝑐2

)                                   (2.21) 

and 

𝑑 = 𝑎(
1 +

𝑣2

𝑐2

1 −
𝑣2

𝑐2

)                                                          (2.22) 

For calculation of the total distance the value of 𝑎 is added  

𝑑 + 𝑎 = 𝑎(
1 +

𝑣2

𝑐2

1 −
𝑣2

𝑐2

+ 1) = 𝑎(
1 +

𝑣2

𝑐2
+ 1 −

𝑣2

𝑐2

1 −
𝑣2

𝑐2

) = 2𝑎𝛾2                   (2.23) 

The calculations lead to a total time of 2𝛾2𝑡1 and therefore to a difference of factor 𝛾 

between observers A and B which is compensating the time dilatation for the moving ob-

server B. It is shown again that identical subjective measurements are valid. 

2.2  Exchange of signals inside moving bodies 

The considerations taken so far illustrate the fundamental relations during experiments 

concerning an exchange of signals between observers at different speed. Doing this, the 

conditions are, however, not fully described without discrepancies. If for example an ob-

server at rest could directly monitor measurements of the speed of light between two mov-

ing observers, he would find differences between his results compared to the results of the 

other observers without further modification. This would cause a violation of the fact, that 

measurement of the speed of light show the same results in any inertial system. It has to be 

mentioned that here differences for the results in moving direction and in other arbitrary 

directions occur; in the following these cases will be treated separately. 

In the following only the exchange of light pulses will be part of the calculations. The 

discussion of light as a wave and the special characteristics connected with this feature re-

quire special considerations and will be presented in chapter 8. 
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2.2.1 Exchange of signals in moving direction 

For the presentation of this situation the time for the exchange of signals between observ-

ers A and B shall be investigated. 

While the time in a system at rest for going and coming is 

𝑡𝐴𝐵 + 𝑡𝐵𝐴 = 2𝑡0                                                                 (2.30) 

it is different for moving objects for observations from a system at rest (see Eq. 2.01 and 

2.05) 

𝑡𝐴𝐵 + 𝑡𝐵𝐴 = 𝑡0  
1

1 −
𝑣
𝑐

 + 𝑡0  
1

1 +
𝑣
𝑐

                                            (2.31) 

with 

𝑡𝐴𝐵 + 𝑡𝐵𝐴 = 𝑡0 [   
(1 + 

𝑣
𝑐) + (1 − 

𝑣
𝑐)

(1 + 
𝑣
𝑐) (1 − 

𝑣
𝑐)

 ] = 2γ2𝑡0                               (2.32) 

It was already mentioned before that the time for moved observers is enlarged by the 

parameter 𝛾. During the above-mentioned calculation, the spatial extension is reaching, 

however, the factor 𝛾2. To overcome this contradiction, it is necessary to reduce in addition 

the distance between the two observers by the factor 𝛾. This reduction is generally named 

“space contraction”. 

When the effects of time dilatation and space contraction are considered together all dis-

crepancies disappear. It is worth mentioning, that the times for travelling the distances be-

tween A → B and B → A are different in view of a system at rest, but that the summation of 

the times (when time dilatation is considered) is leading to the same result compared to a 

system at rest. 

These correlations are not only valid for the observer at rest. The moved observer also 

will find during the evaluation of own measurements concerning the distances in the sys-

tem at rest that these are contracted by the factor 𝛾. Time dilatation and space contraction 

are thus depending on each other to create a physical frame without discrepancies. 

A simple example shall demonstrate the results. A case shall be monitored where observ-

ers A and B are placed in a system with a constant distance a. At time 0 observer A is sending 

out a signal to B which is immediately reflected to A. When A and B are viewed as at rest, 

the distances of going and coming and the connected times for the transport of the signal 

are equal in both directions. If both observers are moving constantly in relation to a differ-

ent inertial system, however, the situation is completely different. This shall be demon-

strated in a space-time-diagram (Fig. 2.9). For simplification of the presentation the values 

are normalized. This means that 𝑎 = 1, in addition the time t is converted to ct and is ⎼ as 

valid for the space values x ⎼ standardized to a value of 1. (The use of ct instead of t is fre-

quently used; in this case the dimensions of x and ct are identical and it is easily possible to 

take direct readings out of the diagram). 

Calculations analog Eq. (2.32) lead to 
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𝑥𝑇 = 𝑥1 − 𝑥2 =
𝑎

𝛾 (1 −
𝑣
𝑐)
+

𝑎

𝛾 (1 +
𝑣
𝑐)
=
2𝛾𝑣𝑎 

𝑐
                                   (2.33) 

𝑡𝑇 = 𝑡1 + 𝑡2 =
𝑎

𝑐𝛾 (1 −
𝑣
𝑐)
+

𝑎

𝑐𝛾 (1 +
𝑣
𝑐)
=
2𝛾𝑎 

𝑐
                                  (2.34) 

Inserting these values into the Lorentz-Equations Eq. (1.07) and (1.08) the results 𝑥′ = 0 

and 𝑡′ = 2 𝑎 𝑐⁄  will appear which are the expected findings for observers at rest. At this 

stage of the discussion it is not clear, how the Lorentz-Equations can be derived; in chapter 

3.3 different methods will be presented in which way this is possible. 

 

Fig. 2.9: Exchange of signals between observers A and B (marked using red arrows) in a 

moving system. Example for 𝑣 = 0,5𝑐 
 

2.2.2 Exchange of signals during passing of two observers 

When a more complex approach for the observations is considered, like it is the case for 

measurements between identical laboratories, which are passing in a close distance and 

exchanging light signals between front and back end, also no deviations will occur. An ex-

ample shall be discussed in detail. 

The experimental set-up is the following: 

1. Two identical laboratories with observers A, B, C and A′, B′, C′ shall be prepared. The 

orientation is presented in Fig. 2.10. The positions of C and C′ are situated exactly in 

the middle of the laboratories. 

= 
1

𝛾 (1 +
𝑣
𝑐)

 

= 
1

𝛾 (1 −
𝑣
𝑐
)
 

𝑣 = 0,5𝑐 
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2. The laboratory with A′, B′, C′ is moved relative to A, B, C according to the presenta-

tion in the diagram. 

3. The moved laboratory is passing the observers at rest in a minimum distance to keep 

aberration effects as small as possible. 

4. As soon as the observers of both systems pass each other signals to C resp. C′ will be 

sent. C resp. C′ are reflecting the signals to the sender and are recording the relevant 

periods. 

At first observers A′ and A are passing. For small velocities (compared with the speed of 

light) the passing of B′ and A plus also A′ and B will happen simultaneously. When relativ-

istic velocities are used, however, this will not be the case. Here the moved system will show 

a contraction in moving direction and the contacts between the observers will happen at 

different times. At the end B′ and B will pass. In total there are 4 different situations for 

contacts, which are presented in Fig. 2.11 in a space-time-diagram. 

After the end of the experiment the corresponding time records between all observers 

shall be compared. For the selected example with the velocity 𝑣 = 0,5 𝑐 the coordinates for 

C and C′ are presented in table 2.2. In addition to the values from the experiment the calcu-

lated results determined by the Lorentz-Transformation are also presented in this table. 

The space and time coordinates will be discussed in the following to allow an exact com-

parison between the different situations. 

 

Fig.:2.10:  Laboratory with observers A and B to transmit signals and C to receive. An iden-

tical laboratory with observers A′, B′ and C′ is passing with the velocity 𝑣 = 0,5 𝑐. 

During all contacts of A and B with A′ and B′ a signal is transmitted and received 

by C and C′. 

𝑣 = 0,5𝑐 
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Fig. 2.11: Time sequence of received signals in the middle of two identical laboratories; 

signals are transmitted when passing. 

Left:   Moving laboratory 

Right: Laboratory at rest 

 
 

 

Tab. 2.2: Coordinates for space [bracket left] and time [bracket right] for the   

  experiment according to Fig. 2.11. 

  Line 1: Values for the observer at rest 

  Line 2: Observation by the observer at rest regarding the moving system 

  Line 3: Calculated values for the moved observer according to the 

  Lorentz-Transformation 

𝑣 = 0,5𝑐 

𝑣 = 0 
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Coordinates of space 

It is clear at first sight that the coordinates of space in the first line must be constant. The 

chosen parameters lead to a value of 0.5. 

For the moved system, the parameters vary depending on the geometrical relations ac-

cording to line 2. The values of the coordinates of space derived by calculations using the 

Lorentz-Transformations are equal to those of the system at rest with the only difference 

that the algebraic sign is negative. This means, that the observers at rest and in the moved 

system are measuring the same values. 

Coordinates of time 

The coordinates of time show a similar effect. In this case the situation is different, however, 

because for C and C′ the values of A/B′ and B′/A are exchanged. It is obvious, that the prin-

ciple of relativity requires, that C resp. C′ must receive the signal of “their” observer A resp. 

A′ first. It is important, that for the observer at rest the change in the values of time is nec-

essary to show a proper sequence of contacts between A′ and B′ to C′. So, this short sum-

mary provides clear evidence that no differences between measurements of all observers 

taking part will appear. 

2.2.3 Exchange of signals in arbitrary directions 

In the following the situation shall be discussed, that a signal is transmitted and reflected 

transverse to the moving direction (i. e. 𝑦-direction). The time dilatation occurring for the 

moving observer, which travels the distance of 𝑑 = 𝑣𝑇 when the signal reaches the reflec-

tor, is exactly compensated by the longer path of the signal 𝐷′ = 𝑐𝑇 (Fig. 2.12). This means 

that it is not possible for the moving observer to find a difference compared to the situation 

at rest and so again no violation of the principle of relativity can be found. 

 

  
 
Fig. 2.12: Signal exchange transverse to the moving direction 

 

In contradiction to the effects of a longitudinal signal exchange this means, that in the 

view of an observer at rest in transverse direction there is a change in the transmission 

angle because of aberration. The value can be calculated as presented in Fig. 2.12 using the 

tangent value (see also Eq. (2.11) with 𝛼 = 90° − 𝛿). 
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Whereas the situation concerning the exchange of signals in direction of a moving ob-

server was discussed first, the behavior in transverse direction is described here. No dis-

crepancies to the expected circumstances for the observer in motion appear and the prin-

ciple of relativity is respected in any case. 

To start with the next step discussing the observations during signal exchange in any 

arbitrary spatial direction it is necessary first, to start with basic considerations concerning 

the dependencies between the angles of incoming and outgoing signal due to aberration for 

moved observers in view of a reference system at rest. This will be presented in the follow-

ing; afterwards, using these derivations, it will be shown that no differences appear be-

tween the subjective measurements in a system at rest and for a moved observer. This issue 

will be discussed in chapter 2.4 and the validity will be proven by calculations of an example 

using a spere where light signals start from the center and return after reflection. 

2.3  Exchange of signals and correlation of angles 

In the following it shall be investigated, which correlations appear when emitted and re-

ceived signals have different directions compared to a moving body. This effect is com-

monly referred to as aberration (see Fig. 2.5). 

As already discussed in detail, the relativistic approach to calculations of a moved ob-

server requires the consideration of the effect, that the body will be contracted in moving 

direction. Up to now this effect was only treated as a summation of going and coming of the 

signal and first nothing is known about the splitting into the single trips. Out of the principle 

of relativity it can be deduced, however, that this contraction must be symmetric to the 

middle axis of the moved body according to Fig. 2.13. It makes no difference in which direc-

tion the movement will take place. 

 

   
Fig. 2.13 Contraction of a moved body 

In this case the distance 𝑒′ in the moved system is equal to 𝑒 − 𝑔 or 𝑒/γ. 

at rest moved 
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2.3.1 Reception in a moving body 

In the following the values for the reception in a moving body will be investigated. First it 

is necessary to define the exact conditions for the analysis. The following set-up shall be 

used: 

 A sphere with the radius 𝑎 contains holes in the circumference in adequate quantity 

where adjusted light beams can enter (i. e. at point P1, see Fig. 2.14). When such a beam is 

touching the center (P2), then the observer can define the corresponding angle using geo-

metric evaluations. Any of these holes relates to an angle of 𝛼′ resp. 𝛽′ because of the geo-

metrical definitions of the exact position and the radius 𝑎. 

 If the observer receiving the signal is moving, then an observer at rest will find different 

angles for the incoming signal and his measurements will be 𝛼 resp. 𝛽. In his view the signal 

will travel a distance 𝑑 inside the system. For the calculations it has to be considered that, 

as already stated before, the sphere will be deformed in moving direction (see Fig. 2.13). 

In this case for the incoming signals the geometric dependencies are defined according to 

Fig. 2.14. The incoming direction from behind (part a) leads to the following dependencies 

𝑑² = 𝑓² + (𝑒 + 𝑏 − 𝑔)2                                                    (2.40) 
and 

𝑓 = 𝑑 ∙ 𝑠𝑖𝑛𝛼         𝑓 = 𝑎 ∙ 𝑠𝑖𝑛𝛼′                                              (2.41) 
Further 

𝑒 = 𝑎 ∙ 𝑐𝑜𝑠𝛼′                                                                (2.42) 

𝑏

𝑣
=
𝑑

𝑐
                                                                     (2.43) 

𝑒 − 𝑔 =  
𝑒

𝛾 
                                                                (2.44) 

The first calculation yields 

𝑎 = 𝑑 ·
𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼′
                                                               (2.45) 

Eq. (2.40) is developing to 

𝑑² = (𝑑 ∙ 𝑠𝑖𝑛𝛼)2 + (𝑑
𝑣

𝑐
+ 𝑑

𝑐𝑜𝑠𝛼′ · 𝑠𝑖𝑛𝛼

𝛾 · 𝑠𝑖𝑛𝛼′
)

2

                                  (2.46) 

1 − 𝑠𝑖𝑛2𝛼 = 𝑐𝑜𝑠2𝛼 = (
𝑣

𝑐
+

𝑠𝑖𝑛𝛼

𝛾 · 𝑡𝑎𝑛𝛼′
)
2

                                      (2.47) 

𝑡𝑎𝑛𝛼′ = 
𝑠𝑖𝑛𝛼

𝛾 (± 𝑐𝑜𝑠𝛼 −
𝑣
𝑐 )
                                                  (2.48) 

where because of geometrical considerations only positive values for 𝑐𝑜𝑠𝛼 are valid. If the 

signal is approaching from the front (Fig. 2.14b) the relations are 

𝑑² = 𝑓² + (𝑒 − 𝑏 − 𝑔)2                                                     (2.49) 
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After the same calculation as presented before this leads to 

𝑡𝑎𝑛𝛽′ = 
𝑠𝑖𝑛𝛽

𝛾 (𝑐𝑜𝑠𝛽 +
𝑣
𝑐 )
                                                   (2.50) 

 

 
 

 

 
 

Fig. 2.14: Definition of parameters to determine the angle of incoming beams 

  for a moved observer (examples for 𝑣 = 0,5𝑐 and 𝛼′, 𝛽′ = 45°) 

  a) Signal approaching from behind, b) Signal approaching from the front 

Before reviewing the results, the opposite situation with an outgoing light beam shall be 
discussed first. 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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2.3.2 Outgoing signals of moving bodies 

For outgoing signals similar correlations apply. The relevant parameters are presented in 

Fig. 2.15. In this case the signal will be emitted from the center (P1) and is passing a hole in 

the circumference of the sphere (P2). In this case the space contraction of the moving body 

has also to be considered. 

 

 

 

 

 

Fig. 2.15: Definition of parameters to determine the angle of outgoing beams  

  for a moving observer (examples for 𝑣 = 0,5𝑐 and 𝛼′, 𝛽′ = 45°) 

  a) Signal emitted in moving direction, b) Signal emitted backwards 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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 For outgoing signals in moving direction (Fig. 2.15a) the results are exactly the same 

compared to incoming signals approaching from behind, which are covered by the equa-

tions presented from Eq. (2.40) to Eq. (2.48). For outgoing signals emitted backwards (Fig. 

2.15b) the opposite combination occurs, and the result is Eq. (2.50) corresponding to the 

signal approaching from the front end. 

 

2.3.3 Results of calculations of angles 

At first it shall be demonstrated for the example discussed in chapter 2.1.2, that the results 

for a moved observer and a system at rest are exactly the same. To realize this, the propa-

gation of the signals and the connected angles will be investigated. In view of the observer 

at rest (marked as “A”) the process will start sending the signal 1 to observer B, following 

this, the signal 2 will be detected and returned, at the end the reflection of signal 1 is arriv-

ing. The angles of outgoing signals are marked with 𝜀, whereas incoming signals carry the 

letter 𝛿. 

  

Fig. 2.16: Signal propagation according to situation in chapter. 2.1 with 

  corresponding angles, example for 𝑣 = 0,5𝑐 

Due to the chosen conditions the following situation is defined: 

• The angles for incoming signals 𝛿2 and 𝛿1
′  are 90°. 

• The values for incoming signal 𝛿1 and outgoing signal 𝜀1 are equal. 

• The outgoing signal 𝜀2 can be calculated using Eq. (2.23) as 

𝜀2 = 𝑎𝑟𝑐𝑠𝑖𝑛 ( 
𝑎

𝑑
 ) = 𝑎𝑟𝑐𝑠𝑖𝑛(

1 −
𝑣2

𝑐2

1 +
𝑣2

𝑐2

) = 36,87°                              (2.51) 

Calculations for the chosen speed of 𝑣 = 0,5𝑐 show the following results: 
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Tab. 2.3: Calculation of angles for the situation corresponding to Fig. 2.16 

It is shown here that A and B find the same values for outgoing (60°;  36.87°) and incoming 

signals (90°;  60°). It is thus demonstrated that the principle of relativity is also valid for 

measurements of angles and that the spatial contraction must be symmetric to the middle 

axis of the moved body in moving direction and vice versa. 

2.3.4 Literature review and evaluation 

The following simple derivation of the aberration formula for relativistic velocities was pre-

sented by D. Giulini [19]. Here the emission of a light pulse from an observer with the coor-

dinates 𝑥0 and 𝑦0 in a system at rest resp. 𝑥0
′  and 𝑦0

′  for a system moving with the velocity 

𝑣 is investigated in relation to their relative point of origin. In this case 𝛿 and 𝛿′ are the 

angles to the 𝑥-axis. At the time 𝑡 = 𝑡0 = 𝑡0
′  the systems meet in their respective points of 

origin. In this case the component 𝑢𝑥 in the system at rest can be calculated using 

 

𝑢𝑥 = −𝑐 · 𝑐𝑜𝑠𝛿                                                             (2.60) 

and in the moving system 

𝑢𝑥
′ = −𝑐 · 𝑐𝑜𝑠𝛿′                                                           (2.61) 

Integrated in the equation of relativistic addition of velocities 

𝑢𝑥
′ =

𝑢𝑥 + 𝑣

1 +
𝑢𝑥 · 𝑣
𝑐2

                                                           (2.62) 

the calculation yields 

𝑐𝑜𝑠𝛿′ =
𝑐𝑜𝑠𝛿 −

𝑣
𝑐

1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛿

                                                      (2.63) 

 Further comprehensive derivations of the calculations are leading to the same results  

(e. g. presented by R. K. Pathria [27]). Other investigations, however, show additional deri-

vations, e. g. [28,89a] 
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𝑠𝑖𝑛𝛿′ =
𝑠𝑖𝑛𝛿

𝛾 (1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛿)

=
(1 −

𝑣2

𝑐2
)

1
2⁄

𝑠𝑖𝑛𝛿

1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛿

                                   (2.64) 

A particularly useful formula is derived using the general valid formula for the tangent 

[19,28] yielding 

𝑡𝑎𝑛 (
𝜃

2
) =

𝑠𝑖𝑛𝜃

1 + 𝑐𝑜𝑠𝜃
                                                        (2.65) 

Inserting equations Eq. (2.63) and Eq. (2.64) the transformation leads to 

𝑡𝑎𝑛 (
𝛿′

2
) =

𝑠𝑖𝑛𝛿

𝛾 (1 +
𝑣
𝑐) (1 + 𝑐𝑜𝑠𝛿)

                                          (2.66) 

 

𝑡𝑎𝑛 (
𝛿′

2
) = (

𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛿

2
)                                             (2.67) 

 Using this equation, it is possible to determine in an easy way the value of 𝛿 depending 

on 𝛿′. In the following, some selected results for all equations are calculated and compared. 

It must be considered that inverse functions (arc) for values between 0 and 180° are not 

exactly defined in cases where a sinus is present. The reason is, that in contrast to the co-

sine, which is monotonously decreasing in this interval, the sine wave shows a maximum at 

90° and therefore the inverse function contains two possible solutions. This is the reason 

why for angles > 90° the standard result must be converted as presented in tables 2.4 and 

2.5. (The tangent is monotonously increasing between 0 and 90°, which is sufficient acc. to 

Eq. (2.67), because when taking 𝛿 2⁄  as argument the necessary interval is halved). 

𝟏:    𝛼′ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛼

𝛾 (𝑐𝑜𝑠𝛼 −
𝑣
𝑐)
) 𝟐:    𝛼′ = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛼 −
𝑣
𝑐

1 −
𝑣
𝑐
· 𝑐𝑜𝑠𝛼

) 

𝟑:    𝛼′ = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠𝑖𝑛𝛼

𝛾 (1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛼)

) 𝟒:    𝛼′ = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 + 𝑣

𝑐 − 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛼

2
)] 

 

Tab. 2.4: Values for 𝛼′ depending on 𝛼 according to equations 1 to 4, 𝑣 = 0,5𝑐 

  Results presented as radian and in degrees [°] (marked grey). 

  Values with frame: 180°+ angle (Eq. 1) and 180°- angle (Eq. 3) 
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𝟓:    𝛽′ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛽

𝛾 (𝑐𝑜𝑠𝛽 +
𝑣
𝑐)
) 𝟔:    𝛽′ = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛽 +
𝑣
𝑐

1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛽

) 

𝟕:    𝛽′ = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠𝑖𝑛𝛽

𝛾 (1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛽)

) 𝟖:    𝛽′ = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛽

2
)] 

 

 

Tab. 2.5: Values for 𝛽′ depending on 𝛽 according to equations 5 to 8, 𝑣 = 0,5𝑐 

  Results presented as radian and in degrees [°] (marked grey). 

  Values with frame: 180°+ angle (Eq. 5) and 180°- angle (Eq. 7) 

 The considerations of equations 1 to 8 discussed so far were solely directed on the radi-

ation angle for a light pulse, which could be measured by an observer at rest and was sub-

sequently calculated for a moving system. In this case the angles measured in moving di-

rection cover per definition the designation 𝛼 (for the system at rest) and 𝛼′ (moving) 

whereas 𝛽 and 𝛽′ are situated in opposite direction.  

 It was already demonstrated in chapter 2.3.2 that the investigation of the case, where the 

positions are changed and the moving observer is calculating values for the observer at rest, 

the angles evaluated by the moving observer will reveal exactly the opposite results. This 

means that measurements in moving direction following angle 𝛼 will show the formal result 

of angle 𝛽′ and that it will also be the same case for 𝛽 and  𝛼′. 

 The evaluation presented so far is only valid for the equation 1. The same result will ap-

pear, however, when equation 4 is converted in a suitable way to show the value of 𝛼. 

Whereas calculations for incoming signals are discussed quite often in the literature, only 

few solutions for outgoing signals can be found. R. Göhring [47] used the equations for out-

going signals and made a transformation to 𝛼′; this showed that the results were in accord-

ance with the results described in the following. In the presentation by W. Rindler [28] it is 

defined, that the values for the velocity 𝑐 shall be replaced by −𝑐 and then the relevant cal-

culations will appear. When this is done for all presented variants then it can be shown that 

this statement is valid for all calculations investigated here. 

 The results can be summarized as follows: 



2.4  Exchange of signals in any arbitrary spatial direction 

45 

𝟏:      𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛼′

𝛾 (𝑐𝑜𝑠𝛼′ +
𝑣
𝑐)
)  𝟐:            𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛼′ +
𝑣
𝑐

1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛼

′
) 

 𝟑:     𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛(
𝑠𝑖𝑛𝛼′

𝛾 (1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛼

′)
)  𝟒:     𝛼 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(

𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛼′

2
)] 

The same conversion is possible for the opposite case: 

 𝟓:        𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛽′

𝛾 (𝑐𝑜𝑠𝛽′ −
𝑣
𝑐)
)  𝟔:        𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛽′ −
𝑣
𝑐

1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛽

′
) 

 𝟕:       𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠𝑖𝑛𝛽′

𝛾 (1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛽

′)
)  𝟖:    𝛽 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(

𝑐 + 𝑣

𝑐 − 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛽′

2
)] 

 Finally, it can be stated, that all presented equations are suitable for the calculation of 

relativistic aberration of moving observers connected to systems at rest and vice versa. The 

results of the aberration angles are the same for all involved participants and thus the prin-

ciple of relativity is not violated. Precondition is that the effect of spatial contraction is sym-

metric to the middle axis of the moved body in moving direction and opposite to it. 

 For practical use equations 2 or 4 resp. 6 or 8 shall be preferred because they show no 

sinus in the formula and so no interpretation of the result is necessary for values > 90°. The 

real advantage of the geometric derivation presented here (this means equations 1 and 5) 

will become apparent later, when subluminal velocities of moving bodies instead of light 

signals will be discussed. In this case equation 1 (or 5) can be modified using a simple re-

placement of 𝑐 by the velocity 𝑣 of the second moving object, which is not possible for the 

other calculations. This will be especially important for discussions of questions concerning 

the momentum, which will be a major topic in chapter 7. 

2.4  Exchange of signals in any arbitrary spatial direction 

 

After discussion of the basic relations concerning the path of a signal in any arbitrary spatial 

direction, it is now possible to verify that for a signal in a moved system (here with the 

shape of a sphere with a standard-radius of 𝑎 = 1) from the center to the outer shell and 

back, subjectively the same time will be measured compared to the system at rest. The fol-

lowing conditions shall be defined: 

An angle 𝛼′ (related to the moving direction) shall be chosen for the moved system, from 

which the light signal will be emitted to the outer shell. Then the following values are cal-

culated: 

1. The related angle 𝛼1 viewed by the observer at rest, 

2. The length 𝑑1 to the outer shell, 

3. The angle 𝛼2 for the way back referring to the same angle 𝛼′, 
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4. The length 𝑑2 from the shell to the center, 

5. The calculation of 𝑑𝑇 = 𝑑1 + 𝑑2. The value of 𝑑𝑇 must be exactly 2𝑎𝛾 to verify that 

the measurements in both systems (moving and at rest) are subjectively identical.  

For the calculation, the equations (2.67) and (2.45) shall be used and the following relations 

appear: 

𝟐:       𝛼1 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛼′

2
)]           𝟑:        𝑑1 =

𝑠𝑖𝑛𝛼′

𝑠𝑖𝑛𝛼1
        

𝟒:       𝛼2 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 + 𝑣

𝑐 − 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛼′

2
)]           𝟓:        𝑑2 =

𝑠𝑖𝑛𝛼′

𝑠𝑖𝑛𝛼2
 

In table 2.6 calculations for an example 𝑣 = 0,5𝑐 are presented. For the values 𝛼′→ 0° 

and 180° with respect to 𝛼1 and 𝛼2 a division of 0 by 0 would appear and it would be nec-

essary to extrapolate, for simplification only values between 1° to 179° were selected. The 

values directly in moving direction and opposite to it (0° and 180°) were already deter-

mined before in chapter 2.1. 

For all calculated values of 𝑑𝑇 the result of 2𝛾 (in this case 𝑣 = 0.5𝑐  2𝛾 = 2,309401. . ) 

appear. This means that in view of the observer at rest the distance travelled by the light 

pulse and the time needed is exactly longer by this value. All values show impressively that 

no deviations between the subjective measurements of the moved observer and a system 

at rest will appear. The time in the moving system is running slower by the calculated factor 

and the principle of relativity, as in all cases discussed before, will not be violated. 

 
Tab. 2.6: Calculation of values 𝑑𝑇 = 𝑑1 + 𝑑2 according to equations 2 to 5, 𝑣 = 0.5𝑐 

   All results reveal exactly 2𝛾 = 2,309401 
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3.  Lorentz-Transformation and 
synchronization 

The calculations concerning coordinates of space and time presented so far are not suffi-

cient for the complete understanding of the relativistic transformation procedure. Already 

in the year 1900 the essential additional principle of “local time” and the consequences con-

nected with it were investigated by H. Poincaré [10]. Later A. Einstein implemented the 

general statement, that the local time of moving observers must always be connected by 

synchronization processes [12]. 

 Inside Special Relativity the synchronization of incidents between moved observers is of 

paramount importance. It is part of any comprehensive lecture concerning Special Relativ-

ity, further a multitude of publications exists of which only a small part can be discussed 

here. 

 Generally, the issue can be divided in two categories: 

 

1. The synchronization of incidents by exchanging signals, 
 

2. The synchronization of incidents by the exchange of clocks. 

 The results do not correspond to the intuitive human understanding of simultaneity and 

are therefore not easy to understand. This is due to the fact that an exchange of signals be-

tween two observers always occurs at the speed of light, and this must be included in the 

considerations. In the following the connections with the synchronization of events by us-

ing signal exchange are considered first, the synchronization by means of the exchange of 

clocks is treated in chapter 5. 

3.1  Local time and synchronization using the exchange of signals 

An experimental set-up shall be discussed, where a laboratory with length 𝑎 is considered 

as at rest and is passed by a small body with the velocity 𝑣 (Fig. 3.1). On both ends named 

A and E of the laboratory a clock is fixed. At the first contact of the moved body at A (case 

a) the clock is set to the value 

𝑡 = − 
𝑎

𝑣
                                                                   (3.01) 
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 When the moving body has contact at point E (case b) the clock at point A shows the 

value of zero. Using this procedure, the synchronization of both observers is realized. At the 

point zero both emitters at A and E shall send simultaneously a signal that will arrive at 

time 

𝑡 =  
𝑎

𝑐
                                                                       (3.02) 

at their partners (case c). 

 
 

Fig. 3.1: Experimental set-up for the synchronization of an observer at rest 

  using clocks at the ends A and E 

 

According to the principle of relativity all participants of the experiment must find the same 

results, when instead of the laboratory the moving body in Fig 3.1 is considered as at rest. 

When these conditions are recorded a completely different diagram will appear. In Fig. 3.2 

the space-time-diagram covering the new issue with the changing of the point of view is 

presented. 

 First the clock at A is passing the body at rest (presented as point A0). Now the waiting 

time is starting; for the observer at rest the time dilatation must be considered. The clock 

in the position E is passing the body at rest at E1 (the presentation is respecting the fact, 

that the moving laboratory is shortened by the factor 𝛾 because of its movement). At that 

point a signal is send to A which will be received there at time A4. After the end of the wait-

ing time A will send at time A2 also a signal to E which will be received there at time E3. 

 It is clearly visible, that from the point of view of the observer at rest the times for the 

moved laboratory at A and E are not identical to his observations. In this case the time zero 

is depending on the distance to the observer at rest and follows a line which is marked as 

𝑥′ in the diagram. 

 Generally, this is one of the most important features of Special Relativity. This effect is 

commonly called “Relativity of Simultaneity”. 

c 

b 

a 



3.1  Local time and synchronization using the exchange of signals 

49 

 
 
Fig. 3.2 Experimental set-up for the synchronization of a moving observer 

  using clocks at the ends A and E.  

 

The synchronization difference ∆𝑡𝑆 can be determined easily using 

 

∆𝑡𝑆 =
𝑎

cγ (1 −
𝑣
𝑐)
− 
γ𝑎

𝑐
=
γ𝑎

𝑐
(1 + 

𝑣

𝑐
 ) −

γ𝑎

𝑐
                                (3.03) 

 

∆𝑡𝑆 = 
γ𝑎𝑣

𝑐2
                                                                 (3.04) 

The angle between the 𝑥′- and the 𝑥-axis is calculated from the synchronization differ-

ence divided by γ𝑎 

tan𝛼 =  
𝑐 · ∆𝑡𝑆
γ𝑎

=
𝑣

𝑐
                                                           (3.05) 

and is thus identical with the angle between the 𝑐𝑡′- and 𝑐𝑡-axes. 

The diagram developed here has interesting features, which will be discussed in the fol-

lowing. 

𝑣 = 0,5𝑐 
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3.2  Minkowski-diagram 

The diagram presented above was introduced into Special Relativity by Hermann Minkow-

ski (1864-1909) who, among many important scientific contributions, developed this 

presentation later named after him [15c]. 

Minkowski diagrams show several peculiarities. First of all, usually not the representa-

tion of 𝑡 but of 𝑐𝑡 over 𝑥 is chosen. This gives both axes the same dimension (length) and 

direct derivations can be made from them. After normalization, the appearance shown in 

Fig. 3.3 is obtained. In this form, the diagram shows a mirror symmetry with respect to the 

45° axis passing through the origin. 

It is possible to determine directly from these diagrams the coordinates which result for 

the stationary (𝑥, 𝑐𝑡) and for the moving observer (𝑥′, 𝑐𝑡′) for the same circumstances. In 

the diagram Fig. 3.4 the point Px,ct with the coordinates 𝑥 = 3 and 𝑐𝑡 = 2 is shown as an 

example. This is the value, at which a moving observer from the view of the stationary sys-

tem is at a distance of 3 length units (LU) after 2 time units (TU) referred to the origin. 

 

 
Fig. 3.3: Minkowski diagram: Example with point 𝑥 = 3 and 𝑐𝑡 = 2. 

  Graphical determination of the coordinates in the moving system (𝑥′, 𝑐𝑡′) '. 

The 𝑥′, 𝑐𝑡′ − coordinate system is not rectangular but has angles 𝛼 to the system 𝑥, 𝑐𝑡. 

Therefore the coordinates are also read under this angle. Parallels to the 𝑥′ and 𝑐𝑡′ axis are 

formed. The values for 𝑥𝑃
′  and 𝑐𝑡𝑃

′  can then be read from the intersections with the axes 

𝑐𝑡′ = 0 and 𝑥′ = 0 respectively as shown. 

𝑣 = 0,5𝑐 
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It will be shown in the next chapter that a purely graphical/geometric derivation leads 

in consequence to the Lorentz transformation equations. This is absolutely necessary, be-

cause otherwise there would be contradictions within the theory. 

3.3  Lorentz-Transformation 

For the derivation of the Lorentz transformation there is a multiplicity of approaches, which 

can be mentioned here only exemplarily. According to the classification introduced by M. 

Born [26] and still used today [47], there is basically the graphical and the algebraic ap-

proach. While the graphical derivation is rarely used [e.g. 26a], there is a multitude of vari-

ants for the algebraic approach. These range from the classical representation [12,29] to 

the "fastest" derivation [30], conventional approaches [31,32] and to the use of the tensor 

calculus [27,28,33]. Moreover, parts of the graphical and algebraic derivation can also be 

combined [19]. Since the Lorentz transformation is one of the most important elements of 

Special Relativity, its derivation will be shown here with selected examples for both basic 

approaches. 

In principle, the present relations must be linear. If there were e.g. quadratic terms, then 

derivations after space or time would depend on the space or the time itself. All physical 

laws, which contain derivations after place or time (e.g. velocity, accelerations) would then 

depend on the zero point of the corresponding space or time scale in case of non-linear 

relations. In such a case, however, this could be the subject of direct measurements and 

thus contradicts the general idea of the homogeneity of space and time. A further point is 

that the relations to be determined in the limit case of small velocities must pass over into 

the Galilei transformation of the classical mechanics. 

In the following, first a graphical (and geometric) derivation of the Lorentz transfor-

mation from the Minkowski diagram is presented. In contrast to the approach of M. Born 

[26a], which works with proportion relations and the Pythagorean theorem, angular func-

tions and geometrical approaches are used here and a particularly clear representation ap-

pears. Subsequently, a selected algebraic approach is presented. 

At this stage, an important point shall be briefly discussed. According to the principle of 

the constancy of the speed of light in all inertial systems, measurements of the speed of light 

will lead to the same result for the reference system ("resting") and for an observer moving 

relative to it (chapter 1.6). This is subjectively correct. However, the derivations discussed 

in the following are based exclusively on the speed of light of the reference system and thus 

describe the observations made from this, from which finally the Lorentz transformations 

are resulting. 

 

3.3.1  Derivation of the Lorentz-Transformation using the Minkowski diagram 

As was already explained, the representation of the Minkowski diagram can be derived ex-

clusively using time dilation, space contraction and synchronization difference. Beyond that 

only the assumption of the isotropy of time and space as well as the constancy of the speed 

of light (in the system at rest) is necessary. In the following it will be shown that at the 
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transition between the represented systems of this diagram, relations corresponding to the 

Lorentz transformation must inevitably result. 

 When an arbitrary point Px,ct is considered in this diagram (Fig. 3.4), the coordinates can 

be calculated with the help of the values marked in yellow. 

 

 

Fig. 3.4: Minkowski diagram with coordinate determination of point Px,ct in the moving  

system. Quantities relevant for the calculation are colored yellow. 

 
 

First, parallels to the 𝑥′ and c𝑡′ axes are formed and their intersections with the 𝑐𝑡/𝑥- 

coordinate system are determined. The resulting values 𝑐𝑡𝑃0 and 𝑥𝑃0 can be converted into 

𝑥𝑃
′  and 𝑐𝑡𝑃

′ . For this purpose, an intermediate calculation is required in the range around 1. 

For this purpose, a circle is drawn in Fig. 3.4, the contents of which are shown in higher 

resolution in Fig. 3.5. 

In this diagram Fig. 3.5 all values are normalized to 1. In the case shown, no change of 

location occurs within the moving laboratory, i.e. the movement takes place on the 𝑐𝑡′-axis. 

Then, as already shown in chapter 2, the dependence 𝑑 = γ · 𝑐𝑡1 applies for the case 𝑐𝑡 = 1. 

It follows 

tan𝛼 =
𝑣

𝑐
=
𝑏

𝑑
=
𝑒

𝑏
                                                     (3.10) 

and from this 

𝑒 = 𝑑
𝑣2

𝑐2
                                                         (3.11) 

𝑣 = 0,5𝑐 



3.3  Lorentz-Transformation 

53 

Because of 𝑓 = 𝑑 − 𝑒, it follows after substituting eq. (3.11) 

𝑓 = 𝑑 − 𝑑
𝑣2

𝑐2
= 𝑑 (1 −

𝑣2

𝑐2
) =

𝑑

𝛾2
=
𝑐𝑡1
𝛾
                                            (3.12) 

 

 

Fig. 3.5:  Detail from Fig. 3.4, determination of 𝑓 corresponding to 𝑐𝑡𝑃0 from Fig. 3.4. 

 

For the 𝑥′-axis, the same relationship applies for symmetry reasons. It follows first for 

the value 𝑐𝑡𝑃
′ : 

𝑐𝑡𝑃
′ = γ · 𝑐𝑡𝑃0                                                              (3.13) 

From the geometrical conditions in Fig. 3.4, we get 

𝑐𝑡𝑃
′ = γ (𝑐𝑡𝑃 − 𝛥𝑐𝑡𝑃)                                                       (3.14) 

Because of  

tan𝛼 =
𝛥𝑐𝑡𝑃
𝑥𝑃

=
𝑣

𝑐
                                                         (3.15) 

then finally appears 

𝑡𝑃
′ = 𝛾 (𝑡𝑃 −

𝑣

𝑐2
𝑥𝑃)                                                     (3.16) 

 
For 𝑥𝑃

′  we obtain in the same way 

𝑥𝑃
′ = 𝛾 · 𝑥𝑃0                                                               (3.17) 

𝑥𝑃
′ = γ (𝑥𝑃 − 𝛥𝑥𝑃)                                                            (3.18) 

𝑣 = 0,5𝑐 
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tan𝛼 =
𝛥𝑥𝑃
𝑐𝑡𝑃

=
𝑣

𝑐
                                                         (3.19) 

𝑥𝑃
′ = 𝛾 (𝑥𝑃 − 𝑣 𝑡𝑃)                                                       (3.20) 

 

The calculation results in the following values 

 

The equations (3.16) and (3.20) correspond exactly to the relations of the Lorentz trans-

formation as they were already presented in Eq. (1.01) and (1.02). Thus it is shown that 

these equations can be derived from a Minkowski diagram by establishing simple geomet-

rical correlations. 

3.3.2  Algebraic concept for the derivation of the Lorentz-Transformation 

To complete the considerations concerning the Lorentz-Transformation in addition a “clas-

sic” approach, which means a typical derivation of the equations used in the literature, shall 

be discussed. To show this concept in detail the presentation of H. J. Lüdde and T. Rühl [34] 

was chosen, because it has a basic approach and does not need assumptions during the der-

ivation, which show later that they are reasonable. A similar derivation was also used by A. 

Einstein in the year 1905, although his only comment was “after easy calculation” without 

showing any details [12b]. 

Using this concept, two systems shall be looked at which are moving against each other. 

It is generally required that these are inertial systems, which means acceleration and rota-

tion is not permitted. The position of any point in these systems is characterized by three 

coordinates for the space and one for the time. For the system S these are 𝑥, 𝑦, 𝑧, 𝑡 and S′ 

with 𝑥′, 𝑦, ′𝑧′, 𝑡′. It is assumed, that the systems move against each other with a speed of 𝑣 

concerning the 𝑥- coordinate and that in 𝑦- and 𝑧- direction no motion exists. 

First the situation is discussed that the point of origin (where space and time are defined 

as zero) of both systems get in contact at the time 

𝑡 = 𝑡′ = 0                                                                    (3.40) 

In this case the correlations between the coordinates are, because of the required linearity 

 

𝑥′ = 𝐴𝑥 + 𝐵𝑡,        𝑦′ = 𝑦,        𝑧′ = 𝑧,        𝑡′ = 𝐶𝑥 + 𝐷𝑡                       (3.41) 

This means that 𝑡 is no longer invariant concerning space and furthermore 𝑥 is not in-

variant concerning time. Thus, for an arbitrary sphere with a light emitter in the center the 

following equations will apply: 
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𝑆:     𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2                                                                          (3.42) 

𝑆´:     𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑐2𝑡′2                                                                     (3.43) 

Hence 

   𝑥′2 + 𝑦′2 + 𝑧′2 − 𝑐2𝑡′2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2                                           (3.44) 

For the solution of the equations first the system-velocities are considered. In view of 

system 𝑆´ the velocity of 𝑆 is 

𝑣 =
𝑥

𝑡
                                                                    (3.45) 

When the situation is discussed that both systems have contact in the point of origin Eq. 

(3.41) develops to 

0 = 𝐴𝑣𝑡 + 𝐵𝑡                                                             (3.46) 
or 

𝐵 = −𝐴𝑣                                                                 (3.47) 

The use of Eq. (3.44) leads to 

(𝐴𝑥 + 𝐵𝑡)2 − 𝑐2(𝐶𝑥 + 𝐷𝑡)2 = 𝑥2 − 𝑐²𝑡²                                    (3.48) 

and 

𝑥2(𝐴2 − 𝑐2𝐷2 − 1) + 2𝑥𝑡(𝐴𝐵 − 𝑐2𝐶𝐷) + 𝑡2(𝐵2 − 𝑐2𝐷2 + 𝑐2) = 0            (3.49) 

Because the relations (3.48) and (3.49) are valid for arbitrary values of space and time 

the following equations apply: 

𝐴2 − 𝑐2𝐶2 − 1 = 0                                                        (3.50) 

𝐴𝐵 − 𝑐2𝐶𝐷 = 0                                                          (3.51) 

 

𝐵2 − 𝑐2𝐷2 + 𝑐2 = 0                                                       (3.52) 

The solution of this system with 4 equations and 4 unknown factors [Eq. (3.47) and also 

Eq. (3.50) - (3.52)] leads to the following relations 

𝑡′ = γ (𝑡 − 
𝑣

𝑐2
𝑥)                                                         (3.53) 

𝑥′ = γ(𝑥 − 𝑣𝑡)                                                            (3.54) 

The 𝑦- and 𝑧- coordinates remain unchanged. 

The results of the derivation presented here are in full agreement with the Lorentz-

Transformation already discussed before several times. The requirements concerning time 

dilatation, space contraction and local time (with asynchronous characteristics) can be de-

rived out of subsequent calculations. This contrasts with the calculations presented before, 

where the equations were derived using a graphic approach; in this case time dilation and 

length contraction were preconditions and not the results of calculations. 
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Finally the question remains, what significance the result has for the interpretation of 

the conditions. In chapter 2.2 it was already presented in detail that it is impossible for an 

observer at rest or in a moving system using the exchange of signals to decide about the 

state of movement. This is caused by the simultaneously appearing effects of dilatation of 

time and contraction of space. 

However, it is by no means the case that an observer at rest is determining a different 

speed of light in the moving system; in his view the speed of light of his system will be valid 

for all investigations instead. The fact that the moving observer will find the same results 

in comparison to the system at rest is exclusively caused by differences in the synchroniza-

tion procedures between the two systems. This question will be taken up again in chapter 

11. 

3.4  Einstein-synchronization 

The synchronization procedure later named after Albert Einstein was first mentioned in his 

pioneering publication in the year 1905 [12]. To illustrate this point further, an extract of 

the original work is presented in Fig. 3.5, which was part of the derivation of the Lorentz-

Transformation. The following equation is of special interest 

1

2
(𝜏0  +  𝜏2) =  𝜏1                                                         (3.60) 

Einstein used Greek letters for the time in a moving system, for which today generally 𝑡′ 

is taken (further he used the letter 𝑉, not 𝑐 for the speed of light); today the equation is 

generally presented in a different form like 

1

2
(𝑡0
′ + 𝑡2

′ ) =  𝑡1
′                                                          (3.61) 

It is a special characteristic of this equation, that the synchronization is solely depending 

on the exchange of signals between the participants. 

The synchronization procedure following this specification can generally be character-

ized as follows: 

Clock U(0) is situated in the coordinate origin of an arbitrary inertial system. An 

identical clock U(x) is located at a different point with the distance 𝑥. When U(0) is 

showing time 𝑡0 a light signal is emitted from here to point 𝑥 and from there imme-

diately reflected to the coordinate origin. At arrival U(0) is showing time 𝑡2. U(x) is 

synchronized with U(0) when U(x) at the time of reflection is showing time 𝑡1 fol-

lowing the relation: 

𝑡1 = 𝑡0 +
1

2
(𝑡2 − 𝑡0)                                                       (3.62) 

Equation Eq. (3.62) is identical to Eq (3.60) resp. (3.61). This is independent from the 

situation, whether the clocks are at rest or shall be moved (which means the use of 𝑡 or 𝑡′ 

is possible). 
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To any system of values 𝑥, 𝑦, 𝑧, 𝑡, which completely defines the place and time of an 
event in a stationary system, a system of values 𝜉, 𝜂, 𝜁, 𝜏, determining that event relatively 
to the system 𝑘 belongs to it, and the task is now to find a system of equations connecting 
these variables. 

First it is clear that the equations must be linear on account of the properties of homo-
geneity which we attribute to space and time. 

If we set 𝑥′ = 𝑥 − 𝑣𝑡, it is clear that a point at rest in the system 𝑘 must belong to a 
system of values 𝑥′, 𝑦, 𝑧, independent of time. We first determine 𝜏 as a function of 𝑥′, 𝑦, 𝑧, 
and 𝑡. To do this we have to express in equations that 𝜏 is nothing else than the summation 
of the reading of clocks at rest in system 𝑘, which have been synchronized according to the 
rules given in § 1. 

From the origin of system 𝑘 let a ray be emitted at time 𝜏0 along the X-axis to 𝑥′, and 
at time 𝜏1 be reflected to the origin of the coordinates, arriving there at time 𝜏2, then we will 
find 

1

2
(𝜏0  +  𝜏2) = 𝜏1 

 
or, by inserting the arguments of the function 𝜏 and applying the principle of the constancy 
of the speed of light in the stationary system: 

1

2
[𝜏(0,0,0, 𝑡)  +  𝜏 (0,0,0, {𝑡 + 

𝑥′

𝑉 − 𝑥
 + 

𝑥′

𝑉 + 𝑥
})] 

=  𝜏 (𝑥′, 0,0, 𝑡 +  
𝑥′

𝑉 − 𝑥
) 

 
Hence, if 𝑥′ is chosen infinitesimally small 

1

2
(
1

𝑉 − 𝑥
 +  

1

𝑉 + 𝑥
 )
𝜕𝜏

𝜕𝑡
=
𝜕𝜏

𝜕𝑥′
+

1

𝑉 − 𝑣

𝜕𝜏

𝜕𝑡
 

 
or 

𝜕𝜏

𝜕𝑥′
+

𝑣

𝑉2 − 𝑣2
𝜕𝜏

𝜕𝑡
= 0 

It shall be noted that it is possible to choose any other point of origin for the coordi-
nates of the ray, and the equation just obtained is therefore valid for all values of 𝑥′, 𝑦, 𝑧. 

Fig. 3.5: Extract from original publication of Albert Einstein [12a], translated 

The definition used in these equations is not giving information, whether synchroniza-

tion is still valid at a later point in time or not. In principle the following situations are pos-

sible: 

a) U(x) remains stationary in relation to U(0), 

b) U(x) is passing U(0) in short distance to be synchronized and then moving away, 

c) U(x) is passing U(0) in a long distance without direct contact. 

 It is immediately clear for situation a) that the factor 𝛾 is always identical for both clocks 

and so the synchronization can be repeated without difference at any time. Situations b) 
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and c) were dealt with in chapters 2.1.1 resp. 2.1.2. In both cases it was shown, that inde-

pendent from the distance of objects no differences of their observations are detectable. 

The only precondition is, that the Lorentz-Transformation is taken as a basis. 

 Exact interpretation of the situation makes clear, that when using hypothetical superlu-

minal velocities sending information to an observer, differences would appear. However, 

according to the assumptions made, this is not possible and so synchronization differences 

cannot occur. As already discussed, the appearing situation is called “Relativity of Simulta-

neity”. 

 Current concepts for derivation of the Lorentz-Equations generally avoid using the form 

Einstein selected in the year 1905. In a normal case a presentation using equations Eq. 

(3.42) and Eq. (3.43) is taken (which was used as a basis for calculation in chapter 3.3.2) 

 

𝑆:      𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2                                                           (3.42) 

𝑆´:    𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑐2𝑡′2                                                        (3.43) 

 The equation system can be interpreted in a way, that the transition from Eq. (3.42) to 

Eq. (3.43) is in accordance with Einstein synchronization and this relation is implicitly in-

cluded. Einstein himself in his book about the theory of relativity written as a “simple ver-

sion” [29], first edited in the year 1916, also used a similar approach. Obviously, he also 

shared the opinion that this would be easier to understand. 

 The Einstein-synchronization, connected with Eq. (3.62), is a definition, not an observa-

tion. The Einstein synchronization is of paramount importance for the Theory of Special 

Relativity and is widely discussed until today [19,20,35]. After the presentation of addi-

tional important aspects, it will be discussed again in more detail in this investigation (chap-

ter 11.2). 

.  
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4.  Additional considerations for moving 
observers 

The relations discussed so far can easily be extended from two to several observers. Doing 

this, first the addition of velocities must be derived, because the relativistic case shows not 

the simple summation which could be expected according to the laws of the Galilei-Trans-

formation. Further special relations exist in connection with velocities lower than the speed 

of light, which are observed e.g. concerning light in transparent media or connected with 

the transport of sound in solid bodies. These relations are also valid during acceleration of 

observers because material objects cannot be considered as absolute rigid. 

 In addition the case is discussed, when the transport of a signal inside a moving body is 

not only taking place in the direction of the movement but also transverse to it. 

4.1  Relativistic addition of velocities 

The theorem for the addition of velocities in the relativistic case was derived by A. Einstein 

already in the year 1905 [12]. It is assumed that in a system S′, which is moving with the 

speed 𝑣 in direction of the 𝑥-axis in relation to the reference system S, an observer is moving 

according to the relations 

𝑥′ = 𝑤𝑥
′𝑡′                                                                             (4.01) 

𝑦′ = 𝑤𝑦
′ 𝑡′                                                                             (4.02) 

𝑧′ = 0                                                                                   (4.03) 

where 𝑤𝑥
′  and 𝑤𝑦

′  are the components of the velocity in 𝑥′ resp. 𝑦′-direction. The aim is to 

find a relation referring to the reference system S. The coordinate system is selected in a 

way that all points are situated in the 𝑥 − 𝑦 plane and so the coordinate 𝑧′ can remain un-

considered. 

 Thus, the Lorentz equations read 

 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)                                                            (4.04) 
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𝑦′ = 𝑦                                                                    (4.05) 
 

𝑡′ = 𝛾 (𝑡 −
𝑣

𝑐2
𝑥)                                                          (4.06) 

Behavior in 𝑥-direction 

When Eq. (4.04) and Eq. (4.06) are inserted in Eq. (4.01) this yields 

𝛾(𝑥 − 𝑣𝑡) = 𝑤𝑥
′ · 𝛾 (𝑡 − 

𝑣

𝑐2
𝑥)                                              (4.07) 

with 

𝑥 =
𝑤𝑥
′ + 𝑣

1 +
𝑣𝑤𝑥′

𝑐2

· 𝑡                                                            (4.08) 

 

Behavior in 𝑦-direction 

For the determination equations Eq. (4.02), (4.06) and (4.08) are successively inserted in 

Eq. (4.05) 

𝑦 = 𝑦′ = 𝑤𝑦
′𝛾 (𝑡 −

𝑣

𝑐2
𝑥)                                                  (4.09) 

 

𝑦 = 𝑤𝑦
′𝛾 (𝑡 −

𝑣

𝑐2
 ·
𝑤𝑥
′ + 𝑣

1 +
𝑣𝑤𝑥′

𝑐2

 · 𝑡)                                           (4.10) 

following 

𝑦 = 𝑤𝑦
′𝛾 
1 +

𝑣𝑤𝑥
′

𝑐2
−
𝑣𝑤𝑥

′

𝑐2
−
𝑣2

𝑐2

1 +
𝑣𝑤𝑥′

𝑐2

 · 𝑡                                           (4.11) 

 

𝑦 =
√1 −

𝑣2

𝑐2

1 +
𝑣𝑤𝑥′

𝑐2

 𝑤𝑦
′ 𝑡                                                         (4.12) 

Because of the linearity of the relations the velocities can be derived out of Eq. (4.08) and 

(4.12) in a simple way as 

𝑑𝑥

𝑑𝑡
= 𝑤𝑥 =

𝑤𝑥
′ + 𝑣

1 +
𝑣𝑤𝑥′

𝑐2

                                                      (4.13) 

𝑑𝑦

𝑑𝑡
= 𝑤𝑦 =

√1 −
𝑣2

𝑐2

1 +
𝑣𝑤𝑥′

𝑐2

 𝑤𝑦
′                                                     (4.14) 

In a final step the angles of the velocity-components in relation to the 𝑥-axis are inserted 

which yields 
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𝑤𝑥
′ = 𝑤 · 𝑐𝑜𝑠 𝛼                                                            (4.15) 

𝑤𝑦
′ = 𝑤 · 𝑠𝑖𝑛 𝛼                                                            (4.16) 

and by using 

𝑣𝑇 = √𝑤𝑥2 + 𝑤𝑦2                                                           (4.17) 

these are added as vectors 

√(
𝑤 𝑐𝑜𝑠 𝛼 + 𝑣

1 +
  𝑣 𝑤 𝑐𝑜𝑠 𝛼

𝑐2

)

2

+

(

 
√1 −

𝑣2

𝑐2

1 +
  𝑣 𝑤 𝑐𝑜𝑠 𝛼

𝑐2

 𝑤 𝑠𝑖𝑛 𝛼

)

 

2

                     (4.18) 

For the total velocity 𝑣𝑇  in system S and after transformation and using the general relation 

𝑐𝑜𝑠2𝛼 + 𝑠𝑖𝑛2𝛼 = 1                                                       (4.19) 

the final solution is 

𝑣𝑇 =

√𝑣² + 𝑤² + 2 𝑣 𝑤 𝑐𝑜𝑠𝛼 − (
𝑣 𝑤 𝑠𝑖𝑛𝛼

𝑐 )
2

1 +
  𝑣 𝑤 𝑐𝑜𝑠𝛼

𝑐2

                               (4.20) 

If the velocities 𝑣 and 𝑤 are situated unidirectional, which means angle 𝛼 = 0, then Eq. 

(4.20) is simplified to 

𝑣𝑇 =
𝑣 + 𝑤

1 +
𝑣 𝑤
𝑐2
                                                             (4.21) 

When this situation concerning emitted signals and their reception is presented in a 

space-time diagram then the configuration in Fig. 4.1 is achieved. On the left side of this 

chart the situation is presented, that the emitter in the middle is belonging to a system at 

rest. The receivers of the signals, which are in addition reflecting the incoming signals im-

mediately, are increasing their distance with equal speed (in this case: 𝑣 = 𝑤 = 0,5𝑐). On 

the right-hand side, it is illustrated how the same situation develops from the view of an 

observer which was considered as in motion before (in this case: B). One of the observers 

is increasing the distance with the same speed of 𝑣 = 0,5𝑐, the third shows a speed of 𝑣 =

0,8𝑐 according to equation (4.21). A reverse situation develops when observer C is consid-

ered as at rest. 

To illustrate the exact circumstances, the situation for times 𝑡 = 1 TU and 𝑡 = 2 TU are 

marked with different shades in the space-time diagram (Fig. 4.1). In this presentation it is 

clearly visible, that irrespective of the velocity of an observer always the same results will 

be achieved. 
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Fig. 4.1: Space-time diagram for observers at rest and in motion 
 

4.2  Experiments with transparent media in motion 

In the following a further alternative of the case discussed in chapter 2.2.2 will be looked 

at. Instead of a light pulse a second observer shall be shifted inside the body in moving di-

rection and opposite to it. In conjunction with the exchange of light pulses the following 

combinations are possible: 

A: Light pulse going and coming, 

B: Observer in motion (in moving direction), light pulse comes back, 

C: Light pulse going, observer in motion (opposite to moving direction), 

D: Observer in motion (in moving direction and opposite). 

In Fig. 4.2 possible combinations for the velocity of bodies in motion with 𝑣 = 0,5 𝑐  are 

presented. As already shown, the velocities in the relativistic range are calculated according 

to Eq. (4.21). In this case of a system velocity of 𝑣1 = 0,5 𝑐 and an additional velocity of a 

body in motion of also 𝑣2 = 0,5 𝑐  was assumed and the result is 𝑣𝑇 = 0,8 𝑐. 

The figure shows clearly that the cases B and C, i.e. the combination of light pulse and 

body in motion, are leading to the same results. 

𝑣 = −0,5𝑐 

𝑣 = 0,8𝑐 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 

𝑣 = 0 𝑣 = 0 



4.2  Experiments with transparent media in motion 

63 

 
 
Fig. 4.2: Exchange of signals and bodies in motion in a moved system 

A: Light pulse going and coming, 

B: Body in motion (in moving direction), light pulse comes back, 

C: Light pulse going, body in motion (opposite to moving direction), 

D: Body in motion (in moving direction and opposite). 

An experimental proof of these cases with bodies in motion is, however, only possible 

with extreme restrictions because of the high velocities needed. An experimental assess-

ment is yet possible by an examination using optical tools. The speed of light 𝑐𝑛 in media is 

defined as 

𝑐𝑛 =
𝑐

𝑛
                                                                   (4.30) 

with 𝑛 as refractive index. It was already in the year 1812 that Augustin Jean Fresnel (1788-

1827) developed the hypothesis, that the speed of light in moved media can be calculated 

by using a dragging coefficient (which was later named after him). According to this the 

speed of light in a moving system for an observer at rest is 

𝑐𝑇 =
𝑐

𝑛
+ 𝑣 (1 −

1

𝑛2
)                                                       (4.31) 

This theory was verified in the year 1851 by Hippolyte Fizeau (1819-1896) with an ex-

periment where he measured the speed of light in water which was flowing with different 

velocities. After the full development of the Lorentz-equations it was possible to show, that 

the addition of velocities of moved media and the light propagation 𝑐𝑛 inside can be calcu-

lated using the addition of relativistic speed [36]. 

𝑣 = 0,5 𝑐 
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For calculation Eq. (4.21) is used 

𝑣𝑇 =
𝑣1 + 𝑣2

1 +
𝑣1𝑣2
𝑐2

                                                               (4.32) 

and with 𝑣1 = 𝑐𝑛 this yield 

𝑣𝑇 = 

𝑐
𝑛 + 𝑣2

1 +
𝑣2
𝑛𝑐 

=   
𝑐2 + 𝑛𝑐𝑣2
𝑛𝑐 + 𝑣2

                                                 (4.33) 

A Taylor expansion for 𝑣2 is leading to 

𝑣𝑇 = 
𝑐

𝑛
+ 𝑣2 (1 −

1

𝑛2
 ) −

𝑣2
2

𝑛𝑐
(1 −

1

𝑛2
 ) +

𝑣2
3

𝑛2𝑐2
(1 −

1

𝑛2
 ) − +. . .        (4.34) 

This equation is, concerning terms of first order, equal to the relation given in equation Eq 

(4.31). 

A calculation using the Lorentz-Transformation for the situation according to Fig 4.2 

show the results presented in Tab. 4.1. In Fig 4.3 the results are presented in a diagram. As 

expected after the end of the experiment all values are located on the 𝑐𝑡′- line. Furthermore, 

it is evident that the transformation equations confirm the expected relations and that no 

contradictions can be observed. 

 

Fig. 4.3: Minkowski-diagram for cases A, B, C and D according to Fig. 4.2. 

  Left: moved (𝑣 = 0,5 𝑐), right: at rest (𝑣 = 0) 

𝑣 = 0 

𝑣 = 0,5 𝑐 
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Tab. 4.1: Calculated values for the situations presented in Fig. 4.2 

The validity of this equation was verified in a multitude of experiments, first by H. Fizeau 

using flowing water and later e.g. by R. V. Jones using rotating transparent discs [37,38]. It 

is therefore an important part of physics and belongs both to the foundations of optics and 

relativistic considerations. 

4.3  Triggering of engines after synchronization 

It was already discussed in detail and demonstrated based on several examples that after 

mere kinematic considerations during the exchange of signals in laboratory systems after 

an “Einstein-Synchronization” no discrepancies will occur. A similar situation exists, when 

signals are used not only for synchronization of clocks but to trigger engines which influ-

ence the movement of the laboratory. The following situation shall be discussed: 

1. From the middle of a laboratory signals are sent at the same time in different 

directions A and B. 
 

2. When a signal is detected at A or B an engine will be started instantly in trans-

verse direction compared to the direction of the incoming signal. The accelera-

tion at A and B follow the same orientation. 
 

3. Tests are executed in a situation at rest and in motion. 

First, it is clear that A and B will start their engines at the same time when the laboratory 

is in a situation at rest (Fig. 4.4, right-hand side). This is not the case for a moved system, 

however. While the observer in motion after a previous synchronization realizes that the 

engines will start at the same time, an observer at rest will monitor that, because of the 

longer running time of the signal from the middle to A´ compared to B´, the engine at B´ will 

start first. Because of the acceleration transverse to the moving direction according to this 

consideration a momentum is generated, and the laboratory should start to turn. 

In the literature cases like this are discussed quite often. A similar approach was exam-

ined by M. Born and during considerations of electrodynamics the assumption was made 

that an observer (here: the laboratory) with an unlimited rigidity would create discrepan-

cies [39]. An unlimited rigidity (sometimes also called “Born’s rigidity”) cannot be valid, 

however, because all real material objects show a limited and not an infinite speed of sound 

which would be necessary for unlimited rigidity. The situation was discussed at length by 

A. Sommerfeld [15d]. 
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Fig. 4.4: Laboratory with signals to trigger an engine in transverse direction 

  (𝑣 = 0,5 𝑐). Left: System in motion; Right: System at rest 

If the situation is considered in a way that the propagation of a signal is using the speed 

of sound (or any other limited velocity up to the speed of light), the relativistic addition of 

velocities lead to the same case that was discussed in chapter 4.2. The propagation of the 

movements in transverse direction caused by the different engines will arrive at the same 

time in the middle of the laboratory and thus no momentum will be generated. 

4.4  Exchange of signals between observers with spatial geometry 

Up to now the exchange of signals between observers with an elongation in only one direc-

tion was discussed. To extend this for objects with spatial geometry, an experimental set-

up like in chapter 2.2.2 is chosen with the difference, however, that for the laboratories ob-

jects with equilateral triangles were selected. 

The signals are therefore not emitted longitudinal, but with an angle of 60° to this direc-

tion (see Fig. 4.5). When the observers in both systems pass each other at A, B, resp. A′ and 

B′ a signal is sent to C resp. C′. Both C and C′ are reflecting the signals back to the sender 

and the measured times are monitored. For an observer at rest the situation of a system in 

motion is defined as presented in Fig. 4.6. First, the base of the equilateral triangle with 

length 𝑎 is shortened by the factor 𝛾 in moving direction, which is resulting in the effect that 

4 cases for contacts between the corners of the triangles will occur. These situations are 

shown in the left-hand side of Fig. 4.6. Whereas inside the moving system the distance from 

A′ to C′ (cases 1 and 3) and B′ to C′ (cases 2 and 4) is subjectively viewed as shown (in the 

diagram presented with dotted lines), for the system at rest the way of the signal is follow-

ing 𝑑 as defined in the right-hand side of the diagram. 

𝑣 = 0,5𝑐 𝑣 = 0 
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Fig. 4.5: Experimental set-up of experiments for observers with spatial geometry 

 
 
Fig. 4.6: Situation for contact and geometrical dependencies. 

 

The geometrical dependency for distance 𝑑 for cases 1 and 3 is defined by the Pythago-

rean theorem 

(𝑏 − 𝑒)2 + ℎ2 = 𝑑2                                                        (4.40) 

and with the relation 

𝑣 = 0,8𝑐 
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𝑏

𝑑
=
𝑣

𝑐
                                                                    (4.41) 

This leads to 

(𝑑
𝑣

𝑐
−
𝑎

2𝛾
)
2

+
3

4
𝑎2 = 𝑑2                                                   (4.42) 

resulting in 

𝑑1/2 = −𝑎𝛾 (
𝑣

2𝑐
± 1)                                                         (4.43) 

If a signal is sent from B′ to C′ (cases 2 and 4) a slightly different approach is valid with 

(𝑏 + 𝑒)2 + ℎ2 = 𝑑2                                                        (4.44) 
and 

𝑑1/2 = 𝑎𝛾 (
𝑣

2𝑐
± 1)                                                       (4.45) 

Only results with positive algebraic sign are permitted, so 

A′ → C′:          
𝑑

𝑎
= 𝛾 (1 −

𝑣

2𝑐
)                                                        (4.46) 

B′ → C′:          
𝑑

𝑎
= 𝛾 (1 +

𝑣

2𝑐
)                                                        (4.47) 

If the value for time is standardized to 1 then 

𝑡A′→C′ = 𝛾 (1 −
𝑣

2𝑐
)                                                          (4.48) 

𝑡B′→C′ = 𝛾 (1 +
𝑣

2𝑐
)                                                          (4.49) 

When the values for the returning signals are evaluated, it is instantly clear because of 

symmetry reasons 

𝑡𝐶′→𝐵′ = 𝑡A′→C′ = 𝛾 (1 −
𝑣

2𝑐
)                                                   (4.50) 

𝑡C′→𝐴′ = 𝑡B′→C′ = 𝛾 (1 +
𝑣

2𝑐
)                                                   (4.51) 

For a full calculation, the elapsing time between the contacts must be determined. When 

the time for contact A −  A′ (case 1) is set to zero, then the following periods can be calcu-

lated using 

case1→ case2:           𝑡1→2 =
𝑐

𝛾𝑣
                                                                 (4.52) 

case1→ case3:           𝑡1→3 =
𝑐

𝑣
                                                                   (4.53) 

case1→ case4:           𝑡1→4 =
𝑐

𝛾𝑣
+
𝑐

𝑣
                                                        (4.54) 

With a suitable combination of these equations, it is possible to discuss the results of all 

situations of the experiment. 
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Fig. 4.7: Sequence of signals for the 4 possible contacts in the system.  

𝑣 = 0,8𝑐 
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In Fig. 4.7 the diagram for the experiment with a velocity of 𝑣 = 0,8 𝑐 is presented. This 

high speed was chosen to provide an acceptable visual effect in the diagram, but this does 

not mean, however, that there are any restrictions in the universality of this relation. 

For the 4 different contact situations the values for the total travelling time of signals 

sent from A′ resp. B′ to C′ and after reflection to their emitting points are added in the dia-

gram. Furthermore, the equivalent measurements for the system presented by A, B, C are 

presented. To keep the evaluation simple the travelling time of a signal is standardized in a 

way that the distance 𝑎 is set to 1. To make sure that the measurements can be compared 

with each other, the travelling times are adjoined by the times which elapsed since the send-

ing of the first signal according to relations Eq. (4.52) to (4.54). The contact of A′ and A is 

representing the initial zero-value followed by B′/A, then A′/B and at last by B′ and B with 

𝑡 = 2. 

According to the Theory of Special Relativity the “principle of identity” and after using 

the Lorentz Transformation the “principle of equivalence” must be valid. First it can be 

stated that the time for travelling the distance A→ C→ A and B→ C→ B is taking the total 

time 𝑡 = 2, whereas for the distances A′→ C′→ A′ and B′→ C′→ B′ the time 𝑡 = 2.333 = 2𝛾 

is needed. This is exactly according to the anticipation valid for the situation of a moving 

observer. 

When the time periods are considered, which are measured by C and C′ between the 

signals, then the same effect can be monitored, which was already discussed in chapter 

2.2.2. This means, that the values of C and C′ for the contacts of A/B′ and B′/A are changing. 

It is obvious, that the principle of relativity requires, that C resp. C′ must receive the signal 

of the observer in their system A resp. A′ first. This is important to realize a proper sequence 

of contacts. 

Generally, it was shown that all combinations sending signals in any arbitrary spatial 

direction are respecting the principle of relativity. 

5.1  Signal exchange during rotation (Sagnac-effect) 

In contrast to translational movements, there are measurable effects between outgoing and 

returning light beams in rotating systems. This does not contradict the principle of relativ-

ity, as by definition these are not inertial systems. The first successful experiments on this 

were carried out by Georges Sagnac (1860-1926) in 1913 [100].  

The schematic experimental setup is shown in Fig. 4.8. Part a) shows that monochro-

matic light is emitted from a light source, which is partially reflected by a semi-transparent 

mirror and split into 2 opposing directions. After complete circulation and recombining, an 

interferometer is used to detect small transit time differences between the light beams. The 

apparatus is first calibrated at rest and then measurements are taken while the system is 

rotating. All elements of the experimental setup, i.e. light source, mirrors, and detector are 

also rotated. As shown in Fig. 4.8 b), the light beams emitted in the direction of rotation 

travel a longer distance than those moving in the opposite direction and this difference can 

be measured. 
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Fig. 4.8: Setup of a Sagnac interferometer. a) Rotatable test arrangement 

b) Changing the measuring length of the first segment by rotation  

Type I (in direction of rotation): Lengthening; type II (counter-rotating): Shortening 

The designations shown in Fig. 4.9 can be used to calculate the values. The following rela-

tionship applies to the length of the arc segment s from A to B 

𝑠 = 𝑟 · ω · (𝑡0 + ∆𝑡0)                                                       (4.60) 

where r is the radius and ω is the angular frequency. In addition, 𝑡0 is the time required by 

the light beam in the stationary system between 2 mirrors and ∆𝑡0 is the additional time 

required for a rotational movement. The following also applies in general 

𝑎 = 𝑐𝑡0               𝑒 = 𝑐∆𝑡0               𝑏 = 𝑎 + 𝑒             𝑎 = 𝑟√2 

 

 
 

 

 
 

Fig. 4.9: Formula symbols used for the calculations 

If ∆𝑡 ≪ 𝑡0 is assumed, the following relationships apply as a good approximation 

𝑠 = 𝑑 = 𝑟 · ω · 𝑡0                                                           (4.61) 

sin 𝛼 = sin(45°) =
1

√2
=
𝑒

𝑑
=
𝑐 · ∆𝑡0
𝑟 · ω · 𝑡0

                                      (4.62) 

b) a) 
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and thus 

∆𝑡0 =
𝑟ω𝑡0

√2 · 𝑐
=
𝑎2ω

2𝑐2
                                                        (4.63) 

There are 4 segments, so the time delay for one cycle is 

∆𝑡+ = 2
𝑎2ω

𝑐2
                                                            (4.64) 

The shortening of the time for the light beam on the opposite path has the same value, so 

the final result is 

∆𝑡𝑡 = ∆𝑡+ + ∆𝑡− = 4
𝑎2ω

𝑐2
                                                (4.65) 

With a length a of 1m and 10 revolutions per second, this results in ∆𝑡𝑡 = 4,4 · 10
−16s cor-

responding to a wavelength in visible light that allows interference measurements. 

G. Sagnac was convinced that he had measured an ether effect with his (similarly con-

structed) apparatus; however, Max v. Laue had already demonstrated in 1911 that such an 

experiment was compatible with the principle of relativity [101]. 

In 1925, A. A. Michelson and H. G. Gale carried out an experiment with dimensions of 613 

m in length and 339 m in width [102,103]. This made it possible to measure the rotation of 

the earth with a relative accuracy of 2%. 

 

Fig. 4.10: Construction of a Sagnac interferometer with an optical fiber 

In addition to the structure with beam reflection by mirrors, coiled fiber optic cables can 

also be used as shown in Fig. 4.10. These are widely used today in areas such as aerospace, 

navigation, ships, and robotics. They are less susceptible to mechanical wear than mechan-

ical gyrocompasses as they contain no moving parts. Another trend in their development is 

the miniaturization of optical gyroscopes. With the advent of micro-electro-mechanical sys-

tems (MEMS), it has become possible to produce smaller and more cost-efficient gyro-

scopes that can be used for a variety of applications, from smartphones to drones. 
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5.  Clock transport 

It is well known, that according to Special Relativity during an exchange of signals between 

two observers only a mutual consideration of the time needed in both directions is possible. 

Nevertheless, in the past effort was made to measure the one-way speed of light inside a 

system in motion. One of these attempts to perform a separate measurement was the ex-

amination of the effect that occurs, when clocks are moved at slow speed inside a moving 

observer. In this case a system in motion is defined, where two clocks after an Einstein Syn-

chronization are lined up and one is following the other. To execute the experiment the 

clocks are moved in this system in a way, that after the end of the trial they have changed 

their positions. When the experiment is carried out at low speed the synchronization should 

maintain its original values and after a further synchronization process a difference should 

appear. 

Since some time it is clear, however, that the effects measured by both clocks is changing 

exactly corresponding to their position inside the system and therefore leading to a null 

result (see i.e. [19,40]). This important verification and the necessary calculations are pre-

sented here, first simply by means of an example and afterwards in a general way. Further 

in this chapter the well-known twin paradox will be discussed, and it will appear as a special 

case of the clock transport. 

5.1  Clock transport in direction of motion 

To define an appropriate experimental set-up it is assumed, that in a laboratory 3 observers 

A, B and C are lined up equidistant. 

    

First the case is considered that the observers are at rest. To start the experiment ob-

server B is sending out synchronized clocks with the same speed to A and C. After the arriv-

ing of the clocks at A and C it is found that these - depending on the speed they were moved 

- are running slow compared to the clocks at rest because of time dilatation. Further A and 

C after exchanging of experiment data conclude that the moved clocks arrived at the same 

time at their positions. 
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It is now considered that the laboratory is accelerated and afterwards moving with a 

constant speed. The existing clocks shall then be synchronized. If an effect that could be 

measured inside the system would occur, it must be possible to find it out in one (or both) 

of the ways presented in the following: 

1. Observers A and C find differences in the arriving time of the clocks sent out by ob-

server B in comparison to the results of the experiments in a system at rest. 
 

2. The moved clocks show differences when they arrive at A and C compared to the 

situation of a system at rest. 

It shall be presented in the following, that inside a system at rest compared to a system 

in motion the same results will be achieved. This simplified statement can be extended to 

the proposition that it is valid also for any arbitrary inertial system, which means it is a 

system not accelerated and without rotation. The statement is therefore valid universally. 

5.1.1  Qualitative Considerations 

Fig. 5.1 shows the situation, that in a laboratory at rest (left) and in motion (right) at the 

time zero a light signal is emitted from position B in direction to the back end (A) and the 

front end (C). These signals are reaching A and C at the positions 𝑐1 and 𝑎1 as shown in the 

diagram. In this presentation further the situation with moving clocks starting from point 

B is added.  

 
Fig. 5.1: Space-time-diagram for clock transport 

  Dotted lines: Signal exchange 

𝑣 = 0,5𝑐 𝑣 = 0 
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First the laboratory at rest shall be looked at (left-hand side of the diagram). When the 

clocks are starting at time zero with a velocity of 1/2𝑐 they are reaching the positions 𝑐2 as 

well as 𝑎2 after 2 time-units, when the speed is 1/4𝑐 then 4 time-units are necessary for the 

positions 𝑐4 and 𝑎4 etc. All possible times for receiving the signals can be realized depending 

on the velocities of the moved clocks. 

When a moving system is considered, however, for an observer at rest some differences 

in the situation would occur (right-hand side of the diagram), i.e. differences in the times to 

reach 𝑐𝑛 and 𝑎𝑛, further the distance 1 is changing to 1 𝛾⁄  etc. These changes are described 

by the Lorentz-Transformation. 

In the following the situation for an observer in motion shall be discussed. This is pre-

sented in Fig. 5.1 by means of marked zones (blue: in moving direction, red: opposite direc-

tion). The following relation applies for the system at rest 

𝑣 = (0,5 ± 
1

3
) · 𝑐                                                         (5.01) 

and for the observers in motion 

𝑣𝑐3+ = 
0,5 + 0, 3

1 + 0,5 · 0, 3
𝑐 =  0,714𝑐                                           (5.02) 

 

𝑣𝑎3− = 
0,5 − 0, 3

1 − 0,5 · 0, 3
𝑐 =  0,2𝑐                                             (5.03) 

To simplify the calculations the following definitions shall be introduced: The values for 

time, space and speed of light 𝑐 are scaled to 1, the results of the velocities are therefore 

defined as fractions of 𝑐. 

The arrival time and the factor 𝛾 is 

𝑡𝑐3+ = 4,041           𝛾𝑐3+ = 1,429  
(5.04) 

𝑡𝑎3− = 2,887           𝛾𝑎3− = 1,021  

The passed (subjective) time for the observers is 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑚𝑜𝑡𝑖𝑜𝑛:   
𝑡𝑐3+
𝛾𝑐3+

=
𝑡𝑎3−
𝛾𝑎3−

= 2,828                                           (5.05)  

This result is consistent with the values of the system at rest, because 

𝑡𝑐3 = 𝑡𝑎3 = 3           𝛾𝑐3 = 𝛾𝑎3 = 1,061                                       (5.06) 

is valid and so the same result is obtained. 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑟𝑒𝑠𝑡:   
𝑡𝑐3
𝛾𝑐3

=
𝑡𝑎3
𝛾𝑎3

= 2,828                                                (5.07)  

The presented deductions show that the subjectively measured time period for the tran-

sition to A and C of the moved observers is identical. Further the presentation makes clear, 

that the time measured for the arrival of the simultaneously moved clocks by the observers 
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A and C in their synchronized system is also the same. This makes it impossible inside a 

uniformly proceeding system, which is moving without acceleration or rotation, to take 

measurements with clocks or any other devices and find conclusions out of the received 

results about the velocity compared to other systems or to find deviations in the synchro-

nization. 

5.1.2  General derivation 

The presented issue will now be verified in a general form. First it is necessary to define the 

following parameters: 

System at 
rest 

System in  
motion 

 

- 𝑣0 Velocity of the system in motion 

∆𝑣 𝑣+, 𝑣− Travelling speed of the moved observers 

- ∆𝑡𝐴, ∆𝑡𝐴 Synchronization difference to system at rest 

𝑡0 𝑡+, 𝑡− Arrival time of moved observers 

𝑡0
′  𝑡′+, 𝑡′− Subjective travelling time of moved observers 

𝛾∆ 𝛾+, 𝛾− Lorentz-factor of moved observers 

These parameters are presented in a modified Minkowski-diagram (see Fig. 5.2). The 

experimental set-up is the following: 

From position B in the middle of a laboratory at rest, signals are sent to the positions at 

both ends A and C and arrive here at the time 𝑡′ (left side of the diagram, positions 

marked with A′ and C′). At the same time 2 synchronized clocks start moving from the 

position B with an arbitrary velocity ∆𝑣 which is the same for both. They arrive at their 

positions at time 𝑡′′ (marked with A′′ and C′′); directly afterwards signals are sent back 

to position B. In the right part of the diagram the situation is presented for an observer 

in motion. The differences in moving direction and opposite to it are in conformance with 

the Lorentz equations. 

In the following it is demonstrated that the observers taking part in this experiment are 

not able to detect differences in the measurements of the elapsing time. In detail these are 

the considerations: 

1. The observers in motion cannot decide on basis of their measurements whether the 

system is moving or not. 
 

2. The observers at rest find during their measurements - independent of the velocity 

of the moving system - the same time periods for the arriving of the moving observ-

ers. 
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Fig. 5.2:  Space-time-diagram for clock transport with defined parameters 

  Dotted lines: Signal exchange 

The different issues are now dealt with separately. 

5.1.3  Identical time schedules for the arriving of moved observers 

The following issues shall be reviewed: 

a) The synchronization differences in a moving system ∆𝑡𝐴 and ∆𝑡𝐶  for the observers 

A and C relating to B 
 

b) The time periods 𝑡− and 𝑡+ the observers in motion need to reach the positions A 

and C 
 

c) The difference between both values. When the result (multiplied by 𝛾0) is corre-

sponding to the values of the system at rest, then the measuring results are not dis-

tinguishable from each other. 

 
a) Synchronization differences 

To determine the synchronization differences, it is first necessary to identify the travelling 

time a light signal needs starting from B to the positions A´ resp. C´. This is 

∆𝑡𝐵→𝐴′ =
𝑎

𝑐𝛾0(1 +
𝑣0
𝑐 )
                                                      (5.08) 

x

ct

1 2 3
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3

2
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4

4
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-1 0-1 0 1

v = 0

C´

00

𝑣 = 0,5𝑐 𝑣 = 0 
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∆𝑡𝐵→𝐶′ =
𝑎

𝑐𝛾0(1 −
𝑣0
𝑐 )
                                                     (5.09) 

The value which is necessary to reach the starting point is subtracted 

∆𝑡𝐴′→𝐴 = ∆𝑡𝐶′→𝐶 =
𝑎

𝑐
𝛾0                                                     (5.10) 

Thus, the synchronization leads to values 

∆𝑡𝐴 =
𝑎

𝑐𝛾0(1 +
𝑣0
𝑐 )
 − 

𝑎

𝑐
𝛾0 = −

𝛾0𝑎𝑣

𝑐2
                                       (5.11) 

and 

∆𝑡𝐶 =
𝑎

𝑐𝛾0(1 −
𝑣0
𝑐 )
− 
𝑎

𝑐
𝛾0 = 

𝛾0𝑎𝑣

𝑐2
                                         (5.12) 

b) Time for observers in motion 

The time a moved observer needs to reach the positions A′ resp. C′ in a system at rest is 

𝑡0 = 
𝑎

∆𝑣
                                                                  (5.13) 

To determine this in a system in motion the values of 𝑥𝐵+ and 𝑥𝐶+ (with 𝑡 → 𝑡+) resp. 𝑥𝐵− 

and 𝑥𝐶− (with 𝑡 → 𝑡−) are set equal and this results in (see Fig. 5.2) 

𝑡+ = 
𝑎

𝛾0(𝑣+ − 𝑣0)
                                                         (5.14) 

 

𝑡− = 
𝑎

𝛾0(𝑣0 − 𝑣−)
                                                         (5.15) 

c) Consideration of differences 

In the following the differences between ∆𝑡𝐴 and 𝑡− resp. ∆𝑡𝐶  and 𝑡+ are considered. In a 

system at rest this is 

∆𝑡𝐴→𝐴′′ = ∆𝑡𝐶→𝐶′′ =
𝑎

∆𝑣
                                                    (5.16) 

In a system in motion this changes to 

∆𝑡𝐴→𝐴′′ = ∆𝑡𝐶→𝐶′′ = 𝛾0
𝑎

∆𝑣
                                                 (5.17) 

If 
𝑡− = ∆𝑡𝐴 + ∆𝑡𝐴→𝐴′′                                                        (5.18) 

with 
𝑎

𝛾0(𝑣0 − 𝑣−)
=

𝑎

𝑐𝛾0(1 +
𝑣0
𝑐 )
 −  

𝑎

𝑐
𝛾0 + 𝛾0

𝑎

∆𝑣
                                 (5.19) 

 
𝑡+ = ∆𝑡𝐶 + ∆𝑡𝐶→𝐶′′                                                          (5.20) 

𝑎

𝛾0(𝑣+ − 𝑣0)
=

𝑎

𝑐𝛾0(1 −
𝑣0
𝑐 )
 −  

𝑎

𝑐
𝛾0 + 𝛾0

𝑎

∆𝑣
                                 (5.21) 

is valid, no differences can be detected inside a system. 
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 To simplify the calculation the equations shall be multiplied with 𝑐 𝑎⁄  and the values of 

the velocities are replaced by their quotient to the speed of light 𝑐 
 

𝑣+
′ =

 𝑣+
𝑐
    𝑣−

′ =
 𝑣−
𝑐
     𝑣0

′ =
 𝑣0
𝑐
    ∆𝑣′ =

∆𝑣

𝑐
                                 (5.22) 

Eq. 5.19 is developing to 

1

𝛾0(𝑣0
′ − 𝑣−′ )

=
1

𝛾0(1 + 𝑣0
′ )
 −  𝛾0 +

𝛾0
∆𝑣′
                                      (5.23) 

and Eq. 5.21 changes to 
1

𝛾0(𝑣+
′ − 𝑣0

′ )
=

1

𝛾0(1 − 𝑣0
′ )
 −  𝛾0 +

𝛾0
∆𝑣′
                                      (5.24) 

Inserting the values 

𝛾0
2 =

1

1 − 𝑣0
′ 2
                                                             (5.25) 

then after simple transformation of Eq. 5.23 

(1 + 𝑣−
′ )(1 − 𝑣0

′ ) = −𝑣0
′ +

𝑣0
′

∆𝑣′
+ 𝑣−

′ −
𝑣−
′

∆𝑣′
                                   (5.26) 

can be derived. Further 

𝑣−
′ = 

𝑣0
′ − ∆𝑣′

1 − 𝑣0
′ · ∆𝑣′

                                                         (5.27) 

and from Eq. 5.24 

(1 − 𝑣+
′ )(1 + 𝑣0

′ ) = −𝑣+
′ +

𝑣´+
∆𝑣′

+ 𝑣0
′ −

𝑣0
′

∆𝑣′
                                  (5.28) 

 

𝑣+
′ = 

𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

                                                          (5.29) 

is valid. These results correspond exactly to the definitions of 𝑣−
′ . and 𝑣+

′ . It is thus shown 

that inside a system the observers A and C are not able to find differences in the arriving 

time of a moved observer. The subjective time periods are completely independent whether 

the system is moving or not. 

5.1.4  Identical time periods at arrival for moving observers 

The time period a moving observer needs to reach the positions A or C in a system at rest 

is 

𝑡0 = 
𝑎

∆𝑣
                                                                 (5.30) 

and in the moving system 

𝑡+ = 
𝑎

𝛾0(𝑣+ − 𝑣0)
                                                          (5.31) 

𝑡− = 
𝑎

𝛾0(𝑣0 − 𝑣−)
                                                         (5.32) 
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The time subjectively measured by the moving observer is here  

𝑡′0 = 
𝑎

𝛾∆∆𝑣
                                                               (5.33) 

 

𝑡′+ = 
𝑎

𝛾+𝛾0(𝑣+ − 𝑣0)
                                                      (5.34) 

𝑡′− = 
𝑎

𝛾−𝛾0(𝑣0 − 𝑣−)
                                                      (5.35) 

If the subjectively measured time is identical then the relation applies 

𝑡′0 = 𝑡′+ = 𝑡′−                                                             (5.36) 

First this is discussed for the case 𝑡′0 = 𝑡′+. Thus 

 
𝑎

𝛾+𝛾0(𝑣+ − 𝑣0)
=

𝑎

𝛾∆∆𝑣
                                                    (5.37) 

must be valid. This leads to 

𝛾∆
𝛾+𝛾0

=
(𝑣+ − 𝑣0)

∆𝑣
                                                         (5.38) 

To simplify the calculation again the values of the velocities are replaced by their quo-
tient to the speed of light 𝑐 

𝑣+
′ =

 𝑣+
𝑐
    𝑣−

′ =
 𝑣−
𝑐
     𝑣0

′ =
 𝑣0
𝑐
    ∆𝑣′ =

∆𝑣

𝑐
                                 (5.39) 

When in equation (5.38) the values of 𝛾 are inserted, then 

(1 − 𝑣+
′ ²)(1 − 𝑣0

′ ²)

1 − ∆𝑣′²
=
(𝑣+
′ − 𝑣0

′ )²

∆𝑣′²
                                          (5.40) 

and 
(1 − 𝑣+

′ 𝑣0
′ )2∆𝑣′2 = (𝑣+

′ − 𝑣0
′ )²                                              (5.41) 

When 𝑣+ is replaced by 

𝑣+
′ = 

𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

                                                         (5.42) 

then 

(1 −
𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

𝑣0
′)

2

∆𝑣′2 = (
𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

− 𝑣0
′)

2

                          (5.43) 

 If this equation is expanded completely, then 20 terms will occur which will add up to 

zero. The same procedure can be applied to 𝑡0
′ = 𝑡−

′ . With 

𝛾∆
𝛾−𝛾0

=
(𝑣0
′ − 𝑣−

′ )

∆𝑣´
                                                          (5.44) 

and 

𝑣− = 
𝑣0
′ − ∆𝑣′

1 − 𝑣0
′ · ∆𝑣′

                                                         (5.45) 
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the same result will be realized. Thus, it is shown that the subjective measurements of the 

moving observers do not differ from the results achieved at rest. 

 It is now generally verified that inside a moving system no possibility exists to find devi-

ations caused by “slow clock transport” when using synchronized clocks in comparison to 

a reference system at rest. 

5.2  Twin paradox 

One of the best-known examples connected with the theory of Special Relativity is the twin 

paradox. This issue covers a long history in literature (see i.e. a comprehensive summary in 

[41]). In general, a pair of twins is looked at, where one is at rest (remaining at earth) while 

the other is leaving with a fast spaceship and comes back later. This twin will be aged less 

compared to the one who remained on earth. The paradox occurs because according to Spe-

cial Relativity both twins should be considered as equal and therefore the travelling twin 

after his return should find the remaining twin also in a condition aged less. 

 The solution to overcome the contradictions is possible because the twin in the space-

ship is changing the inertial system during his trip. 

 

Fig. 5.3:  Presentation of the twin paradox 

  Left:   Observer A at rest, B in motion 

  Right : Observer A in motion, B at rest (at the beginning) 

𝑣 = 0,8𝑐 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 

𝑣 = −0,5𝑐 

𝑣 = 0 𝑣 = 0 
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 In Fig. 5.3 this case is presented on the left side of the diagram. On the right side the 

situation is presented, that the observers change their perspective and the one who was 

first considered as at rest is moving and vice versa. To avoid influences during changing of 

the direction, the experimental set-up is modified in a way that 3 observers take part (in 

Fig. 5.3 marked with the colors green, red, and blue) and each of the observers is in posses-

sion of a precise clock [41]. At the positions A1 and B1 resp. A2 and B2 the clocks are syn-

chronized and at the end of the trial the results are evaluated. In this presentation the prob-

lem finally has the same status as the issue of a slow clock transport. 

 If the situations are comparable, then the subjective measuring results must be the same 

for all observers taking part in the trial. This shall be demonstrated in the following. The 

important issues are the total travelling time from the start to the end of the journey, and 

the subjective time periods for the moving observers, which must be identical from the start 

to the returning point and from that to the end. The total time for the observer at rest is 

defined as 𝑡0 as shown in the left part of the diagram. The other parameters are presented 

in the following table. 

System at 

rest 

System in 

motion 
 

𝑡𝑇 𝑡𝑇
′  Total time from start (A) to the end of journey (C) 

𝑡1 𝑡1
′  Time for the first part of the journey (A→ B) 

𝑡2 𝑡2
′  Time for the second part of the journey (B→ C) 

- 𝑣1
′  Velocity for A1→ B1, B1→ C1, A2→ C2 

- 𝑣2
′  Velocity for B2→ C2 

- 𝛾1 Lorentz factor for 𝑣1
′  

- 𝛾2 Lorentz factor for 𝑣2
′  

Remark: 

The velocities are always taken as ratio to the speed of light, i.e. 

𝑣1
′ =

𝑣1
𝑐
             𝑣2

′ =
𝑣2
𝑐
                                                      (5.50) 

a) Total time 

Left: The total time 𝑡𝑇 is defined as 

𝑡𝑇 = 𝑡0                                                                   (5.51) 
and for 𝑡𝑇

′  is valid 

𝑡𝑇
′ = 𝑡1+𝑡2 =

𝑡0
𝛾1
                                                          (5.52) 



5.2  Twin paradox 

83 

where in this case because of symmetry reasons applies 

𝑡1
′ = 𝑡2

′ =
𝑡𝑇
′

2
=
𝑡0
2𝛾1

                                                        (5.53) 

Right: Because the subjective time periods 𝑡1 shall be the same in both cases it must be valid 

𝑡1 =
𝑡0
2𝛾1

                                                                   (5.54) 

 The time 𝑡2 can be derived using relations concerning 𝑏2 (see Fig. 5.3, right), because for 

𝑣1
′  and 𝑣2

′  applies 

𝑣1
′(𝑡1 + 𝑡2) = 𝑣2

′ 𝑡2                                                           (5.55) 

𝑡2 =
𝑣1
′𝑡1

𝑣2
′ − 𝑣1

′                                                                (5.56) 

 Further for 𝑣2
′  because of the same velocities during the round trip for the relativistic 

addition of velocities according to Eq. (4.21) applies 

𝑣2
′ =

2𝑣1
′

1 + 𝑣1
′ 2
                                                               (5.57) 

This leads to 

𝑡𝑇 = 𝑡1+𝑡2 =
𝑡0
2𝛾1

+
𝑣1
′𝑡0

2𝛾1(𝑣2
′ − 𝑣1

′)
=
𝑡0
2𝛾1

(1 +
𝑣1
′

𝑣2
′ − 𝑣1

′)                        (5.58) 

After insertion of Eq. (5.57) in Eq. (5.58) follows with 

𝛾1 = √
1

1 − 𝑣1
′ 2
                                                              (5.59) 

𝑡𝑇 =
𝑡0
2
𝛾1(1 − 𝑣1

′2)

(

 
 
1 +

𝑣1
′

2𝑣1
′

1 + 𝑣1
′2
− 𝑣1

′

)

 
 
                                     (5.60) 

 

𝑡𝑇 =
𝑡0
2
𝛾1(1 − 𝑣1

′2) (1 +
𝑣1
′(1 + 𝑣1

′2)

𝑣1
′ − 𝑣1

′3
)                                      (5.61) 

 
𝑡𝑇 = 𝛾1𝑡0                                                                    (5.62) 

Because of  

𝑡𝑇
′ =

𝑡𝑇
𝛾1
                                                                     (5.63) 

it applies 
𝑡𝑇
′ = 𝑡0                                                                      (5.64) 

The measurements of subjective times are thus the same. 
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b) Single times 

First it is necessary to calculate time 𝑡2, which is subjectively elapsing for the observer in 

motion between B2 and C2. 

According to Eq. (5.56) and (5.54) for the observer at rest applies 

𝑡2 =
𝑣1
′𝑡0

2𝛾1(𝑣2
′ − 𝑣1

′)
                                                           (5.65) 

This leads to 

𝑡′2 =
𝑣1
′𝑡0

2𝛾2𝛾1(𝑣2
′ − 𝑣1

′)
                                                        (5.66) 

 When the subjective time periods for the left- and right-hand side of the diagram shall 

be the same then 
 

𝑡0
2𝛾1

=
𝑣1
′𝑡0

2𝛾2𝛾1(𝑣2
′ − 𝑣1

′)
                                                       (5.67) 

This can be derived easily. First 

𝛾2 =
𝑣1
′

𝑣2
′ − 𝑣1

′                                                                 (5.68) 

and using Eq. (5.57) 

𝛾2 =
1 + 𝑣1

′ 2

1 − 𝑣1
′ 2
                                                                (5.69) 

applies. Because of 

𝛾2 = √
1

1 − 𝑣2
′ 2
                                                              (5.70) 

it applies 

1 − 𝑣1
′ 2

1 + 𝑣1
′ 2
= √1 −

4𝑣1
′2

(1 + 𝑣1
′2)

2                                                   (5.71) 

 

1 − 𝑣1
′2 = √(1 + 𝑣1

′ 2)
2
− 4𝑣1

′ 2                                               (5.72) 

 

1 − 𝑣1
′2 = √1 − 2𝑣1

′2 + 𝑣1
′ 4                                                  (5.73) 

which is obviously the same. It is thus shown that the subjective measured times for the total 

distance and for the single parts of the trip are identical. The “paradox” is therefore not show-

ing discrepancies. 

5.3  Clock transport in arbitrary directions 

When the clock transport in arbitrary spatial directions is considered the relation Eq. (4.20) 

must be used for relativistic addition of velocities. 
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𝑣𝑇 =

√𝑣1
2 + 𝑣2

2 + 2𝑣1𝑣2𝑐𝑜𝑠𝛼 − (
𝑣1𝑣2𝑠𝑖𝑛𝛼

𝑐 )
2

1 +
  𝑣1𝑣2𝑐𝑜𝑠𝛼

𝑐2

                               (4.20) 

A simple example with 𝛼 = 90° shows 

𝑣𝑇
′ = √𝑣1

′2 + 𝑣2
′2 − 𝑣1

′2𝑣2
′2                                                   (5.80) 

 This equation can be interpreted as a variant of the relation presented in Fig. 5.3 with the 

difference that all observers are moving with an additional speed of 𝑣2. In this case the time 

dilatation during the trip from A1⟶ B1 is increasing in view of an observer at rest from 𝛾1 

to 𝛾1 · 𝛾2. This means that the following relation 
 

𝛾𝑇 = 𝛾1
′𝛾2
′                                                                    (5.81) 

must apply. This yield 

𝛾𝑇 =
1

√1 − 𝑣𝑔𝑒𝑠′2
                                                            (5.82) 

 

=
1

√1 − (𝑣1
′2 + 𝑣2

′2 − 𝑣1
′2𝑣2

′2)
=

1

√(1 − 𝑣1
′2)(1 − 𝑣2

′2)
                          (5.83) 

which is obviously identical with Eq. (5.81). So, it is verified for this case also, that a linear 

combination of different motions will not lead to a possibility to measure differences of the 

elapsing time. 

 Summarizing the calculations, it was verified here, that no possibility exists to carry out 

measurements inside a system moving with constant speed and decide about its state of 

motion. All the discussed variants of the exchange of signals and the “slow clock transport” 

lead to a null result. Of course, this cannot be a surprise, because according to Special Rela-

tivity this is predicted. 
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6.  Relations for mass, momentum, force, 
and energy 

In this chapter results connected with the relativistic mass increase will be presented. First 

the well-known effect on the kinetic energy will be discussed, followed by some new inves-

tigations. These are the “spring paradox”, the relativistic consideration of the elastic colli-

sion (important for the examination of collisions of elementary particles), the exchange of 

signals during and after acceleration and the concept of a relativistic rocket equation. Be-

cause some of the delineations show no approach to an analytical solution, numerical eval-

uation concepts combined with examples for calculations are added in separate files for 

these cases. 

 None of the examinations show any contradictions to the Lorentz Transformation or the 

basic principles of relativity. 

6.1  Relativistic mass increase and energy 

During the historical development of the investigations concerning relativistic mass, it was 

first realized that there are differences between a “longitudinal” and “transversal” mass in-

crease for high velocities. These terms were introduced by H. A. Lorentz [13,42], because 

during the acceleration of electrons differences were measured depending on their move-

ment. According to experiments the transversal mass 𝑚𝑡 and the longitudinal mass 𝑚𝑙 

showed the following values: 

𝑚𝑡 =
𝑚0

√1 −
𝑣2

𝑐2

                                                             (6.01) 

 

𝑚𝑙 =
𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄
                                                         (6.02) 

 During these experiments the mass was measured in a way, that the acting force was 

divided by the acceleration using Newton´s law 

𝑚 =
𝐹

𝑎
                                                                    (6.03) 
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 The transverse acceleration is leading to a constant circular motion, while a longitudinal 

acceleration is increasing the velocity of the object and therefore both the longitudinal and 

transverse mass of the body is raised. 

 According today´s standard of knowledge the equation (6.01) is presenting the correct 

increase of mass during acceleration, whereas Eq. (6.02) is derived, when instead of Eq. 

(6.03) the complete notation of Newton´s formula for the force is used 

𝐹 =
d𝑝

d𝑡
=
d(𝑚𝑣)

d𝑡
=
d𝑚

d𝑡
𝑣 + 𝑚

d𝑣

d𝑡
                                          (6.04) 

If Eq. (6.01) is combined with Eq. (6.04) then 

 

𝐹 =
d

d𝑡

(

 
𝑚0

√1 −
𝑣2

𝑐2)

 𝑣 +
𝑚0

√1 −
𝑣2

𝑐2

d𝑣

d𝑡
                                       (6.05) 

With 

d𝑚

d𝑡
  

d𝑚

d𝑣
·
d𝑣

d𝑡
                                                            (6.06) 

the equation develops to 

𝐹 = (−
1

2
)

(

 
 𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄

)

 
 
(−2

𝑣

𝑐2
)
d𝑣

d𝑡
𝑣 +

𝑚0

√1 −
𝑣2

𝑐2

d𝑣

d𝑡
 

 

𝐹 =

(

 
 𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄

)

 
 
(
𝑣2

𝑐2
)
d𝑣

d𝑡
+
𝑚0 (1 −

𝑣2

𝑐2
)

(1 −
𝑣2

𝑐2
)

3
2⁄

d𝑣

d𝑡
=

𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄

d𝑣

d𝑡
            (6.07) 

 
and thus, the value in Eq. (6.02) for the longitudinal mass is the result. So, the equations for 

the different masses are identical and therefore since the mid of the 20th century the sepa-

ration was cancelled and today normally the general term “relativistic mass” according to 

Eq. (6.01) is used. 

 It is apparent that equation Eq. (6.07) can be directly transformed to 

𝐹 =
𝑚0
𝛾3
𝑎                                                                  (6.08) 

 This means that for a constant force acting from the system at rest, the acceleration oc-

curring in the moving system (also measured from the system at rest) differs by a factor 𝛾3. 

This law was derived by H. A. Lorentz for an electric field acting on an electron from the 

outside. When considering accelerations caused by effects within a moving system (such as 

valid for a rocket engine), the same laws apply. As shown in chapter 6.4, the factor 𝛾3 results 

also if the relativistic velocity addition is chosen as the only criterion for derivation. 
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 In the following the kinetic energy of a body in motion shall be discussed. To realize this, 

the relativistic (longitudinal) mass according to (6.07) is considered, because this is the 

complete equation that describes an increase of the velocity. The force which is necessary 

to accelerate a mass is therefore defined as 

𝐹 =
𝑚0 · 𝑎

(1 −
𝑣2

𝑐2
)

3
2⁄
                                                          (6.09) 

The necessary acceleration energy is 

𝑊1,2 = ∫ 𝐹 · d𝑠
𝑣2

𝑣1

= ∫
𝑚0 · 𝑎

(1 −
𝑣2

𝑐2
)

3
2⁄
· d𝑠

𝑣2

𝑣1

= ∫
𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄
·
d𝑣

d𝑡
d𝑠

𝑣2

𝑣1

           (6.10) 

Because of 

𝑣 =
d𝑠

d𝑡
                                                                    (6.11) 

it applies 

𝑊1,2 = ∫
𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄
𝑣 d𝑣

𝑣2

𝑣1

                                               (6.12) 

and finally 

𝑊1,2 =
𝑚0𝑐

2

√1 −
𝑣2

𝑐2

                                                          (6.13) 

For 𝑣1 = 0 and 𝑣2 = 𝑣 follows 

𝑊 = 𝐸𝑘𝑖𝑛 = 𝑚0𝑐
2

(

 
1

√1 −
𝑣2

𝑐2

− 1

)

 = 𝑚0𝑐
2(𝛾 − 1)                         (6.14) 

The Taylor expansion of the square root leads to 
 

(1 −
𝑣2

𝑐2
)

−1 2⁄

= 1 +
1

2
 
𝑣2

𝑐2
 +  

1 · 3

2 · 4
 
𝑣4

𝑐4
 +  

1 · 3 · 5

2 · 4 · 6
 
𝑣6

𝑐6
+ +⋯               (6.15) 

and for 𝑣 ≪ 𝑐 the classical formula for the kinetic energy is derived 

𝐸𝑘𝑖𝑛 ≅ 
𝑚0
2
𝑣2                                                              (6.16) 

 The equation (6.14) was developed by A. Einstein already in the year 1905 [22]. It con-

tains implicit the first consideration of the equivalence of mass and energy and leads gen-

erally to 

𝐸 = 𝑚𝑐2                                                                  (6.17) 

This is most probably the best-known formula in modern physics. 

𝑣2 

 

 

 

𝑣1 
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6.2  Spring paradox 

In the following the situation shall be discussed, in which way a simple spiral spring and a 

mass attached to it will behave, when different experiments in a system at rest and in mo-

tion will be performed. To realize this at first 3 different experimental arrangements will 

be examined and in a second step the correlations for the energy are investigated and finally 

assessed. 

6.2.1 Simple elongation of a spring 

The simplest way to realize a static displacement of a spiral spring (this means without 

oscillation) is straining using a weight. This procedure is not suitable for a discussion using 

Special Relativity, however, because the value of the displacement is defined by the gravi-

tational constant and thus by the mass of the earth. It is therefore not possible to carry out 

an undisputed examination. In this case a concept using General Relativity would be neces-

sary. 

 Because of this reason a different technique for the generation of a displacement is nec-

essary. For realization, the straining with a repulsive force is chosen, when caused by stead-

ily flowing gas a constant force will be applied to the spring. Thus, the spring constant 𝑘 can 

be derived by 

𝐹 = 𝑘 · 𝑠                                                                   (6.20) 

 In this case 𝐹 is the norm of the generated force and 𝑠 of the displacement. When this 

experimental set-up is transferred into motion and the elongation of the spring is in a posi-

tion transverse to the system at rest, the observers at rest and in motion must detect the 

same displacement of the spring because the “principle of identity” is valid. For the observer 

in motion the spring constant must be the same as in the case discussed before. The ob-

server at rest will, however, because of time dilatation and increasing of the relativistic 

mass, realize the following differences: 

1. The number of gas-molecules per time unit generating the repulsion force is reduced 

by the factor 𝛾. 

2. The mass of any single molecule of the gas is increased by the factor 𝛾. 

3.  The velocity of the gas molecules moving in transverse direction (in relation to the 

observed direction of motion) is reduced by the factor 𝛾. 

 It must be added to point 3 that the total speed of a flowing gas molecule is exactly the 

same compared to the situation for an experiment at rest. The reason for this is that the 

way is increasing by the factor 𝛾 but the angle of the gas flow is different by the factor 𝛼 =

𝑎𝑟𝑐𝑡𝑎𝑛 𝑣 𝑐⁄  to the transverse direction. This is the same situation why a light beam is trav-

elling a longer way to a target in transverse direction in view of an observer at rest. The 

transverse component of the velocity is not affected by this, however, and is therefore re-

duced by the factor 𝛾. These relations must be valid to make sure, that the moved observer 

is realizing the same situation compared to an observer at rest. In summary the considera-

tions lead to the equation 

𝑘 =  𝛾 · 𝑘′                                                                (6.21) 
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 This means, that the spring constant in the system in motion is lower by the factor 𝛾 

when it is monitored by the observer in a system at rest. This fact, which is surprising at 

first sight, is necessary to make sure that no discrepancies with other experimental config-

urations appear. This will be shown in the following. 

6.2.2 Rotation 

Instead of using a repulsion force the displacement of a spring can also be generated by its 

existing torsion characteristics. First in a system at rest the value for the peripheral velocity 

depending on the dislocation of the spring and so the existing force is determined. When 

this set-up is accelerated to a higher velocity and the experiment is repeated (using again 

the orientation transverse to motion) the following value for the centrifugal force is calcu-

lated 

𝐹𝑧
′ = 𝑚′ ·

𝑣′2

𝑟
=
𝐹𝑧
𝛾
                                                        (6.22) 

 Reason for the difference to the system at rest is the fact that the peripheral velocity 𝑣 is 

occurring in a quadratic form in this equation. The relation is valid because the speed is 

slower in view of the observer at rest and the mass 𝑚 is increasing in the discussed manner. 

6.2.3 Harmonic oscillation 

A similar situation is observed when the spring is performing an oscillation. In this case the 

following differential equation is valid 

𝑥̈ + 𝜔0
2 · 𝑥 = 0                                                             (6.23) 

with 

𝜔0
2 =

𝑘

𝑚
                                                                  (6.24) 

and 

𝑇0 =
2𝜋

𝜔0
= 2𝜋√

𝑚

𝑘
                                                         (6.25) 

where 𝜔0 is the angular frequency and 𝑇0 the oscillation time. When this experimental set-

up is accelerated to a higher speed (again transverse to the direction of motion) the ampli-

tude will be reduced by the factor 𝛾. This leads to the following relation 

𝑇0
′ = 2𝜋√

𝑚′

𝑘′
= 2𝜋√

𝛾2 · 𝑚

𝑘
= 𝛾 · 𝑇0                                          (6.26) 

 In this case also a reduction of the spring constant is necessary to avoid discrepancies 

with the principle of relativity. 

6.2.4 Literature survey 

In the literature no variants of these experiments are discussed (at least not known by the 

author). There is, however, an additional interpretation of the experiment with a “broken 

lever” (first discussed by G. N. Lewis and R. C. Tolman), which is a variant of the Trouton-
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Noble Experiment, were a similar situation is discussed by P. S. Epstein [43]. Based on the 

general approach by A. Sommerfeld [44] the following relations were developed 

𝑓𝑥 = 𝑓𝑥
′          𝑓𝑦 =

𝑓𝑦
′

𝛾
                                                       (6.27) 

where 𝑓𝑥 and 𝑓𝑦 are the components of the “Newtonian force”. This description explains the 

relations developed for springs like the decrease of the force in transverse direction by an 

observer at rest. 

6.2.5 Considerations of energy 

Due to these relations a further effect appears, however, which is leading to an apparent 

contradiction. Considering the internal energy of the spring 

𝐸𝑝𝑜𝑡 = ∫ 𝐹(𝑠)𝑑𝑠
𝑠

0

= ∫ 𝑘 · 𝑠 𝑑𝑠
𝑠

0

                                             (6.28) 

 
it is obviously clear, that during straining the energy is depending on the force resp. on the 

spring constant in a linear relationship. Assessing the examples discussed before this would 

mean, that the mechanical energy of a spring is decreasing with higher velocities. This is 

clearly a violation of the universal principle of conservation of energy. If a strained spring 

is accelerated and then released an observer at rest would measure a lower energy com-

pared to the value which was necessary when loading the spring. Looking the other way 

round the spring would have a higher internal energy after a deceleration. 

 To dissolve the apparent paradox first an additional examination of the total energy shall 

be carried out. For this purpose, the total energy of a mass is observed which is moving with 

a velocity 𝑣1. This situation is according to the equation established in chapter. 6.1 

 

𝐸1 = 𝛾1𝑚0𝑐
2                                                               (6.29) 

 Now the case is investigated, that the mass is moving in a direction transverse to this 

(relative to the observer at rest), with a speed of 𝑣2 measured by the observer in motion. 

The observer at rest will find a reduced value of 

𝑣2
′ =

𝑣2
𝛾1
                                                                   (6.30) 

because of time dilatation. According to the relativistic addition of velocities (see chapter 

4.1, Eq. (4.20) with 𝛼 = 90°) this will lead to 

𝑣𝑇 = √(
𝑣1
𝑐
)
2

+ (
𝑣2
𝛾1𝑐
)
2

− (
𝑣1𝑣2
𝛾1𝑐2

)
2

                                          (6.31) 

The energy of this mass is 

𝐸𝑇 = 𝛾𝑇𝑚0𝑐
2                                                              (6.32) 

The differences of these energies are 
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∆𝐸 = 𝛾𝑇𝑚0𝑐
2 − 𝛾1𝑚0𝑐

2                                                    (6.33) 

with 

∆𝐸 =
𝑚0𝑐

2

√1 − (
𝑣𝑇
𝑐 )

2
−

𝑚0𝑐
2

√1 − (
𝑣1
𝑐 )

2
                                           (6.34) 

 A Taylor expansion using 𝑣1, 𝑣2 ≪ 𝑐 for this equation and the insertion of 𝑣𝑇  according 

to Eq (6.31) leads to the value 

∆𝐸 ≅ [1 +
1

2
((
𝑣1
𝑐
)
2

+ (
𝑣2
𝛾1𝑐
)
2

− (
𝑣1𝑣2
𝛾1𝑐2

)
2

) − (1 +
1

2
(
𝑣1
𝑐
)
2

)]𝑚0𝑐
2 

=
1

2
[(
𝑣2
𝛾1𝑐
)
2

− (
𝑣1𝑣2
𝛾1𝑐2

)
2

]𝑚0𝑐
2 

 

=
1

2
[(
𝑣2
𝛾1𝑐
)
2

(1 − (
𝑣1
𝑐
)
2

)]𝑚0𝑐
2 =

1

2
𝑚0𝑣2

2                                   (6.35) 

 This is exactly the relation for the kinetic energy of a body in motion for nonrelativistic 

condition and shows that the balance of energy is obeyed in this case. The discrepancies 

concerning the energy of a spring are generated by the fact, that the force is a physical value 

with a direction. In this case the strange situation occurs that force and acceleration having 

different orientations. This issue was already discovered by P. S. Epstein in the year 1911 

[43]. Although in this paper - according to the knowledge at that time - the mass was as-

signed the character of a tensor and the relationships discussed in chapter 6.1 for the force 

in moving direction and transverse to it where unknown, this is the solution to solve the 

discrepancies of the paradox. 

6.3  Relativistic elastic collision 

A further non-linear examination is possible for relativistic elastic collision. This will not be 

of importance when macroscopic observers are considered, because velocities to create a 

noticeable effect would certainly destroy the participating bodies on impact. However, 

when the effect on the behavior of elementary particles is examined, e.g. in particle collid-

ers, it is an interesting question, how the tracking of the reaction changes when it is viewed 

by observers with different velocities relative to the experimental set-up. 

 The foundation for the calculation is − like for the non-relativistic examination − the laws 

of conservation for energy and momentum. The relevant relations for momentum and en-

ergy are 

Rel.momentum:                    𝑝⃗ = 𝛾𝑚𝑣⃗                                                   (6.40) 
 

Rel. kinetic energy:                 𝐸 = (𝛾 − 1)𝑚𝑐2                                     (6.41) 
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 When in a simple example it is assumed that 2 masses are colliding centrally without 

deviation, then for the momentum the presentation as vector can be skipped and the con-

servation laws are 

𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = 𝑚1𝛾3𝑣3+𝑚2𝛾4𝑣4                                      (6.42) 

 

(𝛾1 − 1)𝑚1𝑐
2 + (𝛾2 − 1)𝑚2𝑐

2 = (𝛾3 − 1)𝑚1𝑐
2 + (𝛾4 − 1)𝑚1𝑐

2               (6.43) 

where 𝑣1 and 𝑣2 are the velocities before and 𝑣3 and 𝑣4 after collision. This leads to 

𝑝 = 𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = 𝑚1𝛾3𝑣3 +𝑚2𝛾4𝑣4                                (6.44) 

and 
𝐸0
𝑐2
= (𝛾1 − 1)𝑚1 + (𝛾2 − 1)𝑚2 = (𝛾3 − 1)𝑚1 + (𝛾4 − 1)𝑚2                  (6.45) 

 The determination of the results for 𝑣3 and 𝑣4 is not possible in closed analytical form 

and so for the solution a numerical approach is necessary. For the required calculation the 

principle of bisection is used. An example for the required computation is presented in an-

nex A in the attachment. 

 For the examination of the non-relativistic case the equation for the momentum in Eq. 

(6.44) is modified 

𝑚1𝑣1 +𝑚2𝑣2 = 𝑚1𝑣3+𝑚2𝑣4                                               (6.46) 

where simply the values for 𝛾 are skipped, and further the use of the approximation formula 

(1 −
𝑣2

𝑐2
)

−1 2⁄

= 1 +
1

2

𝑣2

𝑐2
+···                                               (6.47) 

for 𝑣 ≪ 𝑐 and insertion into Eq. (6.45) leads to 

 

1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 =
1

2
𝑚1𝑣3

2 +
1

2
𝑚2𝑣4

2                                       (6.48) 

When Eq. (6.46) and Eq. (6.48) are suitably transformed it applies 
 

𝑚1(𝑣1 − 𝑣3) = 𝑚2(𝑣4 − 𝑣2)                                                (6.49) 
and 

𝑚1(𝑣1 − 𝑣3)(𝑣1 + 𝑣3) = 𝑚2(𝑣4 − 𝑣2)(𝑣4 + 𝑣2)                              (6.50) 

Hence, after division of both equations 
 

𝑣1 + 𝑣3 = 𝑣4 + 𝑣2                                                           (6.51) 

and after insertion in Eq. (6.49) the classical equations for the central collision can be de-

rived in a simple way 

𝑣3 = 2
𝑚1𝑣1 +𝑚2𝑣2
𝑚1 +𝑚2

− 𝑣1                                                  (6.52) 
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and 

𝑣4 = 2
𝑚1𝑣1 +𝑚2𝑣2
𝑚1 +𝑚2

− 𝑣2                                                 (6.53) 

 It is obvious that the result represents a simple analytical solution and that for this case 

no numerical calculations are necessary. 

 Still open is the question, how the results will be tracked by observers with different 

velocities relative to the collision. To examine this, the circumstances for the situation be-

fore and after collision must be considered in detail. In annex A the calculation of the values 

of  𝑣3 and  𝑣4 is presented first, furthermore the equations for the relativistic addition of 

velocities according to the following relations are calculated, which is then subject to fur-

ther comparison: 

 𝑣𝑇( 𝑣1,  𝑣2) =
 𝑣1 −  𝑣2

1 −
 𝑣1 𝑣2
𝑐2

                                                  (6.54) 

 𝑣𝑇( 𝑣4,  𝑣3) =
 𝑣4 −  𝑣3

1 −
 𝑣4 𝑣3
𝑐2

                                                  (6.55) 

 For a meaningful comparison between both results the quotient will be calculated first 

and then, because of the small deviation, the appearing value will be subtracted by1 result-

ing the error range 

𝛿𝑣 =
 𝑣𝑇( 𝑣1,  𝑣2)

 𝑣𝑇( 𝑣4,  𝑣3)
− 1                                                       (6.56) 

 In Fig. 6.1 the values of the velocities 𝑣1 𝑐⁄  from 0.0001 to 0.999 are presented for the 

mass-ratio 𝑚1: 𝑚2 of 1: 2 and 2: 1 corresponding to the starting conditions 𝑣2 = 0 and 𝑣1 =

𝑣2. To ensure comparability between the examined different velocities, for any value of 

𝑣1 𝑐⁄  the results of 𝑣3 𝑣1⁄  and 𝑣4 𝑣2⁄  were calculated and shown in a table, furthermore the 

findings are presented in graphical form. The graphs of the relations between the velocities 

show an asymptotic approach to the values of the non-relativistic cases calculated using Eq. 

(6.52) and Eq. (6.53), which were also inserted in the diagrams. The calculation of 𝛿𝑣 shows 

clearly, that all observers come to the same result irrespective of their velocities. This is 

corresponding to the examination of the non-relativistic case (see Eq. (6.52) and Eq. (6.53)). 

 In a further examination the error range 𝛿𝑣 for different velocities is presented. Whereas 

high velocities show almost no noteworthy deviations this is changing considerably for 

lower values. This is caused by the decreasing accuracy during the calculation of small val-

ues because of round-off errors. Using standard spreadsheet calculation programs on a PC 

(such as Microsoft Excel©) the possible calculation limit is reached at values for 𝛿𝑣 of ap-

proximately 10−15. It is not possible to calculate with higher precision, smaller values are 

classified as 0. The question of accuracy is also of great importance for numerical solutions; 

this topic is dealt with in a comprehensive way in annex D, where 3 different approaches 

(recursion, Newton’s calculus, bisection) are described and compared. 
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Fig. 6.1: Relativistic elastic collision for 0,0001 < 𝑣1 𝑐⁄ < 0.999. Relations for  

 velocities 𝑣3 𝑣1⁄  (blue), 𝑣4 𝑣2⁄  (red). Error range 𝛿𝑣 (For definition: see text). 

 Non-relativistic case: dotted line. 
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 Finally, it can be stated that during relativistic elastic collision no effects appear which 

would make it possible to identify the existence of a system of absolute rest in the universe. 

However, new attempts are made (year 2017) to identify results of this kind using precision 

measurements of particle mass (in this case: electrons) [45]. According to the considera-

tions presented here it is not possible that experiments of this type can be successful at all. 

6.4  Exchange of signals during and after acceleration 

In this chapter it is investigated how accelerated systems behave in relativistic situations 

and which measurement results are obtained for other, non-accelerated observers with 

constant velocity. The acceleration is not generated from outside sources - e.g. by an elec-

tromagnetic field acting on a charged object - as it was investigated by H. A. Lorentz (cf. 

chapter 6.1), but shall be caused by thrust like it is the case for a rocket. 

First, a simple situation is considered in which the system under investigation is sub-

jected to constant acceleration, with changes in mass due to the emission of propellant 

gases initially being disregarded. Important results can be determined by analytical and 

numerical methods. Then, in a more advanced approach, consideration of the decrease in 

rocket mass with acceleration is added. If for the propulsion a proportional change of the 

ejection mass compared to the remaining rocket mass is assumed, the acceleration remains 

constant during a trial and the behavior is the same as in the previously investigated case. 

In contrast, a constant mass decrease per time unit (as required when the classical rocket 

formula is used) leads to increasing acceleration values. These calculations in full scale (in-

cluding acceleration and covered distance) can only be carried out numerically; a corre-

sponding program and the results obtained with it are shown in the appendix. Further, the 

final velocity of a rocket, which can be calculated using the classical and relativistic rocket 

formula, is determined and the agreement of the results is shown. 

6.4.1  Exchange of signals in systems with constant acceleration 

In the following the case shall be discussed that a rocket accelerates uniformly and is ob-

served from other inertial systems. During the acceleration process, signals are emitted by 

observer S inside the rocket at regular intervals of ∆𝑡𝑆. Further observer A also participates 

in the experiment and moves at the beginning of the acceleration with the same speed as S. 

Out of an additional inertial system, a second observer B is moving with an arbitrary veloc-

ity relative to A. Both observers A and B are recording the signals of S. 

First, the acceleration of the rocket monitored by observer A is investigated. An analyti-

cal calculation is complicated by the fact that the relation for the relativistic velocity addi-

tion is not linear. During the acceleration, for the current velocity 𝑣𝐴 the velocity change d𝑣𝐴 

(from the point of view of A) is described by 

𝑣𝐴 + 𝑑𝑣𝐴 =
𝑣𝐴 + 𝑑𝑣𝑆

1 +
𝑣𝐴 · 𝑑𝑣𝑆
𝑐2

                                                        (6.60) 

where 𝑑𝑣𝑆 represents the change of the velocity observed in the moving system S. The use 

of a Taylor expansion results in 
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𝑣𝐴 + 𝑑𝑣𝐴 = 𝑣𝐴 + 𝑑𝑣𝑆 (1 −
𝑣𝐴
2

𝑐2
) + (𝑑𝑣𝑆)

2 (
𝑣𝐴
3 − 𝑣𝐴 · 𝑐

2

𝑐4
) + + . . .                 (6.61) 

With a differential consideration for 𝑑𝑣𝑆 → 0, values of (𝑑𝑣𝑆)
2 and higher order can be ne-

glected. Equation (6.61) thus obtains the form 

𝑑𝑣𝐴 = 𝑑𝑣𝑆 (1 −
𝑣𝐴
2

𝑐2
)                                                        (6.62) 

The applicable accelerations are now defined for both systems 

𝑎𝑆 =
𝑑𝑣𝑆
𝑑𝑡𝑆

                              𝑎𝐴 =
𝑑𝑣𝐴
𝑑𝑡𝐴

                                            (6.63) 

Furthermore 

𝑑𝑡𝑆 =  𝑑𝑡𝐴 · 𝛾 =
𝑑𝑡𝐴

√1−(
𝑣𝐴
𝑐 )

2

 

                                               (6.64) 

and finally 

𝑎𝐴 =
𝑑𝑣𝐴
𝑑𝑡𝐴

= 
𝑑𝑣𝑆
𝑑𝑡𝑆

(1 −
𝑣𝐴
2

𝑐2
)

3
2⁄

= 𝑎𝑆 (1 −
𝑣𝐴
2

𝑐2
)

3
2⁄

=
𝑎𝑆
𝛾3
                          (6.65) 

Thus, between 𝑎𝐴 and 𝑎𝑆 the same factor 𝛾3 appears as it was derived when determining 

the correlations for the occurring forces in case of relativistic mass increase (cf. chapter 

6.1). 

In the following, the relations between the subjectively observed times, velocities, and 

distances for stationary and moving observers shall be determined. For this purpose, first 

the velocity is considered. From eq. (6.65) follows immediately 

𝑑𝑡𝐴 =
1

𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−3 2⁄

𝑑𝑣𝐴                                                   (6.66) 

Assuming, that values for 𝑎𝑆 are constant and integrating Eq. (6.66), we obtain  

𝑡𝐴 =
𝑣𝐴
𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

+ 𝐶 =
𝑣𝐴 · 𝛾(𝑣𝐴)

𝑎𝑆
 + 𝐶                                   (6.67) 

If concrete values are used (e.g. time runs from 0 to 𝑡𝐴), the integration constant C equals 

zero. This equation describes - with subjectively constant acceleration of the rocket - the 

dependency between time and velocity from the point of view of A. With a given velocity, 

time can be determined directly, in the opposite case, a numerical procedure must be ap-

plied to determine 𝑣𝐴 when using the equation. To avoid this, however, equation Eq. (6.67) 

can be extended and transformed via 

(
𝑎𝑆 · 𝑡𝐴
𝑐

)
2

= (
𝑣𝐴 · 𝛾(𝑣𝐴)

𝑐
)

2

=
 
𝑣𝐴
2

𝑐2
+ 1 − 1

1 −
𝑣𝐴
2

𝑐2

=
 1

1 −
𝑣𝐴
2

𝑐2

− 1                        (6.68) 



6.  Relations for mass, momentum, force, and energy 

98 

Transformed to 𝑣𝐴 the result is 

𝑣𝐴 =
𝑎𝑆 · 𝑡𝐴

√1 + (
𝑎𝑆 · 𝑡𝐴
𝑐 )

2
                                                        (6.69) 

This representation is also found in the literature, using approaches similar to the one cho-

sen here [32] as well as using rapidity [91]. [Note: rapidity  describes a concept in which 

velocities are added up according to Galileo's principle; the relationship with relativistic 

velocity is  = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑣 𝑐⁄ )]. Equations (6.67) and (6.69) are equivalent and can be used 

depending on the computational requirements. 

To calculate the time subjectively elapsing in the rocket, equations (6.64) and (6.66) are 

combined, yielding the relation 

𝑑𝑡𝑆 =
1

𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−1

𝑑𝑣𝐴                                                    (6.70) 

Integration leads to 

𝑡𝑆 =
𝑐

𝑎𝑆
arctanh (

𝑣𝐴
𝑐
) + 𝐶                                                    (6.71) 

For direct calculation of the dependency on 𝑡𝐴 instead of 𝑣𝐴, Eq. (6.69) can be substituted 

into (6.71). 

The distance travelled 𝑥𝐴 can be calculated using Eq. (6.66) with 

𝑑𝑥𝐴 = 𝑣𝐴𝑑𝑡𝐴 =
1

𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−3 2⁄

𝑑𝑣𝐴                                    (6.72) 

Integration yields 

𝑥𝐴 =
𝑐2

𝑎𝑆
 (1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

+ 𝐶                                            (6.73) 

In contrast to the previous cases, the integration constant must be determined here. This is 

done by using the boundary condition 𝑥𝐴 = 0 for the velocity 𝑣𝐴 = 0. Substituting in Eq. 

(6.73) this leads to 

0 =
𝑐2

𝑎𝑆
 (1 − 0)−

1
2⁄ + 𝐶           𝐶 = − 

𝑐2

𝑎𝑆
  

and inserted into Eq. (6.73), the final form is given by 

𝑥𝐴 =
𝑐2

𝑎𝑆
 {(1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

− 1} =
𝑐2

𝑎𝑆
 (𝛾 − 1)                                   (6.74) 

Again, the relationship between 𝑣𝐴 and 𝑡𝐴 from equation (6.69) can be used alternatively to 

obtain a direct dependence on 𝑡𝐴.  

Equation (6.74) has the peculiarity that for small values of 𝑣𝐴 the end results can become 

very inaccurate. The value of 𝛾 approaches 1 in this case; but since the value 1 is subtracted 
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in the formula, larger errors can occur with usual calculation accuracy. It is recommended 

here to use a Taylor expansion where these problems do not appear. Appendix B contains 

a derivation in chapter B.3 and it is shown under which boundary conditions Eq. (6.74) or 

the Taylor method is more accurate. 

Furthermore, a numerical method is also presented in this annex B, where the use of 

additions of relativistic velocities with sufficiently small steps leads to the same results. An 

analytical method is easier to use but would lead to problems in case of modifications, such 

as changing the acceleration during the experiment. With numerical methods, on the other 

hand, such a situation can be implemented easily. This becomes clear in the situation de-

scribed in the next chapter, in which the real behavior of creating thrust realized by ejection 

of a propellant gas from a rocket and the resulting influences on the system are considered 

in detail. 

In the following it shall be demonstrated that based on these simple correlations no con-

tradictions will occur concerning the experimental findings of observers travelling with dif-

ferent velocities compared to the system, which is at rest at the start of acceleration of the 

rocket. The only precondition necessary is, that from the rocket signals to observers A and 

B are transmitted, and that these signals have a constant subjective frequency concerning 

the system inside the rocket. The situation of all participants is presented in the following 

diagram. 

 
Fig. 6.2: Comparison of different acceleration conditions calculated for 

𝑎 = 10 m/s², 𝑎 = 0 and 𝑎 = −10 m/s² 

a) 𝑣0 = 0,       b)  𝑣0 = 50 m/s 

Observer B is at rest in all cases relative to the presentation of the diagram (i.e. from the 

point of view of A and S, he is moving relative to them at the start of the experiment with 

velocity 𝑣0), while A is moving on the line a = 0. Thus, in subplot a) with 𝑣0 = 0, the results 

for A and B coincide, while in b) participant A is increasing the distance in relation to B with 

constant velocity 𝑣0. The aim of the following calculations is to show that the values of A in 

part a) and also b) are identical from the point of view of B using the Lorentz equations. The 

principle of relativity is valid because the subjectively measured times are independent of 

the speed of the observers. 
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To prove this, Fig. 6.3 shows a situation in which subplot a) shows the rocket passing 

observer B (blue line in the x/t diagram), decelerates and then approaches again. In subplot 

b) the rocket starts from a position at rest and is accelerated uniformly. In this case, the 

course of an additional test participant A moving uniformly at velocity 𝑣0 is also shown 

(blue line). To make the results easier to distinguish, the reference points in subplot a) have 

been marked with P and in b) with Q and R.  

 
Fig. 6.3: Identical accelerations observed by different participants  

  a)  𝑣0 = 50 m/s, 𝑎𝑆 = −10 m/s²     b)  𝑣0 = 0, 𝑎𝑆 = 10 m/s²  

With the very small values for 𝑣0 chosen here for the presentation in the diagram, in 

principle no significant deviations between relativistic and non-relativistic consideration 

can be provided. Therefore, calculations were carried out which are based on a system ve-

locity of 369 km/s. As already pointed out in several other cases, this is the velocity with 

which our solar system is moving relative to the uniform cosmic background radiation and 

thus is of great interest for possible experiments to be performed. It remains to be clarified 

how large the difference is in the present case between relativistic and non-relativistic con-

sideration. In order to show this, values for the non-relativistic case (Galileo) were also 

added to the table. As it is well known, these relations are given by  

𝑣 = 𝑎 · 𝑡                                                                    (6.75) 

𝑥 =
1

2
 𝑎 · 𝑡2                                                                (6.76) 

If it is assumed that a spaceship passes earth with 369 km/s and decelerates with 

10m/s², the maximum distance would be reached at about 6,8 · 106  km (subplot a, point 

𝑃2) in non-relativistic consideration. The total time until the earth is reached again at 𝑃3 is 

about 20.5 hours. The exact values and also the results calculated for a relativistic consid-

eration are summarized in a table (Tab. 6.1). 
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The information included in this representation will be broken down in the following. 

For this purpose, it is necessary to note the sequence of the calculations. First, the subplot 

a) is considered: 

1. 𝑃1 → 𝑃2 

The values of 𝑡𝑆(𝑃2) are calculated using Eq. (6.67), 𝑡𝐴(𝑃2) is derived from Eq. (6.71) 

and 𝑥𝐴(𝑃2) from Eq. (6.74) for the velocity 𝑣𝐴 = 369 km/s. The use of Eq. (6.74) is 

permitted, although it was initially derived considering the case 𝑣𝐴 = 0; because of 

symmetrical reasons first case 𝑃2 → 𝑃1 is calculated and the result is then trans-

ferred to 𝑃1 → 𝑃2. 

2. 𝑃2 → 𝑃3 

Because of symmetry reasons the values of 𝑡𝑆(𝑃3) und 𝑡𝑁(𝑃3) must be twice as large 

as for (𝑃2). The value of 𝑥𝐴(𝑃3) = 0 by definition. 

For subplot b) the values are accordingly: 

1. 𝑄1 → 𝑄2 

Symmetry reasons result in 𝑡𝑆(𝑃2) = 𝑡𝑆(𝑄2), 𝑡𝐴(𝑃2) = 𝑡𝐴(𝑄2) and 𝑥𝐴(𝑃2) = 𝑥𝐴(𝑄2). 

2. 𝑄2 → 𝑄3 

In this case the assumption is used that subjectively within differently moved iner-

tial systems no differences may arise at the same changes of state; this means  

𝑡𝑆(𝑃3) = 𝑡𝑆(𝑄3) is set (the two fields are green and marked with arrow). If this as-

sumption is correct, no differences may show up in a later comparison of results. 

First, the value for 𝑣𝐴(𝑄3) is calculated from Eq. (6.71), then 𝑡𝐴(𝑄3)  from Eq. (6.67) 

and 𝑥𝐴(𝑄3) from Eq. (6.74). 

 
Tab. 6.1: Results of calculations for 𝑣0 = 369 km/s using  𝑎𝑆 = −10 m/s² (values P) and 

𝑎𝑆 = 10 m/s² (values Q) for a non-relativistic (Galileo) and relativistic approach. 

 Points are defined according to Fig. 6.3. 
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For a further evaluation, the case must be calculated, how the situation arises in subplot 

b) for a linearly (unaccelerated) moving observer (blue line). To realize this, the boundary 

condition is used that accelerated and non-accelerated observers meet at the point 𝑄3, i.e. 

the values 𝑥𝑁 for 𝑄3 and 𝑅3 must be the same in this case (these fields are also green and 

marked with an arrow). From 

𝑡𝐴 =
𝑥𝐴
𝑣0
                                                                    (6.77) 

and 

𝑡𝑆 =
𝑡𝐴
𝛾
                                                                    (6.78) 

the values of 𝑡𝐴 and 𝑡𝑆 can be calculated. 

With the data determined here, a comparison between individual values can be carried 

out. First, the values for 𝑡𝐴 for the accelerated and non-accelerated case are compared at 

point 𝑄3 = 𝑅3, which by definition must be the same, since both start and end from the same 

point (𝑄1 → 𝑄3 and 𝑅1 → 𝑅3). The values are marked in blue. Despite different calculations, 

they lead to approximately the same result, with the deviation according to the calculation 

for  

𝛿𝐾1 =
𝑡𝐴(𝑄3)

𝑡𝐴(𝑅3)
− 1                                                                 (6.79) 

to be determined. The same behavior occurs when the values for 𝑡𝐴(𝑃3) and 𝑡𝑆(𝑄3(𝐿) are 

compared (marked in yellow) 

 𝛿𝐾2 =
𝑡𝐴(𝑃3)

𝑡𝑆(𝑅3)
− 1                                                                 (6.80) 

These must be equal for the following reason: The stationary observer in subplot a) deter-

mines that the passing rocket arrives at his position again after uniform negative accelera-

tion at the time 𝑡𝐴. The uniformly moving observer in subplot b) must subjectively observe 

the same behavior. For the situation of an observer at rest in subplot b), represented by the 

course of the dashed line, the value for 𝑡𝐴 is higher in this case, but can be traced back to the 

subjective measured value of the moving system by simple division by 𝛾. No relevant calcu-

lation differences can be determined here. 

With the boundary conditions selected here using 𝑣𝐴 = 369 km/s, deviations of approx. 

8 · 10−13 occur for 𝛿𝐾. If, on the other hand, higher values for 𝑣𝐴 are selected, as e.g. in Tab. 

6.2 with 𝑣𝐴 = 0,5𝑐, no deviations are detectable within the scope of the calculation accu-

racy, but with smaller values for 𝑣𝐴 they increase. This is due to the occurrence of very small 

values of 𝛾, especially in Eq. (6.74). At small velocities, the value for 𝛾 is only slightly larger 

than 1; if the value of 1 is subtracted from this, large deviations can result depending on the 

accuracy of the calculation. This effect is shown in more detail in annex B, chapter B.3 and 

for this purpose a significant improvement of the accuracy is demonstrated by using a Tay-

lor expansion. 

Instead of the analytical approach chosen here, the regularities can also be determined 

numerically. A procedure for this is compiled in Annex B. If the occurring deviations are 
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considered, an advantage for the numerical procedure is shown with low values of 𝑣𝐴, with 

higher velocities it is the other way round; the accuracy depends beyond that substantially 

on the number of the selected iteration steps. After performing the numerical calculations, 

it is shown here that the subjectively existing acceleration between motionless and moving 

observer differs by a factor 𝛾3; in contrast to the analytical method, where this was deter-

mined by basic considerations, this is a result of the calculations performed. In the Annex B 

the results are presented in detail. Also added is a comparison with results of the numerical 

method from Annex C, in which the amount of propellant gas ejected was kept constant in 

relation to the residual mass of the rocket, thus achieving uniform acceleration. 

 
Tab. 6.2: Results of calculations for 𝑣0 = 0,5c  using  𝑎𝑆 = −10 m/s² (values P) 

and 10 m/s² (values Q) for a non-relativistic (Galileo) and relativistic approach. 

 Points are defined according to Fig. 6.3. 

 

An evaluation of the chosen general conditions reveals at first sight that a rocket tech-

nology generating the required thrust long enough is not existing today; with such a system 

it would be possible to reach Mars in a few days. This becomes even clearer if a long journey 

is considered under the conditions chosen here. If it is assumed that a body of 100 tons with 

constant acceleration of 1g crosses the galaxy (100,000 light years, subjective time on 

board: approx. 12 years), the rocket with a propellant density of 70 kg/m³ would have to 

have a size of 14 x 14 x 14 km³ at departure, even if an optimal conversion of mass into 

kinetic energy is assumed [91]. This does not include any statements on the deceleration of 

the rocket after the journey or on the influence of micrometeorites and gas causing a speed 

reduction, or the protection of the passengers by additionally required masses due to nec-

essary shielding devices.  
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Despite the obvious impossibility of implementation on an industrial scale, however, the 

results calculated here are unambiguous and show that - although the influence is small - 

they must be taken into account when even small acceleration phases are considered. 

Finally, questions of the influence of acceleration on the measurements shall be exam-

ined in general. According to the Theory of General Relativity it is not possible for an ob-

server to decide with measurements in a closed system, whether he is exposed to an accel-

eration effect caused by increasing velocity or by a gravitation field. Although it is not with-

out controversy that additional (gravitational) time dilatation will appear in accelerated 

systems, the potential effect shall be estimated to complete a general consideration. 

For the conditions chosen here with an acceleration value of 10 m/s², which corresponds 

approximately to the effect of the earth's acceleration due to gravity of 9.81 m/s², a time 

dilation of about 7 · 10−10 results, which has been confirmed by many measurements [80]. 

If this value is multiplied by the total time from Tab. 6.2, an effect of 5,17 · 10−5 s results. 

This would mean that the calculated time difference between relativistic and non-relativ-

istic consideration is extended by a value of 0.28%. Thus, because of the small deviation, 

this potential effect can be neglected here. 

6.4.2  Relativistic rocket propulsion 

Now the question arises, how a rocket behaves in reality, which is accelerated by outflowing 

gas and accordingly loses mass. An observer B, who monitors this process from another 

inertial frame and measures the velocity 𝑣0 for S and A at the beginning of the experiment, 

will find differences to the measurements of S due to the time dilation and the relativistic 

mass increase, namely 

1. The quantity of the gas-molecules generating the repulsion force is reduced by the 

factor 𝛾(𝑣0) per time unit. 

2. The mass of any single molecule of the gas is increased by the factor 𝛾(𝑣0). 

3. The remaining mass of the rocket is increased by the factor 𝛾(𝑣0). 

4. The speed of the outflowing gas corresponds to the theorem of relativistic addition 

of velocities. 

5. The elapsing time between outgoing signals is increased by the factor 𝛾(𝑣0). 

6. The total time for acceleration during an experiment is increased by the factor 𝛾(𝑣0). 

For the exact determination of the situation, all influences related to these criteria must 

be calculated with respect to the reduction of the rocket mass due to the gas ejection for 

propulsion. These conditions are considered for cases with constant gas ejection (which 

leads to a steady increase in acceleration) and with constantly reduced gas ejection (to en-

sure constant acceleration). 

The relativistic momentum is used to establish the equations relevant to solve this prob-

lem. It is determined in general that all functions referring to the outflowing gas are marked 

with 𝑓′; relations connected with the moving rocket, on the other hand, are represented 

without this marking. 

Following this general definition, the relativistic momentum of a rocket before starting 

acceleration is 

𝑝0 = 𝑚0𝑣0𝛾0                                                               (6.81) 
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where 𝑣0 is the velocity of the rocket relative to a reference frame at the start of the trial. 

After the first step the relation changes to 

𝑝1 = 𝑚1𝑣1𝛾1                                                               (6.82) 

and the values for step 1 are calculated as follows: 

1. It is assumed that during the first step of acceleration the rocket is losing mass 𝛥𝑚0 

with the jet velocity 𝑣0
′ ; the gas used to form the high-speed jet to generate the re-

pulsion force is generally called “propellant mass”. 
 

2. The momentum of the rocket 𝑝1 (related to the remaining mass 𝑚1 = 𝑚0 − 𝛥𝑚0) 

and 𝑝1
′  of the propellant mass 𝛥𝑚0 are added and set equal to the momentum 𝑝0 of 

the rocket (using of the law of conservation of momentum). From this, the changing 

velocity of the rocket is calculated. This results in 

𝑝1 + 𝑝1
′ = (𝑚0−𝛥𝑚0)𝑣1𝛾1 + 𝛥𝑚0𝑣1

′𝛾1
′ = 𝑚0𝑣0𝛾0                              (6.83) 

and generally 

𝑝𝐾 + 𝑝𝐾
′ = (𝑚𝐾−1−𝛥𝑚𝐾−1)𝑣𝐾𝛾𝑘 + 𝛥𝑚𝐾−1𝑣𝐾

′ 𝛾𝐾
′ = 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1            (6.84) 

The values for 𝑣 and 𝑣′ show in different directions (this is explaining the “+” in the for-

mula). Relative to the rocket, the gas flow maintains at a constant speed of 𝑣0
′ . The relativ-

istic addition of velocities is leading to 

𝑣𝐾+1
′ =

𝑣𝐾+1 + 𝑣0
′

1 +
𝑣𝐾+1𝑣0

′

𝑐2

                                                        (6.85) 

Using the equations (6.84) and (6.85) for every step 𝐾 the velocity of the rocket can be 

calculated; this means the complete numerical evaluation is following a nested loop with a 

subroutine for any 𝑣𝐾 . 

To perform such a calculation, programming was done in Visual Basic (VBA). The VBA 

program code is compiled in Annex C with the corresponding formulas and a flow chart. 

The main purpose of these calculations is the comparison of systems which are at rest at 

the time of the start of the trial to those which are relatively moved. For this purpose, two 

exemplary calculation variants were programmed, whereby firstly the acceleration and in 

the second case the outflow velocity of the propellant mass were kept constant. The differ-

ences associated with both concepts are presented in the following. 

 

a) Propellant mass proportional to the remaining mass of the rocket 

The precondition of propellant mass proportional to the remaining mass of the rocket re-

sults in constant acceleration values for the rocket over the entire observation period. This 

situation corresponds to the case already described in chapter 6.4.1. 

Table 6.3 shows the results of two calculations with 𝑣0 = 0 and 𝑣0 = 0,5𝑐 as initial ve-

locities. The selected values are quite different and this also the case for the results. In order 

to enable a comparison of the values with each other, the final velocity of the rocket from 
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the view of an observer at rest was defined as the difference 𝑣𝑇 = 𝑣𝑁 − 𝑣0. The value 𝑡𝑇 is 

the total time, which results subjectively from the view of the unmoved system when ap-

plying the Lorentz equations for an observer moving with system velocity 𝑣0 until the arri-

val of a signal from the rocket.  

In addition, the distance 𝑥𝑁 covered by the rocket from the view of the stationary ob-

server up to the emission of the impulse is listed. Furthermore, the result for the remaining 

mass 𝑚𝑁 of the rocket after completion of the experiment is shown (related to the initial 

value 𝑚0 = 1). In addition, the values for the accelerations 𝑎𝑁 and also the calculations for 

𝛾3𝑎𝑁 are presented. 

 

 
Tab. 6.3: Values of 𝑣𝑇, 𝑡𝑇, 𝑚𝑁, 𝑥𝑁,  𝑎𝑁,  𝛾3𝑎𝑁 for proportional reduction of propellant mass.

  Top: 𝑣0 = 0, bottom: 𝑣0 = 0,5 𝑐 (149.896,458 km/s). 

  𝛥𝑚0 = 0,25%/s, 𝑡𝑆 = 400s. The values for 𝑚𝑁 are normalized to 1. 

  Values for 𝑣𝑇 in km/s, 𝑡𝑇 in s, 𝑥𝑁 in km, 𝑎𝑁 and 𝛾3𝑎𝑁 in m/s2. 
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For the calculations a loss of propellant mass per time unit of 𝛥𝑚0 = 0,25%/s was spec-

ified. This leads to an acceleration of 10m⁄s² and thus a comparability with the other al-

ready performed calculations is given. The experimental time chosen was 𝑡𝑆 = 400s, and 

this leaves the realistic magnitude of a residual mass of almost 37% of the initial value after 

the completion of the experiment. For better evaluation, the deviations between the values 

𝛿𝑣𝑇 = 𝑣𝑇(𝐾) and 𝑣𝑇(𝐾 − 1) are shown according to the relationships also used elsewhere 

(e.g., as defined in Eq. (6.79)), and in the same way for 𝛿𝑡𝑇 , 𝛿𝑚𝑁, 𝛿𝑥𝑁 , 𝑎𝑁 and 𝛾3𝑎𝑁, where 

K corresponds here in each case to a potency of ten in the number of calculation steps be-

tween 10 and 107 (cf. Tab. 6.3). First, it should be noted in principle that the values for 𝛿𝑣𝑇 , 

𝛿𝑡𝑇 and 𝛿𝑥𝑁 show unsystematic fluctuations and exhibit the smallest deviations from each 

other considering the number of iteration steps between N = 102 and 104. Hereby it is clear 

that the visible differences are not caused by a physically explainable effect, but only by the 

use of the numerical method. 

Furthermore, it can be seen that the value of the remaining mass 𝑚𝑁 becomes more ac-

curate with each increase by a factor of 10 in the number of iteration steps (Iteration 

103→ 104 = 1.6562 · 10−4;  104→ 105 = 1.6566 · 10−5 and so on, see Tab. 6.3). This is not 

of further importance here and therefore an evaluation is not carried out at this point; how-

ever, this changes in the following considerations for the case of constant propellant mass 

and will be further investigated there. 

The results of the calculations for 𝛾3𝑎𝑁 show again that the ratio for the accelerations 

between differently moving observers reveals the factor 𝛾3. 

The determination made here with a proportional loss of propellant mass with respect 

to the residual mass of the rocket allows a direct comparison with the analytical and nu-

merical results from Section 6.4.1. and the conformity proves to be very good. A detailed 

evaluation is presented in Annex B.4. 

 

b) Propellant mass constant 

This case proves to be significantly more complex with regard to the evaluation compared 

to the situation discussed before. This is due to the fact that the values of 𝑣𝑇 , 𝑡𝑇 and 𝑥𝑁 , 

which are important for the observation, show the same behavior as 𝑚𝑁 before and become 

more precise with increasing number of iteration steps. Therefore, they must be analyzed 

in particular (in contrast to the case before, 𝑚𝑁 does not show this behavior here!). 

This becomes clear when considering the case shown in Tab. 6.4. In the upper part of the 

table, as before, the results of the calculations of the relevant values are given, below − 

marked with section I − the compilation of the deviations 𝛿𝑣𝑇 ,  𝛿𝑡𝑇 , 𝛿𝑚𝑁 und 𝛿𝑥𝑁 follows. 

The first and the last calculation deviate in values from the systematics of the other results 

and were not considered further. Therefore, only the blue colored fields were used for final 

calculations and the values reproduced in section II were extrapolated from them. The re-

sults presented in the lower part of the table show the outcome of these calculations. The 

mass reduction was set to 𝛥𝑚0 = 0,5%/s, which leads to a test duration of  𝑡0 = 100s for 

the final mass value of 50% desired here. 

In the Annex C, besides the derivation of the program structure, further results of the 

calculations for different boundary conditions were presented in the tables C.2, C.3 and C.4. 
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In addition to the figures for the system velocity of 𝑣0 = 0 discussed here, calculated values 

for 369 km/s plus 2,000 km/s and 10,000 km/s were also added to provide a better over-

view. In these cases, a lower remaining mass after the test was also determined with a rest 

of 10%. 

 

 
Tab. 6.4: Values of 𝑣𝑇, 𝑡𝑇, 𝑚𝑁 and 𝑥𝑁 for linear reduction of propellant mass. 

  Section I: Iterations, Section II: Extrapolated. All values in km and s. 

Calc.-Type: “A1”,  𝑣0
′ = − 4 km/s,  𝛥𝑚0 = 0,5%/𝑠,  𝑡0 = 100s,  𝑣0 = 0  
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Again, the most important statement results from the comparison of the calculated val-

ues for 𝑡𝑇 , which represent the signal propagation times until reaching an observer moving 

with 𝑣0, calculated in view of the system at rest. For a better comparison of the times, here 

as in other cases, the comparative formula 

𝛿𝑡𝑇 =
𝑡𝑇(𝑣𝐾)

𝑡𝑇(𝑣𝐾−1)
− 1                                                           (6.86) 

was chosen. Table 6.5 shows the results of values for 𝑡𝑇 and 𝛿𝑡𝑇 , where the calculation was 

based on 𝑡𝑇 using iteration steps of N = 1016. No systematic deviations can be found when 

results for different system velocities are compared. 

 

 
Tab. 6.5: 𝑡𝑇 and 𝛿𝑡𝑇  with constant propellant mass per time unit for different 𝑣0. 

𝛥𝑚0 is normalized to 1. 

1: 𝑣0
′ = − 4 km/s,     𝛥𝑚0 = 0,5%/𝑠,      𝑡0 = 100𝑠 

2: 𝑣0
′ = − 4 km/s,     𝛥𝑚0 = 0,09%/𝑠,    𝑡0 = 1.000𝑠 

3: 𝑣0
′ = −100 km/s,  𝛥𝑚0 = 0,009%/𝑠,  𝑡0 = 10.000𝑠 

For the consideration of the final velocity 𝑣𝑇  the possibility of a comparison with the 

values determined according to the classical rocket formula arises. The formula derived by 

K. E. Tsiolkovsky in 1903 is based on the non-relativistic momentum equation and aims to 

calculate the terminal velocity of a rocket as a function of the exit velocity of the gas for a 

constant propellant mass. For non-relativistic consideration with 𝑣 ≪ 𝑐, first Eq. (6.85) is 

reduced to 

𝑣𝐾
′ = 𝑣𝐾 + 𝑣0

′                                                                  (6.87) 

To solve the equation Eq. (6.84), the stipulation that 𝛾 = 1 (not relativistic) applies. Since 

the mass of the rocket decreases with increasing index K, but the velocity rises, the follow-

ing relations apply additionally 

𝑚𝐾 = 𝑚𝐾−1 − 𝛥𝑚𝐾−1 𝑣𝐾 = 𝑣𝐾−1 + 𝛥𝑣𝐾−1 

In addition, for differential consideration the following definitions are introduced: 

𝑚𝐾 → 𝑚 𝛥𝑚 → d𝑚 

𝑣𝐾 → 𝑣 𝛥𝑣 → d𝑣 

This results in the following approach for Eq. (6.84): 
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(𝑚 + d𝑚 − d𝑚)𝑣 + d𝑚(𝑣 + 𝑣0
′ ) = (𝑚 + d𝑚)(𝑣 − d𝑣)                               (6.88) 

𝑚𝑣 + 𝑣d𝑚 + 𝑣0
′d𝑚 = 𝑚𝑣 −𝑚d𝑣 + 𝑣d𝑚 − d𝑚d𝑣                                   (6.89) 

and because of d𝑚d𝑣 → 0 

𝑚d𝑣 + 𝑣0
′d𝑚 = 0                                                          (6.90) 

If mass and velocity of the outflowing gas (and thus the momentum) are kept constant, 

the integration of eq. (6.90) leads to the classical rocket formula 

∫ d𝑣
𝑣

0

= − 𝑣0
′ ∫

d𝑚

𝑚

𝑚

𝑚0

                                                        (6.91) 

𝑣 = 𝑣0
′  𝑙𝑛 ( 

𝑚0
𝑚
 )                                                           (6.92) 

where 𝑚0 is the mass at the start from an unmoved platform. If the starting point is moving, 

the velocities are simply added. This becomes necessary e.g. at the drop of a rocket stage, 

when the mass decreases and also the momentum changes. 

Besides the classical rocket formula according to Tsiolkovsky, also a relativistic rocket 

formula exists. This was derived in 1946 by J. Akeret [90]. The derivation is clearly more 

complex and requires additionally the use of the energy conservation theorem; the deriva-

tion is shown in the appendix C under point C.4. The result of this relativistic rocket equa-

tion according to Eq. (C.33) is 

𝑣

𝑐
=  
1 − (

𝑚
𝑚0
)
2𝑣0
′ 𝑐⁄

1 + (
𝑚
𝑚0
)
2𝑣0
′ 𝑐⁄
                                                   (6.93) 

If the classical and/or the relativistic rocket equations 𝑣𝑅 are taken as a limiting case to 

the presented solution of the numerically derived relativistic rocket formulas, and the re-

sults from the values for 𝑣𝑇  calculated in appendix C, tables C2, C3 and C4 are related to 

each of them, the following values for a comparison can be obtained 

𝛿𝑅 =
𝑣𝑅
𝑣𝑇
− 1                                                                (6.93) 

The results of these calculations are shown in Fig. 6.4. First, it becomes clear that for low 

system velocities, especially in the case 𝑣0 = 0, no sufficient accuracy is achieved for itera-

tion steps from N = 10 to N = 107 and they are therefore to be considered only with re-

strictions. On the other hand, if the extrapolated values calculated up to N = 1016 are added, 

a significantly improved result is obtained. When the values for classical and relativistic 

rocket formulas are compared, no differences can be found for 𝑣0
′ = − 4 km/s, while for 

𝑣0
′ = −100 km/s, discrepancies can be seen for small system velocities (𝑣0 = 0 und 369 

km/s). To show the differences, the results for the classical rocket formula (Tsiolkovsky) 

and relativistic (Akeret) were presented separately in subplots c) and d). 
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Fig. 6.4: Dependency 𝛿𝑅 between relativistic und classical rocket formula related to  

the number of iteration steps acc. to Tab. C.2, C3 and C4. 

a)  𝑣0
′ = − 4 km/s,  𝛥𝑚0 = 0,5%/s,  𝑡0 = 100s 

b)  𝑣0
′ = − 4 km/s,  𝛥𝑚0 = 0,09%/s,  𝑡0 = 1.000s 

c) and d)  𝑣0
′ = −100 km/s,  𝛥𝑚0 = 0,009%/s,  𝑡0 = 10.000s 

c) classic (acc. to K. E. Tsiolkowski), d) relativistic (acc. to J. Akeret).  

a) to d) at the bottom 𝑣0 = 0 then ascending 𝑣0 = 369, 2000, 10000 km/s  

𝛥𝑚0 normalized to 1. 

To evaluate the behavior at higher velocities, results from the numerical rocket equa-

tions are compared with corresponding values from the classical and relativistic rocket for-

mulas. In Tab. 6.6, the calculated values of the final velocity are entered for the parameters 

𝑣0
′/𝑐 (gas velocity of a rocket in relation to the speed of light) and for the ratio of the masses 

at the final stage compared to the start. 

An evaluation shows that up to a velocity of the propellant gas of 0.01c, there are no 

major differences between the calculations. At 0.1c the differences between the classical 

rocket formula and the other two variants already become clear and at 0.5c the speed of 

a) b) 
 

c) 
 

d) 
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light is exceeded according to the classical nonrelativistic method at a mass release of ap-

prox. 90%. The values according to J. Akeret and those of the own numerical calculation, 

which of course remain below the speed of light, hardly differ. 

 
Tab. 6.6: End velocity of a rocket (values in relation to the speed of light) depending on 

the calculation method 

Parameter top: Values for propellant gas (values in relation to the speed of light) 

Parameter left: Ratio of final mass to the mass at the start 

A: Classical, acc. to K. E. Tsiolkowski 

B: Relativistic, acc. to J. Akeret 

C. Numerical, calculation acc. to annex C ( 𝛥𝑚0 = 10
−5 %/s, 𝛥𝑡𝑆 = 100s) 

The essential difference between analytical and numerical calculation is that for the an-

alytical method no output quantity of the gas per time unit must be given and that therefore 

the result is independent of the acceleration occurring during a rocket launch. Therefore, 

there is also no information about which distance the rocket has covered in which time. 

This means, only the data determined according to the described numerical method can be 

used for the previously performed calculations; the analytical rocket formula does not pro-

vide the necessary information. 

To illustrate this, results for gas ejection velocities of 𝑣0
′ = −0,5c and 𝑣0

′ = −100 km/s 

are presented below. In Tab. 6.7, gas ejection rates of 𝛥𝑚0 = 10
−7  to 10−4/s (correspond-

ing to 10−5  and 10−2 %/s) were selected for the numerical determination and the values 

of 𝑣𝑇 , 𝑡𝑇 , 𝑥𝐾 and 𝑎𝐾 were calculated on these. First, it should be noted that in all cases the 

final velocity 𝑣𝑇  remains constant for the respective gas exit velocity. When the gas ejection 

rate (per time unit) is increased by a factor of ten, the values for the total duration of the 

experiment 𝑡𝑇 as well as the distance traveled 𝑥𝐾  increase by the same factor. The acceler-

ation 𝑎𝐾, on the other hand, decreases by the same amount. 

Finally, an essential difference between the numerical method and the relativistic rocket 

formula must be pointed out. While the latter was derived using the law of conservation of 

energy, the numerical method (as well as the classical rocket formula according to Tsiol-

kovsky) is based exclusively on the law of conservation of momentum. For the calculation, 

this means that the momentum of the propulsion gas could in theory be increased unlimited 

by approaching the speed of light more and more, and thus extremely high rocket velocities 

could be achieved connected with a low mass output. However, in reality this is not possi-

ble, because for the acceleration of the propellant gas considerable amounts of energy (and 

thus because of 𝐸 = 𝑚𝑐² additional mass losses) would be needed, which are not 
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considered in the calculation. For these extreme values, therefore, the numerical method 

presented cannot be used. 

 
Tab. 6.7: End velocity 𝑣𝑇, total time 𝑡𝑇, covered distance 𝑥𝐾 and acceleration 𝑎𝐾 as a 

function of the gas ejection velocity and the gas quantity 𝛥𝑚0 (per time unit). 

𝑣𝑇 in km s⁄  , 𝑡𝑇 in s, 𝑥𝐾 in km, 𝑎𝐾 in m s2⁄ , 𝛥𝑚0 in 1/s (normalized to 1) 

 
The problem of determining the energy requirement for rocket propulsion systems has 

been discussed for a long time and can be solved by defining various loss factors. As an 

example, the representation used by U. Walter [91] is given in Fig. 6.5. 

  

Fig. 6.5: Energy scheme for a relativistic rocket with energy losses and expelled propulsion 
mass and photons (extracted from [91]) 

 

Further information on this topic can be found in the following literature [91,92]. 
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7.  Non-elastic processes 

The situation concerning the elastic behavior during collisions was already discussed at 

length in chapter 6. The analysis of non-elastic processes is also of great importance for 

further considerations and shall now be examined in detail. At first the non-elastic collision 

will be scrutinized, where during the experimental situation two or more bodies are com-

bined and an energy-absorption takes place. The reversing effect is observed during parti-

cle disintegration; in this case kinetic energy is set free because of conversion of mass into 

energy and carried away by the decay products. Non-elastic collision and particle disinte-

gration can thus be interpreted as complementary processes. 

7.1  Relativistic non-elastic collision 

 

For the relativistic consideration of non-elastic collisions, the situation of observers with 

different velocities will be examined. For that purpose, a simple example shall be looked at 

and, after exact evaluation, the consequences derived will be discussed. The experimental 

conditions are as follows: 

Two bodies are approaching each other and combine after axial contact, which means 

ideal plastic behavior is assumed. The collision shall be completely central and so no rota-

tion will appear. In this case it is not necessary to use a vectorial calculation and the follow-

ing calculation for the momentum can be used 

𝑝3 = 𝑝1 + 𝑝2 = 𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = 𝑚3𝛾3𝑣3                                 (7.01) 

where 𝑣1 and 𝑣2 are the velocities before and 𝑣3 after the collision, the same definition is 

valid for the masses 𝑚1, 𝑚2 and 𝑚3. If it is assumed that mass 𝑚3 is at rest after the collision, 

then the values of 𝑝1 and 𝑝2 will neutralize each other because the conservation-principle 

of momentum must be respected. This means, that the absolute values of 𝑝1 and 𝑝2 are equal 

but the algebraic sign is different and so the total momentum after collision 𝑝3 is zero. 

However, the kinetic energy before and after the collision is not equal. This becomes 

clear when the equation of kinetic energy before the collision is considered (see also expla-

nations in chapter 6.1) 

𝐸𝑘𝑖𝑛 = (𝛾1 − 1)𝑚1𝑐
2 + (𝛾2 − 1)𝑚2𝑐

2                                       (7.02) 
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When again the situation is considered that mass 𝑚3 is at rest after collision, then the 

kinetic energy is zero ether. Because kinetic energy is a scalar and not a vector like it is the 

case for momentum, it is compulsory that it must be transformed into another form. Other-

wise, the conservation principle of energy would be violated. When it is assumed in this 

case that kinetic energy is transformed completely into mass the following equation is valid 

𝛥𝑚3 = (𝛾1 − 1)𝑚1 + (𝛾2 − 1)𝑚2                                           (7.03) 

where 𝛥𝑚3 is the increase of mass according to the transformation of kinetic energy. 

To examine the situation an experiment with two different cases will be looked at, where 

in one instance an observer will be at rest and in another case moving. For simplification of 

the calculations, it is assumed that the masses of the bodies involved are equal, i.e. 𝑚1 =

𝑚2 = 𝑚. The cases will be marked with A and B; this identification will be continuously 

used for the relevant situations as index for the parameters depending on the velocities. It 

will be presumed in the first instance that the simple relation 𝑚3 = 𝑚1 +𝑚2 is valid. How-

ever, during the following considerations it will become clear that this assumption is lead-

ing to discrepancies, and it will be proven that Eq. (7.03) is valid in any case without re-

strictions. 

 A:  Referring to an observer A at absolute rest the velocity is 𝑣3A = 0  

 Because 𝑚1 = 𝑚2 was presumed this stand for the fact, that before the collision the 

two bodies are moving with equal speed but different directions, this means that be-

side 𝑣3A = 0 also 𝑣1A = −𝑣2A is valid. 

 B:  Referring to an observer B at absolute rest the velocity is 𝑣1B = 0  

 All calculations refer to 𝑣1B = 0. 

The following relations apply: 

 
Observer A 

𝑣3A = 0      𝑣1A = −𝑣2A 

Observer B 

𝑣1B = 0 

Momentum before 

collision 

𝑝1A = 𝑚𝛾1A𝑣1A 

𝑝2A = −𝑚𝛾1A𝑣1A 

𝑝1B = 0 

𝑝2B = 𝑚𝛾2B𝑣2B 

Momentum after 

collision 
𝑝3A = 0 𝑝3B = 2𝑚𝛾3B𝑣3B 

Kinetic energy before 

collision 

𝐸1A
𝑐2
= (𝛾1A − 1)𝑚 

𝐸2A
𝑐2

= (𝛾1A − 1)𝑚 

𝐸1B
𝑐2
= 0 

𝐸2B
𝑐2
= (𝛾2B − 1)𝑚 

Kinetic energy after 

collision 

𝐸3A
𝑐2
= 0 

𝐸3B
𝑐2
= 2(𝛾3B − 1)𝑚 
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In the presented table the results for momentum and kinetic energy are presented which 

apply for identical experimental conditions in view of the observers A and B. These will be 

discussed further in the next chapters using the relativistic addition of velocities for com-

parison. 

7.1.1 Results based on relativistic addition of velocities 

For observer A the simple case 𝑣1A = −𝑣2A is valid. The calculation of the velocity for ob-

server B makes is necessary to use the relativistic addition of velocities, which was already 

described in chapter 4.1. Because of symmetry reasons the relation 𝑣3B = 𝑣1A applies and 

this is leading to 

𝑣2B =
2𝑣1A

1 + (
𝑣1A
𝑐 )

2                                                           (7.04) 

Example: 

 

7.1.2 Results based on relations for momentum 

Observer A is considering the total value of the momentum before and after the collision as 

zero because of the relation 𝑣1A = −𝑣2A and thus 

𝑝3A = 𝑝1A + 𝑝2A = 𝑚𝛾1A𝑣1A −𝑚𝛾1A𝑣1A = 0                                 (7.05) 

Observer B finds the following relations: 

𝑝1B = 0                                                                    (7.06) 

𝑝2B = 𝑚𝛾2B𝑣2B                                                            (7.07) 

𝑝3B = 2𝑚𝛾3B𝑣3B                                                           (7.08) 

Because of the conservation principle of momentum, the values for 𝑝2𝐵 and 𝑝3𝐵 accord-

ing to (7.01) must be equal, so 

𝛾2B𝑣2B = 2𝛾3B𝑣3B                                                         (7.09) 

 This equation allows the calculation of 𝑣3B depending on 𝑣2B. 

 Because of the structure of the equation an analytical solution is not possible and so a 

numerical solution must be used. In annex D different approaches are presented; here the 

use of simple recursion, a procedure according to Newton and the bisection method were 

chosen to effectuate a solution. In all cases the results for 𝑣3B were calculated using differ-

ent values for 𝑣2B. 

 As expected, all iteration methods lead to the same values; the procedures using simple 

recursion and according to Newton share the advantage, that they converge very quickly 

for small values of 𝑣 𝑐⁄ . However, as a drawback the convergence is reducing for increasing 
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𝑣 𝑐⁄  and the use is no longer possible when extremely high values are taken. Increasing to 

values higher than 𝑣 𝑐⁄ > 0.9𝑐 the bisection method is the only procedure which is still 

working. 

Example: 

 

7.1.3 Results based on relations for energy 

Observer A will consider the case that the kinetic energy of the colliding masses will be 

transformed completely into another form of energy (e.g. heat). This loss of energy has the 

value of 
 

𝐸1A + 𝐸2A
𝑐2

= 2𝑚(𝛾1A − 1)                                                  (7.10) 

For observer B this is implicating that the difference between the kinetic energy before and 

after the collision is balanced and thus 

2𝑚(𝛾3B − 1) = 𝑚(𝛾2B − 1) − 2𝑚(𝛾1A − 1)                                  (7.11) 

𝛾3B =
𝛾2B − 2𝛾1A + 3

2
                                                      (7.12) 

This equation shows a simple analytical solution using 

𝑣3B
𝑐
= ±√1 −

1

𝛾3B
2 = ±√1 −

4

(𝛾2B − 2𝛾1A + 3)2
                              (7.13) 

Example: 

(Negative results of the square root are not relevant because of plausibility reasons.) 

7.1.4 Evaluation of the results 

In Fig. 7.1 the deviations between the velocities according to the different calculations are 

presented. 

 Here the following definitions apply: 

𝛿 =
𝑣3B − 𝑣1A
𝑣1A

                                                             (7.14) 

where 𝛿𝑝 is the percental difference for the momentum (chapter 7.1.2) and 𝛿𝐸  for the en-

ergy (chapter. 7.1.3). It is clear at first sight that the height and also the position of the max-

ima are not sharing any similarities. 
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Fig. 7.1: Difference values 𝛿𝑝 and 𝛿𝐸 depending on 𝑣1 

 It is obvious that for the non-elastic collision the consideration of the relations for rela-

tivistic addition of velocities and the conservation laws for momentum and energy using 

these calculations are leading to completely different results. This means that in these cases 

severe discrepancies would occur between the relativistic principles of identity and equiv-

alence (for definition of the principles see chapter 1.6). 

 Up to now the velocity 𝑣3𝐵 of the two combined masses was calculated based on the va-

lidity of the laws of momentum and energy without any further correction. To find a solu-

tion for the observed problems, in the following the attempt is made to examinate the effect 

on momentum and energy which occurs, when the relativistic addition of velocities is sup-

posed to be valid without further discussion. To realize this, the correction values 𝐶𝑝 for the 

momentum and 𝐶𝐸  for the energy are defined and used in the relevant relations. 

a) Momentum 

Equation Eq. (7.09) is modified to 

𝐶𝑝 · 2𝛾3B𝑣3B = 𝛾2B𝑣2B                                                     (7.15) 

using the relation 𝑣3B = 𝑣1A (see chapter 7.1.1) 

𝐶𝑝 =
√1 − (

𝑣1A
𝑐 )

2

2𝑣1A

𝑣2B

√1 − (
𝑣2B
𝑐 )

2
                                            (7.16) 

Because of Eq. (7.04) is 
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𝐶𝑝 =
√1 − (

𝑣1A
𝑐 )

2

2𝑣1A

2𝑣1A

1 + (
𝑣1A
𝑐 )

2

√1 − (

2𝑣1A
𝑐

1 + (
𝑣1A
𝑐 )

2)

2
 

            = √
1 − (

𝑣1A
𝑐 )

2

[1 − (
𝑣1A
𝑐 )

2

]
2 = √

1

1 − (
𝑣1A
𝑐 )

2 = 𝛾1A                             (7.17) 

This means that using unrestricted application of the relativistic addition of velocities 

the momentum is smaller by the factor 𝛾1𝐴 than required by the law of conservation of mo-

mentum. 

b) Energy 

Equation Eq. (7.11) is modified to 

𝐶𝐸 ·  2(𝛾3B − 1) = (𝛾2B − 1) − 2(𝛾1A − 1)                                   (7.20) 

With 𝑣3B = 𝑣1A applies 

𝐶𝐸 =
(𝛾2B − 1)

2(𝛾1A − 1)
− 1                                                       (7.21) 

To develop a simple solution, first the term 𝛾2B − 1 is considered. This can be trans-

formed using Eq. (7.04) to 

𝛾2B − 1 =
1

√1 − (

2𝑣1A
𝑐

1 + (
𝑣1A
𝑐 )

2)

2
− 1                                       (7.22) 

and 

𝛾2B − 1 = ± 
1 + (

𝑣1A
𝑐 )

2

1 − (
𝑣1A
𝑐 )

2 − 1 = 2(𝛾1A
2 − 1)                                   (7.23) 

 For this calculation it was decided to take only positive values for the results of the 

square root, because negative values would lead to negative 𝛾2B and physical interpretation 

makes no sense in this case. 

 The result is inserted in Eq. (7.21) 

𝐶𝐸 =
2(𝛾1A

2 − 1)

2(𝛾1A − 1)
− 1                                                       (7.24) 

 

𝐶𝐸 =
(𝛾1A + 1)(𝛾1A − 1)

(𝛾1A − 1)
− 1 = 𝛾1A                                         (7.25) 

This calculation is leading to the same result as already obtained for the momentum. 
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7.1.5 Final approach for calculation 

For final evaluation, the findings developed so far shall be summarized and reviewed first. 

When in case of nonelastic collision examinations concerning the conservation laws of mo-

mentum and energy with invariant mass (this means 𝑚3 = 𝑚1 +𝑚2;  𝛥𝑚3 = 0) before and 

after collision are conducted, then it becomes clear that the gained results for the velocity 

𝑣3  are different to each other; further the calculated value using the equation of relativistic 

addition of velocities come to another different result. The values of 𝑣3 for the combined 

body using conservation laws are both higher than the calculated result derived by relativ-

istic addition. 

 This would mean that the concept of simple addition of mass before and after collision is 

no option because the basic principles concerning conservation of energy and momentum 

are violated. If the approach presented in Eq. (7.01) of complete conversion of kinetic en-

ergy into mass is used instead, then considering the special case 𝑚1 = 𝑚2 = 𝑚 

𝛥𝑚3 =
𝐸1A + 𝐸2A

𝑐2
= 2𝑚(𝛾1A − 1)                                           (7.30) 

is valid for the generated mass 𝛥𝑚3 by energy conversion (see also Eq. (7.04). For momen-

tum, the relation Eq. (7.07) remains unchanged before collision 

𝑝2B = 𝑚𝛾2B𝑣2B                                                             (7.07) 

but Eq. (7.09) after collision is developing to 

𝑝3B = 2𝑚𝛾3B𝑣3B         𝑝3B = 𝑚3𝛾3B𝑣3B                                     (7.31) 

Because of 𝑣1A = 𝑣3B derived from relativistic addition of velocities this leads to 

𝑝3B = [2𝑚(𝛾1A − 1) + 2𝑚]𝛾3B𝑣3B = 2𝑚𝛾3B
2 𝑣3B                             (7.32) 

 The consideration of complete transformation into mass can be looked at as reverse ob-

servation compared to the conditions during the disintegration of particles and may be des-

ignated as “negative mass defect”. This result is corresponding exactly to the value of the 

missing part of momentum and energy during collision and leads to the conclusion, that for 

relativistic considerations of the non-elastic collision always an increase of mass in the 

amount of the value presented by the transformation of kinetic energy must be presumed 

to prevent the occurrence of discrepancies. 

 This is comprehensible on an atomic scale, for macroscopic objects it is not conforming 

to the general understanding of processes, because e. g. during the generation of heat no 

transformation processes are observed. However, in this case because of the definition of 

heat − which means that a rising heat input is corresponding to increasing velocities of the 

apparent mass − the increase of energy can be interpreted as relativistic consideration of 

the oscillation-velocity of the participating atoms or molecules. When this issue is discussed 

in the literature, normally the transformation of kinetic energy into mass is placed first and 

then verified using the relevant equations, e.g. [47]. The approach presented here, however, 

provides clear evidence that the increase of mass caused by complete transformation of 

kinetic energy is required by the valid conservation laws. 
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7.2  Relativistic considerations of particle disintegration 

As already mentioned before, the disintegration of particles can be interpreted as the re-

version of the situation valid during non-elastic collision (see chapter 7.1). Because the 

mathematical correlations of both effects are exactly the same, it is not necessary to present 

the evaluations again. In this chapter the emphasis is laid on considerations of decay parti-

cles moving in different spatial directions and concerning the conditions, when the kinetic 

energy is not converted into mass as discussed before but is dissipated by electromagnetic 

radiation. 

 To avoid misinterpretations, it shall be generally defined that the dissipating particle is 

indicated with index 1, for the decay products the indices 3 and 4 (and increasing further if 

applicable) are used. An observer moving with a dissipating particle is additionally marked 

as 𝑓′, for an observer at rest 𝑓 is used (without marking). 

7.2.1 Analysis of disintegration into 2 particles 

For the investigation of the situation in arbitrary spatial directions it is necessary to use the 

analytical determination of aberration, which was already derived in chapter 2.3. The geo-

metrical dependencies are presented in Fig. 7.2. The description is completely comparable 

and therefore the calculations will not be repeated. The only valid difference is concerning 

equation Eq. (2.43), where the relation between the velocity of the moving system and the 

speed of light is calculated. These must be replaced by the following relation 

Eq. (2.43):    
𝑏

𝑣
=
𝑑

𝑐
                  

𝑏

𝑣1
=
𝑑

𝑣3
                                    (7.40) 

where 𝑣1 is the velocity of the moving system and 𝑣3 is the speed of an arbitrary particle 

(the equations presented in the following can be derived in the same way for particle 4). It 

is necessary to calculate the velocity 𝑣3 using Eq. (4.20) according to 

𝑣3 =

√𝑣1
2 + 𝑣3

′2 + 2𝑣1𝑣3
′𝑐𝑜𝑠𝛼3

′ − (
𝑣1𝑣3

′𝑠𝑖𝑛𝛼3
′

𝑐
)
2

1 +
𝑣1𝑣3

′𝑐𝑜𝑠𝛼3
′

𝑐2

                              (7.41) 

where in this case 𝑣3
′  is the velocity of the particle relative to the moving system and 𝑣3 is 

the velocity in view of the observer at rest. The calculation leads to the following result [see 

also Eq. (2.48)]: 

𝑡𝑎𝑛𝛼3
′ = ± 

𝑠𝑖𝑛𝛼3

𝛾 (𝑐𝑜𝑠𝛼3 −
𝑣1
𝑣3
′)
                                                (7.42) 

Here 𝛼3 is the angle, which an observer at rest will find between the motion of a particle 

relative to his system, while 𝛼3
′  is the angle of the same particle in view of the moving ob-

server. When the value of 𝛼3
′  is given then the resulting value for 𝛼3 can also easily be cal-

culated. The only conversion necessary is the change of the algebraic sign (for details see 

chapter 2.3.4) and the result is 
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𝑡𝑎𝑛𝛼3 = ± 
𝑠𝑖𝑛𝛼3

′

𝛾 (𝑐𝑜𝑠𝛼3
′ +

𝑣1
𝑣3
′)
                                                 (7.43) 

The validity of this relation can also easily be verified by numerical comparison. In table 

Tab. (7.1a) some examples for the calculation of the resulting angles for different velocities 

𝑣1 and 𝑣3
′  are presented. 

  

 

  
  

Fig. 7.2: Definition of parameters to determine the angle of an outgoing beam for a moving 

observer (examples for 𝑣1 = 0.5𝑐, 𝛼3
′ = 45°, 𝛼4

′ = −135°) 

a) Signal emitted in moving direction, 𝛼3 = 19,73° 

b) Signal emitted backwards, 𝛼4 = −64.44°  

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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Tab. 7.1a: Calculation for momentum and kinetic energy in a moving system. 

Values marked grey: Approximation. 

Values presented in frames: 180 °-angels. 

Equations and dimensions: Tab. 7.1b and text. 
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𝑣3 =

√𝑣1
2 + 𝑣3

′2 + 2𝑣1𝑣3
′𝑐𝑜𝑠𝛼3

′ − (
𝑣1𝑣3

′𝑠𝑖𝑛𝛼3
′

𝑐
)
2

1 +
𝑣1𝑣3

′𝑐𝑜𝑠𝛼3
′

𝑐2

· 𝑐 

[-] 

𝛼3 = 𝑎𝑟𝑐𝑡𝑎𝑛 [ 
𝑠𝑖𝑛𝛼3

′

𝛾 (𝑐𝑜𝑠𝛼3
′ +

𝑣1
𝑣3
′)
] ·
180

𝜋
 [°] 𝑝̃3 =

𝑝3
𝑚𝑐

=
𝑣3
𝑐
𝛾3 

 

𝑝3𝑋 =
𝑝3𝑋
𝑚𝑐

=
𝑣3
𝑐
𝛾3𝑐𝑜𝑠 (𝛼3) 

[-] 𝑝3𝑌 =
𝑝3𝑌
𝑚𝑐

=
𝑣3
𝑐
𝛾3𝑠𝑖𝑛 (𝛼3) 

[-] 

𝑣4 =

√𝑣1
2 + 𝑣4

′2 + 2𝑣1𝑣4
′𝑐𝑜𝑠𝛼4

′ − (
𝑣1𝑣4

′𝑠𝑖𝑛𝛼4
′

𝑐
)
2

1 +
𝑣1𝑣4

′𝑐𝑜𝑠𝛼4
′

𝑐2

· 𝑐 
[-] 

𝛼4 = 𝑎𝑟𝑐𝑡𝑎𝑛 [ 
𝑠𝑖𝑛𝛼4

′

𝛾 (𝑐𝑜𝑠𝛼4
′ +

𝑣1
𝑣4
′)
] ·
180

𝜋
 [°] 𝑝4 =

𝑝4
𝑚𝑐

=
𝑣4
𝑐
𝛾4 

 

𝑝4𝑋 =
𝑝4𝑋
𝑚𝑐

=
𝑣4
𝑐
𝛾4𝑐𝑜𝑠 (𝛼4) 

[-] 𝑝4𝑌 =
𝑝4𝑌
𝑚𝑐

=
𝑣4
𝑐
𝛾4𝑠𝑖𝑛 (𝛼4) 

[-] 

∑𝑝𝑋 = 𝑝3𝑋 + 𝑝4𝑋 
[-] ∑𝑝𝑌 = 𝑝3𝑌 + 𝑝4𝑌 

[-] 

𝐸̃𝑘𝑖𝑛,3 =
𝐸𝑘𝑖𝑛,3
𝑚𝑐2

= 𝛾3 − 1 
[-] 

𝐸̃𝑘𝑖𝑛,4 =
𝐸𝑘𝑖𝑛,4
𝑚𝑐2

= 𝛾4 − 1 
[-] 

∑𝐸̃𝑘𝑖𝑛 = 𝐸̃𝑘𝑖𝑛,3 + 𝐸̃𝑘𝑖𝑛,4 
[-] 

 
 

Tab. 7.1b Equations and dimensions used in Tab. 7.1a 

 The equations used in table 7.1a and the connected dimensions are summarized in table 

7.1b. To ensure a clear arrangement the values are presented in a normalized form as 𝑝 and 

𝐸̃ with the dimension 1. This is also valid for the velocities; here the form 𝑣 𝑐⁄  was chosen. 

 The values marked grey were calculated using an approximation process, because for 

𝑣3
′ = 𝑣1 the developing equations contain a division by zero. The values of 𝛼3 and 𝛼4 > 90° 

were calculated using first standard calculations and then the results were reduced by 180°; 

this is marked in the table using a frame (for further details see also chapter 2.3). 

 For the calculations, the following preconditions apply: 
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It is presumed that a particle is disintegrated into 2 decay products of equal size, of which 

one is removing with an arbitrary angle 𝛼3
′ . In this case the second “twin particle” will obey 

an angle of 𝛼4
′ = 𝛼3

′ − 180°  because of symmetry reasons. For these products, the angles 

𝛼3 and 𝛼4 are calculated and the connected velocities 𝑣3 and 𝑣4 also. In a second step the 

values for momentum according to 

𝑝3 = 𝛾1𝑚𝑣3    𝑏𝑧𝑤.     𝑝4 = 𝛾1𝑚𝑣4                                            (7.44) 

were determined. In a further step the fractions in moving direction (𝑥) and perpendicular 

to it (𝑦) according to 

𝑝𝑥 = 𝑝 · 𝑐𝑜𝑠(𝛼)                                                           (7.45) 

𝑝𝑦 = 𝑝 · 𝑠𝑖𝑛(𝛼)                                                           (7.46) 

were calculated. When the angles 𝛼3 and 𝛼4 are added, the results in 𝑥-direction always 

show the same results, in 𝑦-direction they annihilate each other. Further the values for the 

kinetic energy were determined for particle 3 according to 

𝐸𝑘𝑖𝑛,3 = (𝛾3 − 1)𝑚𝑐
2                                                       (7.47) 

and for particle 4 
𝐸𝑘𝑖𝑛,4 = (𝛾4 − 1)𝑚𝑐

2                                                       (7.48) 

The summation of these values is producing the same result for all angles. It was possible 

to show with these calculations that for the disintegration into 2 decay particles the values 

for momentum and kinetic energy in all cases for an observer at rest and in a moving system 

are resulting in the same results and that it is not possible inside a system to decide whether 

this is moving or not. 

7.2.2 Disintegration into 2 photons 

It is well known from experimental results that a particle can disintegrate completely into 

photons without leaving matter. The 𝜋0-pion for example is an extremely unstable particle 

with an average lifetime of approximately 10−18 s with the specific characteristic that it is 

disintegrating with almost 99% probability into 2 photons. When it is presumed that the 

disintegration is happening at a state of absolute rest the energy can be calculated using 

 

𝐸 = 𝑚0𝑐
2 = ℎ𝑓3 + ℎ𝑓4                                                     (7.50) 

where ℎ is Planck’s quantum of action and 𝑓3 as well as 𝑓4 are the frequencies of the emitted 

photons. The momentum of one photon is 

𝑝⃗ = ℎ
𝑓

𝑐
𝑒                                                                 (7.51) 

with 𝑒 as unit vector in moving direction. Because of the conservation laws of energy and 

momentum the frequencies for both photons are the same and their moving directions are 

exactly opposite to each other. The momentum is zero before and after disintegration. 
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If an observer is monitoring a velocity 𝑣1 before disintegration, then because of the rela-

tivistic mass increase the total energy of the particle is 

𝐸 = 𝛾1𝑚0𝑐
2                                                               (7.52) 

After disintegration, the emitted photons must carry the total energy and the momentum 

of the particle. The total energy of the photons is 

𝐸 = 𝛾1ℎ𝑓3 + 𝛾1ℎ𝑓4                                                         (7.53) 

and the momentum of one photon 

𝑝⃗ = 𝛾1ℎ
𝑓

𝑐
𝑒                                                                (7.54) 

When these relations are analyzed according to the ratio valid in moving direction, for 

an observer at rest the kinetic energy of the particle and the momentum has also to be car-

ried away completely by the emitted photons. For the energy, the following relation applies 

𝛾1𝑚0𝑐
2 = 𝛾1ℎ𝑓3 + 𝛾1ℎ𝑓4                                                    (7.55) 

and for the momentum in moving direction 

𝛾1𝑚0𝑣1 = 𝛾1ℎ
𝑓3
𝑐
− 𝛾1ℎ

𝑓4
𝑐
                                                  (7.56) 

where 𝑓3 is the emission in moving direction (positive) and 𝑓4 opposite to it (negative). Us-

ing subtraction resp. addition of equations Eq. (7.55) and (7.56) then the values for the fre-

quencies are 

𝑓3 =
𝑚0(𝑐

2 + 𝑣1𝑐)

2ℎ
                                                         (7.57) 

𝑓4 =
𝑚0(𝑐

2 − 𝑣1𝑐)

2ℎ
                                                         (7.58) 

with 
𝑓3
𝑓4
=
𝑐 + 𝑣1
𝑐 − 𝑣1

                                                               (7.59) 

 This relation is exactly corresponding to the macroscopic behavior of moving emitters 

which will be described in chapter 8. 

 For the derivation of the correlations in arbitrary spatial directions first the geometric 

dependencies for emitter and receiver must be examined. In Fig. 7.3 it is demonstrated, in 

which way observer A at the time A1 and A2 is sending specific signals. Depending on the 

distance to receiver B and on the velocity different angles in relation to the moving direction 

will appear. For simplification it will be assumed, that the receiver B, which is at rest, is far 

away and the time between 2 signals is comparatively short and thus for the angles the 

relation 𝛼1 = 𝛼2 = 𝛼 can be presumed. 

 The time between the signals send by the moving emitter A is 

𝛥𝑡𝐴 = 𝛾𝛥𝑡0                                                                (7.60) 
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compared to the relations valid for an observer at rest. Beside the extension caused by time-

dilatation, receiver B will also notice a geometric influence on time, because the emitter is 

either coming or going relative to his position between sending out the signals. In total this 

adds up to 

𝛥𝑡𝐵 = 𝛾𝛥𝑡0 (1 −
𝑣

𝑐
𝑐𝑜𝑠(𝛼))                                                (7.61) 

This is resulting for the frequency detected by receiver B 

𝑓𝐵 =
𝑓0

𝛾 (1 −
𝑣
𝑐 𝑐𝑜𝑠 (𝛼))

                                                     (7.62) 

    

  Fig. 7.3: Radiation geometry 

 

 To provide a final comparison between a particle at rest and moving, calculations for 

different angles for outgoing photons are made. In Tab. 7.2 different angles 𝛼3
′  (in view of a 

moving observer) are defined; the corresponding angles of the “twin” photon are differing 

exactly by 180°, i.e. this means 𝛼4
′ = 𝛼3

′ − 180°. First the angles in view of the observer at 

rest are determined using the equations developed in chapter 2.3 and the value for 𝛼3 is 

calculated. Further the corresponding frequencies are determined, in the next step the mo-

mentum in 𝑥- and 𝑦-direction is calculated (using 𝑐𝑜𝑠 resp. 𝑠𝑖𝑛 of the angle according to Eq. 

(7.45) and (7.46) presented in chapter 7.2.1). Finally, the total energy, which is released 

during disintegration of the particle, is calculated for any angle. 

 The starting value for 𝑓0 was set to 1. To ensure a clear arrangement the values for mo-

mentum end energy are again presented in normalized form as 𝑝 and 𝐸̃; the dimension is 

in this case 1. Detailed definitions and the resulting dimensions are summarized in Tab. 

7.2b. 

 The summation of the values for momentum in 𝑥-direction and total energy are always 

identical and correspond to the expected results; the values in 𝑦-direction add up to zero. 

Further it is easy to show, that the results found for angle 𝛼3
′ = 0 correspond exactly to 

equation (7.59), which was derived for the simple case for emission in moving direction 

and opposite. Thus it was possible to show, that also in this case no differences appear 

whether experiments are viewed by an observer at rest or referring to a moving system and 

so no violations of the principles of relativity occur. 

B
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Tab 7.2a: Calculations of angles, momentum (moving direction: 𝑥, vertical: 𝑦), energy. 

Equations and dimensions see Tab. 7.2b 

𝛼3 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛼3
′

2
)] ·

180

𝜋
                  Eq. acc. Tab. 2.4, No. 4 

[°] 

𝛼4 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝜋 − 𝛼3

′

2
)] ·

180

𝜋
          Eq. acc. Tab. 2.4, No. 4 

[°] 

𝑓3 =
𝑓0

𝛾 (1 −
𝑣
𝑐 cos (𝛼3))

 [𝑠−1] 𝑓4 =
𝑓0

𝛾 (1 +
𝑣
𝑐 cos (𝛼4))

 [𝑠−1] 

𝑝3𝑋 =
𝑝3𝑋
𝑚𝑐

=
𝑣

𝑐
𝑓3cos (𝛼3) 

[-] 𝑝4𝑋 =
𝑝4𝑋
𝑚𝑐

=
𝑣

𝑐
𝑓4cos (𝛼4) 

[-] 

∑𝑝𝑋 = 𝑝3𝑋 + 𝑝4𝑋 
[-]   

𝑝3𝑌 =
𝑝3𝑌
𝑚𝑐

=
𝑣

𝑐
𝑓3sin (𝛼3) 

[-] 𝑝4𝑌 =
𝑝4𝑌
𝑚𝑐

=
𝑣

𝑐
𝑓4sin (𝛼4) 

[-] 

∑𝑝𝑌 = 𝑝3𝑌 + 𝑝4𝑌 
[-] 𝐸̃ =

𝐸

𝛾ℎ
= 𝑓3 + 𝑓4 

[-] 

Tab. 7.2b Equations and dimensions used for calculations in Tab. 7.2a 
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8.  The constant phase-velocity of light 

The topics discussed so far showed exact conformance with the explanations presented in 

many other important and undisputed publications. In the following the observations of 

transmitted signals with constant frequency will reveal an aspect, however, that is in con-

tradiction to established interpretations. These can only be solved when the constant phase 

velocity of light is considered; this issue is therefore of great relevance for Special Relativity 

and the most important part of the examinations presented here. Subsequently it will be-

come clear, that the assumption of a system at absolute rest in the universe is generally in 

contradiction to Special Relativity but when using the principle of constant phase velocity, 

it is just a special case inside the theory without violating basic experimental results. 

8.1  Incoherency with Special Relativity using the standard derivation 

In Figs. 8.1a and 8.1b the situation is illustrated, that two observers A and B exchange light 

signals. At the beginning (position no. 1) a signal is transmitted from observer A, and at no. 

2 it is received from B and reflected immediately. At position no. 3 observer A is receiving 

the returning signal and the experiment comes to an end. Observers A and B are either at 

rest relative to each other (case a, d and g) increase the distance (case b and c) or approach-

ing each other (case e and f). The transmitted and received signals are analyzed. It is well-

known that transmitted signals with a constant frequency leaving a moving system are re-

ceived with a higher frequency by a second observer when they approach each other, and 

the frequency is lower in the opposite direction. The relation is described by 

𝑓′ =
1

𝑇′
= 𝑓0 (

1 +
𝑣
𝑐

1 −
𝑣
𝑐

)

1
2⁄

= 𝑓0 · 𝛾 (1 +
𝑣

𝑐
)                                    (8.01) 

 It is considered that the frequency of a moved observer is lower by the factor 𝛾 because 

of time dilatation. The values for the calculated frequency 𝑓, the covered distance 𝑎, the 

necessary time 𝑡 and the number 𝑛 of the oscillations in these intervals are presented in the 

following tables. 
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1: Emitting signal from A 

2: Receiving at B, reflection to A 

3: Receiving at A 

 

Fig. 8.1a: Exchange of signals between observers A and B and analysis of 

  the resulting frequencies and oscillation periods 
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1: Emitting signal from A 

2: Receiving at B, reflection to A 

3: Receiving at A 

 

Fig. 8.1b: Exchange of signals between observers A and B and analysis of 

  the resulting frequencies and oscillation periods 



8.  The constant phase-velocity of light 

132 

 It is not possible for both observers to decide based on a frequency analysis whether 

they belong to system a), d), g) or b), c) resp. e), f). Considering the number of oscillations 

between the observers, however, it should be clear that A and B according to the “principle 

of identity” (see chapter 1.6) in cases d) and g) for the signals coming and going (situation 

2 and 3) should measure the same values. A similar situation exists for b) and c) resp. e) 

and f). It is obvious at first sight and without calculation that this cannot be the case. In the 

following this will be discussed in detail. 

 In the tables of Fig.8.1a and 8.1b the results for the frequencies measured by an observer 

at rest are shown. It is incorporated, that the generated frequencies in a moving system 

appear to be reduced by the factor 𝛾 for an observer at rest. In the second part of the table 

the values for the distance 𝑎, the travelling time for the signal exchange 𝑡 and the number 𝑛 

of the oscillations in these intervals are presented. The number of oscillations is calculated 

using 

𝑛 = 𝑓 · 𝑡                                                                  (8.02) 

 If the light signals are passing through an interferometer and have the possibility for in-

teraction, the observer at rest should be able to monitor interference patterns. Turning the 

system by a degree of 90° towards the direction of motion the interference effect should 

disappear. 

 Out of these considerations it is clear, that a discrepancy between the results of the num-

ber of oscillations between the moving system and the system at rest exists. Corresponding 

to the presented diagrams the observations in these systems should be completely differ-

ent. According to this general theoretical approach the principle of relativity is violated 

here. 

 Not surprisingly in reality this is not the case, however. The explanation for this is that 

measurements by the moving observer cannot directly be compared with that of an ob-

server at rest. Because of the dependency of measurements of electromagnetic waves on 

time and space, the two observers would find different results using this approach. To re-

solve the problem, it is therefore necessary to introduce the phase velocity, which is equal 

to the speed of light for both observers. 

 When considerations of phase velocities are used, the conformity between the numbers 

of oscillations detected by the two observers can be derived without difficulty. This is in 

particular valid for the results in the discussed cases a, d and g. Because of the impact of this 

important feature the effect of phase velocity is discussed in detail in the following chapter. 

8.2  Concept of phase velocity to overcome the discrepancies for observers 

 

During an exchange of signals between two observers, which are generally using light 

beams for transmission, in a standard case harmonic oscillation will be used. It is not pos-

sible to integrate these oscillations directly into a space-time-diagram (i.e. in a Minkowski-

diagram). In short summary waves are typically considered in a way, that one of the varia-

bles (i.e. time) is looked at as constant and the other (for this example: space) is varying. 

Taking the simple example of a wave, which is produced when a stone is thrown into water, 
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the investigation could be performed by taking a picture and measuring the distance of the 

wave peaks (in this case time is constant). If in a further measurement the distance is kept 

constant, e.g. by measuring a small cork moving up and down, then the frequency of the 

wave can be calculated by measuring the time between two defined points e.g. the maxima. 

Out of the combination of these measurements the velocity of the wave, which is travelling 

with a certain phase velocity, can be calculated. It is also possible, however, to observe the 

moving maxima in a direct way and measure the dependencies of time and the traveled way 

by taking a video. 

 The situation can be described as follows: The oscillation is dependent on space (𝑥) and 

time (𝑡) and is corresponding to the following equation [46a] 

 

𝑤(𝑥, 𝑡) = 𝐴0cos (
2𝜋

𝑇
𝑡 −

2𝜋

𝜆
𝑥 − 𝛼)                                        (8.10) 

 In this case 𝐴0 is the amplitude, 𝑇 is the oscillation time (considering a stationary view), 

𝜆 is the oscillation length (considering constant time) and 𝛼 is the angle at the starting point. 

 
 

Fig. 8.2: Oscillation diagram for constant space (𝑥 = 0) and constant time (𝑡 = 0)  

 with starting point 𝛼 = 0 

 

A major simplification is possible, when the variation of space and time of a certain point of 

the wave (i.e. the maximum) is defined as constant (see Fig. 8.3). In this case the cosine 

remains unchanged, and it applies 

 
2𝜋

𝑇
𝑡 −

2𝜋

𝜆
𝑥 − 𝛼 = 𝑐𝑜𝑛𝑠𝑡.                                                   (8.11) 

After differentiation of this equation 

𝛼 = 0, 𝑥 = 0 

𝑤(0, 𝑡) = 𝐴0 𝑐𝑜𝑠
2𝜋

𝑇
𝑡 

𝛼 = 0, 𝑡 = 0 

𝑤(𝑥, 0) = 𝐴0 𝑐𝑜𝑠
2𝜋

𝜆
𝑥 
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𝛥𝑡

𝑇
−
𝛥𝑥

𝜆
= 0                                                                (8.12) 

the phase velocity 𝑢 of this point will be described by 

𝑢 = lim  
∆→0

 
∆𝑥

∆𝑡
=
𝜆

𝑇
                                                          (8.13) 

Without the dispersion by a medium (as it is the case in a vacuum), the formula develops to 

𝑢 =
𝜆

𝑇
= 𝑐                                                                 (8.14) 

This derivation using the mathematical concept of differential quotient and limes provides 

a good explanation of the physical principle [46a], more complex deductions with 4-vector 

and gradient are also possible and obviously come to the same solution [27]. 

 
 
Fig.8.3: Phase velocity 𝑢 as propagation speed of defined parts of the oscillation 

 (i.e. the maximum) 

Thus, the main conclusion is that the phase velocity of an electromagnetic wave measured 

in any arbitrary inertial system is exactly equal to the speed of light. In Fig. 8.4 the phase 

velocity is presented as a function of space and time. Because it obviously shows a linear 

characteristic the graph will be a straight line with origin zero and, after scaling, it will dis-

play an angle of 45° to the 𝑥- and 𝑡-coordinate. The right part of the diagram is showing in 

addition the graphs for a moving observer with velocities of 𝑣 = 0.2𝑐;  0.5𝑐; 0.8𝑐. 

 

Fig. 8.4: Left: Phase velocity as a function of time and space (scaled diagram) 

 Right: Velocities of moved observers with different speed added 

0,2     0,5      0,8    1 

 1  1 

 1  1 

𝑤(𝑥, 𝑡 + ∆𝑡) 𝑤(𝑥, 𝑡) 

𝑢 · ∆𝑡 
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 At this point it becomes clear, that this presentation is exactly coherent with a Minkow-

ski-diagram. This means, that a phase-propagation (i.e. the maximum of a wave) can be 

taken as a short light pulse and therefore it can be incorporated in diagrams of this type and 

evaluated in the same way. 

 In Fig. 8.5 a situation like this is illustrated. The presentation of this diagram seems to be 

unusual at first sight. Having a closer look, however, some important issues can be derived 

from it, so that the appearance of this Minkowski-diagram will be discussed in detail in the 

following. Many important examinations are possible, but a clear arrangement in one dia-

gram would not be reasonable because of the quantity of information. So, it was decided to 

use in Figs. 8.6 and 8.7 the same chart, covering additional information while others were 

skipped. 

 

 
Fig. 8.5: Minkowski diagram for the exchange of signals inside a moving system 

 

 First the general setting of the chosen experiment shall be discussed: A laboratory with 

the length 2𝑎 is moving relative to another observer at rest with the speed 𝑣 = 0,5 𝑐. The 

diagram is scaled to 1 concerning space and time (this means that 𝑎 = 1 for a laboratory at 

rest). At time zero the moving observer starts from point E0 with the transmission of a har-

monic oscillation of 1Hz and is beginning with a maximum. The oscillation is reflected at 

point A and sent back to E. 

 The observer at rest will find, that the moved laboratory has a length of 2𝑎/𝛾. Because 

of his view on the time dilatation in the moved system, he will additionally find that the 

𝑣 = 0,5𝑐 
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oscillation will end at ∆𝑇0 = 𝛾 (at point E1). The following maxima will therefore start at E1, 

E2 etc. and can also be interpreted as separate pulses and so it is possible to record them in 

this diagram as well. 

 
Fig. 8.6: Minkowski diagram for the exchange of signals in a moving system 

  (middle section), variation of Fig. 8.5 

 

The maximum of the oscillation it is moving at a speed of 𝑣 = 𝑐 and is reaching the middle 

at 

𝑡𝑀1 =  
1

γ · (1 −
𝑣
𝑐)
                                                         (8.15) 

(see Fig. 8.6) Point A will be reached after twice the time. When the wave is reflected, the 

point M2 will be passed at 

𝑡𝑀2 =    
2

γ · (1 −
𝑣
𝑐)
+  

1

γ · (1 +
𝑣
𝑐)
= γ · (3 +

𝑣

𝑐
)                            (8.16) 

 This is exactly the value, that would be yielded by a pulse emitted from E2 (equivalent to 

the maximum of a wave) which leads to 

𝑡𝑀2 =  2γ + 
1

γ · (1 −
𝑣
𝑐)
= γ · (3 +

𝑣

𝑐
)                                       (8.17) 

𝑣 = 0,5𝑐 
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 This calculation shows that the situation in the middle of the moved laboratory reveals 

exact the same conditions compared to an observer at rest. In the latter case a signal would 

be emitted by E0, that after reflection arrives back at 𝑡 = 3 in the middle of the laboratory. 

Another signal, that is sent from E0 at 𝑡 = 2 would reach the middle at the same time. This 

is as already presented also valid for the moved observer when phase velocities are consid-

ered. 

 The relations presented here can easily be transferred to other situations, if for example 

frequency, geometry or other conditions are modified. This is leading to the general state-

ment, that the measurement of the number of oscillations under no circumstances can be 

used to measure the state of motion of an inertial system. 

 

 
 

Fig. 8.7: Minkowski diagram for the exchange of signals in a moving system, 

 variation of Fig. 8.5 

 

 Furthermore, the values for oscillation time and frequency of an observer at rest shall be 

derived out of this diagram. If the testing object is increasing the distance the value is 

∆𝑇1 =
1

𝑓1
=

1

𝛾 · (1 −
𝑣
𝑐)
                                                    (8.18) 

and when it is approaching 

𝑣 = 0,5𝑐 
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∆𝑇2 =
1

𝑓2
=

1

𝛾 · (1 +
𝑣
𝑐)
                                                     (8.19) 

 This is in accordance with standard publications (i.e. [46b]). 

 As main result it is possible to prove, that concerning the radiation of light in any arbi-

trary inertial system the phase velocity of the light emitted by one source is equal to the 

measurement of the speed of light in any of these systems (this is of course not the case for 

the simple example of surface waves on water!). The important finding derived by the con-

siderations presented here, is that during the transition from an arbitrary inertial system 

to another not the speed of light, but the phase velocity remains unchanged. It was clearly 

shown that this is required by the theory of Special Relativity and otherwise contradictions 

would appear. 

 In the literature the importance of phase velocity in connection with Special Relativity is 

treated very differently. In a normal case it is not mentioned at all in books, lecture notes or 

publications, but there is an exception in the work of R. K. Pathria [16]. Herein the “invari-

ance of phase velocities” between systems moved relative to each other is examined in ex-

tenso, but no further consequences concerning the theory are discussed. 

The discovered relations are of great importance for the theory. It is interesting, how-

ever, that it is not possible to find this concept in the literature up to now. Because of this 

reason it is necessary to reconsider classical experiments, in particular those of Michelson-

Morley and also Kennedy-Thorndike. It will be demonstrated that the use of the concept 

presented here will lead to a different understanding of the results. This will be presented 

in detail in chapter 9. 

 Finally, it is possible - before developing the theoretical background further - to present 

a first result of the examinations: 

• It is possible, that the universe is at absolute rest and all electromagnetic waves are 

travelling with the speed of light 𝑐 inside this system. 

• Observers in any inertial system with an arbitrary velocity relative it can only meas-

ure the phase velocity of these waves and doing this they will find also the same 

value of 𝑐. 

 At first these perceptions will be used to carry out new interpretations of classical ex-

perimental results. After further discussions finally in chapter 13 a proposal for modifica-

tion of the theory of special relativity will be presented. 
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9.  New interpretation of experimental 
results 

In the following the most important experiments with impact on Special Relativity will be 

presented and discussed. In particular concerning the Michelson-Morley- and the Kennedy-

Thorndike-Experiments new considerations will be derived when the concept of phase ve-

locity is used. In addition, other fundamental experiments will be described in a short way. 

9.1  Michelson-Morley-Experiment 

At first the experiment conducted by A. A. Michelson and E. M. Morley will be discussed in 

detail. Because of the high importance, subsequently a comprehensive literature survey will 

be presented, and the conclusions derived from this test will be described. 

9.1.1 Experimental layout and evaluation 

The layout of the experiment presented in Fig. 9.1 is a reproduction out of the original pub-

lication in 1887 [7]. In this figure the set-up is shown, where a light beam at mirror 𝑎 is 

partly reflected in direction 𝑎𝑏 and partly transmitted in direction 𝑎𝑐, being returned by 

the mirrors 𝑏 and 𝑐, then reflected resp. transmitted to 𝑑 and at this point examined with 

an interferometer. Part 1 of Fig. 9.1 is presenting the position at rest; in part 2 the situation 

of a moved system (against the supposed ether) is given. 

 Theoretical basis of the experiment was the assumption, that the speed of light and the 

speed against the ether at rest could be added and that it would be possible to evaluate the 

latter by precise measurements. The whole time of going and coming between 𝑎 and 𝑐 can 

be calculated using 

𝑇∥ =
𝐷

𝑐 + 𝑣
+

𝐷

𝑐 − 𝑣
=

2𝐷𝑐

𝑐2 − 𝑣2
                                              (9.01) 

where 𝐷 is the distance between 𝑎 and 𝑐. The distance traveled in this time is 

𝐷∥ = 2𝐷
𝑐2

𝑐2 − 𝑣2
                                                           (9.02) 
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Fig. 9.1:   Layout of the Michelson-Morley-Experiment, reproduction from original report [7] 

 

In transverse direction the calculation yield 

𝑇⊥ =
𝐷⊥
𝑣⊥
                                                                 (9.03) 

and 
𝑣⊥
2 = 𝑐2 + 𝑣2                                                               (9.04) 

𝐷⊥ = 2𝐷√1 +
𝑣2

𝑐2
                                                         (9.05) 

 Neglecting terms of 4th order and higher the equations (9.02) and (9.05) after Taylor 

expansion develop to 

𝐷∥ ≈ 2𝐷 (1 +
𝑣2

𝑐2
)                                                         (9.06) 

𝐷⊥ ≈ 2𝐷 (1 +
𝑣2

2𝑐2
)                                                       (9.07) 

Now the difference is 

∆𝐷 = 𝐷∥−𝐷⊥ = 2𝐷 (1 +
𝑣2

𝑐2
) − 2𝐷 (1 +

𝑣2

2𝑐2
) = 𝐷

𝑣2

𝑐2
                       (9.08) 

 Looking at the calculation with today’s knowledge concerning the speed of light, it con-

tains the obvious problem that the calculations predict velocities 𝑣 > 𝑐. In the following it 

will be shown that this will not be the case when correct calculations are used. 
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 First the value of 𝑇∥ will be considered. For this purpose, the calculations in chapter 2 are 

used (see Tab. 2.1): 

𝑇∥ =
𝐷

𝑐 (1 −
𝑣
𝑐)
+

𝐷

𝑐 (1 +
𝑣
𝑐)
=
2𝐷

𝑐
𝛾2                                         (9.09) 

 It is clear at first sight that for the consideration according to this approach the time for 

going and coming is exactly opposite to Michelson’s ideas, but that the addition of both re-

veals the same result. 

 In transverse direction the calculation is slightly different. For the calculation, the de-

pendencies shown in Fig. 9.2 are used (see also chapters 2.1.2 and 2.2.3). 

 

 
 

Fig. 9.2: Dependency between distance 𝐷 to the reflector and velocities 𝑣 and 𝑐. 
 

So, the value for 𝑇⊥ is 

𝑇⊥ =
2𝐷

√𝑐2 − 𝑣2
=
2𝐷

𝑐
𝛾                                                     (9.10) 

and 

𝐷⊥ =
2𝐷

√1 −
𝑣2

𝑐2

= 2𝐷𝛾                                                       (9.11) 

 This result differs from the conclusion of Michelson according to Eq. (9.05). The differ-

ence is appearing with the following term and the connected Taylor expansion 

√1 +
𝑣2

𝑐2
= 1 +

1

2

𝑣2

𝑐2
−
1

8

𝑣4

𝑐4
+
3

48

𝑣6

𝑐6
−⋯                                   (9.12) 

in contrast to the correct derivation 

 

1

√1 −
𝑣2

𝑐2

= 1 +
1

2

𝑣2

𝑐2
+
3

8

𝑣4

𝑐4
+
15

48

𝑣6

𝑐6
+⋯                                   (9.13) 
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 If terms of 4th order or higher are neglected the results are the same and both calcula-

tions can be used without restrictions. 

 Now the calculation reveals 

∆𝐷 =
𝑇∥ − 𝑇⊥
𝑐

= 2𝐷(γ2 − 𝛾)                                                (9.14) 

and for 𝑣 ≪ 𝑐 because of 

𝛾 ≈ 1 +
𝑣2

2𝑐2
                                                             (9.15) 

the result is 

 ∆𝐷 ≈ 2𝐷((1 +
𝑣2

2𝑐2
)

2

− (1 +
𝑣2

2𝑐2
)) ≈ 𝐷

𝑣2

𝑐2
                          (9.16) 

 A. A. Michelson showed in his calculations, that the experiment was able to detect veloc-

ities of about 8km/s but a null result was received instead. The motion of the earth around 

the sun (without further consideration of the motion of the sun compared to the galaxy) 

reveals however values of approximately 30km/s. 

 G. F. FitzGerald proposed already in the year 1889 the idea that the length of material 

bodies changes, according as there are moving through the ether or across [8]. He expected 

an amount depending on the square of the ratio of their velocities to that of light. The same 

issue was also predicted independently by H. A. Lorentz three years later [13]. After the 

Lorentz equations were fully developed it was shown that contraction of space and dilata-

tion of time is covered by the same parameter and the factor 𝛾 was defined (see Eq. 1.03), 

i.e. [12,13]. 

 The results of the experiment were further leading to the conclusion that the proposed 

“luminiferous ether" could not exist. This interpretation is correct in so far, if the radiation 

of light is thought to be connected in a simple way, as e.g. transporting sound through a 

carrier medium like gas or a liquid. If in a space, however, which is considered as absolutely 

at rest, time dilatation and spatial contraction in direction of a moved body belong to the 

characteristics of space, then a simple solution of the problem is also possible. Considering 

the possible effects of constant phase velocity, then during changes between different iner-

tial systems any discrepancies will disappear. 

 Summing up the results of the Michelson-Morley-Experiment it can be stated, that in the 

direction of movement a contraction of space must take place. This contrasted with the as-

sumptions at the end of the 19th century that ether-wind like in a gas would exist. Further 

interpretations, however, concerning “luminiferous ether” are not possible. 

9.1.2  Literature review 

The Michelson-Morley-Experiment is discussed in many publications. The “Conference on 

the Michelson-Morley Experiment” held in Pasadena at the Mount Wilson observatory in 

1927 is for sure one of its highlights. Because of the paramount importance of the partici-

pating scientists and the detailed discussions laid down in the conference paper published 

in1928 [49] a very meaningful document of the scientific standard of that time is preserved. 

The basic understanding has still not changed substantially until today. Because of the 
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particular significance in the following the detailed topics and discussions of the Conference 

will be presented. Beside the scientific importance there are further interesting historical 

highlights which will be recognized as well. 

 First A. A. Michelson presented a report about the historical background [49a]. He told 

about the first trials at the Helmholtz-Institute in Berlin, which were not successful because 

of disturbing traffic and were later repeated at the Observatory at Potsdam. The null result 

that was achieved was questioned by many scientists of that time, because of the short 

length of the detector arms of the device used. The important improvements realized by E. 

W. Morley at the University of Cleveland later led to an experiment without doubt. 

The theoretical background of the experiment was presented by H. A. Lorentz [49b]. His 

considerations were far more complex, especially concerning the dependencies of angular 

measurements which were not covered by A. A. Michelson before (see chapter 7.1.1). Sub-

sequently D. C. Miller [49c] summarized the status of the results of the experiments at that 

time. He also reported about measurements, which showed positive results concerning the 

measuring of the ether (Remark: These results could not be repeated in later experiments). 

R. S. Kennedy then presented information about the special measurement technique of the 

interferometer [49d]. 

 E. R. Hedrick [49e] and afterwards P. S. Epstein [49f] were covering in their presenta-

tions additional theoretical aspects. The focus was directed to the difficulties which occur 

when a mirror is moved relative to potential ether at rest. A detailed interpretation of the 

work of A. Righi [50] concerning this subject was presented, although much older publica-

tions are existing (e.g. [51,52]). (Remark: Because of the sudden death of the Italian physi-

cist A. Righi only very few and fragmentary records were available. These were summarized 

and edited by J. Stein S. J. from the observatory of the Vatican [50]). E. R. Hedrick presented 

a list of 15 publications, which are dealing with theoretical interference-problems concern-

ing the Michelson-Morley-Experiment [49e]. 

 It is noteworthy that some of the results of the cited authors differ significantly. A. Righi 

expressed the opinion that the Michelson-Morley-Experiment, because of the angular meas-

urement of the mirror through the ether, could not reveal any result; E. R. Hedrick however 

concluded that these effects exist but could be neglected. 

 Without further going into detail, it can be stated, that in all cases only the shifting of the 

mirror in relation to the ether is considered but not the movement of the whole system with 

the interferometer. H. A. Lorentz made a statement in the discussion, that the presented 

calculations regarding a moved mirror showed deviations to his results and encouraged an 

additional survey [49g]. A consideration of phase velocity was not taken into account. H. A. 

Lorentz died in the year after the conference and no reports exist, whether he ever again 

dealt with the problem. This is also valid for other authors and no statement of the partici-

pants concerning this matter is available. 

9.2  Kennedy-Thorndike-Experiment 

In this experiment performed by R. J. Kennedy and E. M. Thorndike also, like in the Michel-

son-Morley experiment, an interferometer as testing equipment was used. The chosen set-
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up is different from the Michelson-Morley-Experiment mainly using measuring arms with 

different length in the design of the interferometer. In addition, the very stable construction 

and the extreme accuracy of the temperature control made it possible to conduct long-term 

measurements. The measuring device was surrounded by a water system that made it pos-

sible to keep the temperature deviations at a level lower than 1/1000 °C. With this equip-

ment experiments were conducted that lasted weeks or even months. 

 In principle the experiment follows the idea, that the measurement device is not moved 

or tilted but that the deviations in direction to the ether are supposed to be executed by the 

rotation of the earth and the circulation around the sun, and thus tilting and also accelera-

tions are caused by the movements of the earth [16]. In the literature interpretations exist, 

where the rotation of the device relates to the Michelson-Morley experiment and only the 

acceleration is referred to as the original Kennedy-Thorndike experiment [54]. Because of 

the general situation, that both effects (rotation, acceleration) are always connected to each 

other, they shall be discussed here together as well. 

 During this experiment and in following trials with an extraordinary increase of the pre-

cision − like for the Michelson-Morley-Experiment − a null-result was achieved.  

 In the following it shall be demonstrated first that the interpretation by the authors [16] 

in the year 1932 because of some conceptual shortcomings was not correct. Because of this 

reason actual considerations follow modified approaches like presented for example by D. 

Giulini [19]. It shall be demonstrated, however, that these new concepts also contain weak 

points and that it is possible to overcome this problem by a modified interpretation. This 

will now be discussed in detail and afterwards a final examination will be presented. 

9.2.1  Interpretation according to the original publication 

A system S is considered, where a light beam during time 𝑑𝑡 is traveling the distance 𝑑𝑠 

[16]. Then it applies 

𝑑𝑠 = 𝑐𝑑𝑡                                                                   (9.20) 

 If now a system S′ is introduced which is moving relative to S with a velocity of 𝑣 then 

this leads to 

𝑐2(𝑑𝑡′)2 = (𝑑𝑠′)2 + 𝑣2(𝑑𝑡′)2 + 2𝑣𝑑𝑠′𝑑𝑡′𝑐𝑜𝑠𝜃′                              (9.21) 

where 𝜃′ is the angle between the radiation of the light and the moving direction. For 𝜃′ =

0 it applies 

𝑐𝑑𝑡′ = 𝑑𝑠′ + 𝑣𝑑𝑡′                                                          (9.22) 

 If the results derived by the Michelson-Morley-Experiment are considered, the following 

relations in longitudinal direction (𝜃 resp.  𝜃′ = 0°) and further in transverse direction 

(𝜃 resp.  𝜃′ = 90°) will be found. 
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 Moved system S′  System at rest S 

𝜃′ = 0° 𝑑𝑡′ =
𝑑𝑠′

𝑐 (1 −
𝑣
𝑐)

 𝜃 = 0° 𝑑𝑡′ =
𝑑𝑠

𝛾𝑐 (1 −
𝑣
𝑐)

 

𝜃′ = 90° 𝑑𝑡′ =
𝑑𝑠′

𝑐
𝛾 𝜃 = 90° 𝑑𝑡′ =

𝑑𝑠

𝑐
𝛾 

 

The integration according to [16] show the following result 

𝑡∥
′ − 𝑡⊥

′ =
𝑠∥
′ − 𝑠⊥

′

𝑐
𝛾                                                         (9.23) 

 Here conceptual problems become apparent, because only the path in direction to the 

reflecting mirror is considered, but not the way back. For the distance to the mirror in mov-

ing direction and back different values will appear. Further it is assumed, that spatial con-

traction and time dilatation are exactly the same, what is not possible at this stage of the 

interpretation without further assumptions. Therefore, the interpretation of the original 

publication shall be stopped here and thus switched to modern descriptions of the experi-

ment. 

9.2.2  Concept according to actual publications 

In recent publications (e.g. [19]) the presentation of the experiment is different. It is only 

possible to derive the equation 

𝑡∥
′ − 𝑡⊥

′ = 𝐵
2(𝑠∥

′ − 𝑠⊥
′ )

𝑐
 𝛾                                                    (9.24) 

 
where the constant 𝐵 will be measured later, for example by using the Ives-Stilwell-exper-

iment (see chapter 9.3), and then shows a value of 𝐵 = 1. 

 The real problem concerning the interpretation of the Kennedy-Thorndike-experiment 

using this concept is the principle of evaluation. Hereby the situation occurs that according 

to equation 

∆𝑁 = 𝑓 · 𝐵
2(𝑠∥

′ − 𝑠⊥
′ )

𝑐
 𝛾                                                     (9.25) 

with 𝑓 as frequency a dependency is established between the number of oscillations of a 

light beam going and coming the way the from a light source to an interferometer and the 

connected frequency. If the different length of the measuring arms is taken into account, 

however, it is clear at first sight that a light beam, which is split and sent out in different 

directions obviously after reflection does not rejoin at the same place, and that a certain 

delay will be observed. In the following an alternative interpretation of the experiment will 

be derived where this condition is respected. 
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9.2.3  New interpretation of the experiment 
 

As already stated, one of the most important conditions of the experimental set-up is the 

fact, that measuring arms with different lengths are used. Because of this situation it makes 

no sense to compare the total amount of oscillations of the light beams between these arms. 

The concept of constant phase velocity of light discussed in chapter 8 opens a different pos-

sibility on the apparent effects of interference. When an interaction between light pulses is 

observed and a comparison at an interferometer is conducted it becomes clear, that the 

pulse, which is running the way of going and coming at the shorter measuring arm must be 

considered as delayed compared to the other one. 

 When the lengths of the measuring arms are defined as 𝐿𝐶  (long) and 𝐿𝐵 (short) then the 

time for the delay 𝑇0 until the transmitting of a pulse in a system at rest is 

𝑇0 =
2𝐿𝐶
𝑐
−
2𝐿𝐵
𝑐
=
2𝐿𝐶(1−𝑘𝐴)

𝑐
                                             (9.30) 

with 

𝑘𝐴 =
𝐿𝐵
𝐿𝐶
                                                                  (9.31) 

defined as the constant for the ratio of the arm lengths. The total time for going and coming 

of a light beam is therefore  

𝑇𝐵 =
2𝐿𝐶(1−𝑘𝐴 )

𝑐
+
2𝐿𝐶𝑘𝐴
𝑐

                                                (9.32) 

𝑇𝐶 =
2𝐿𝐶
𝑐
                                                                  (9.33) 

where Eq. (9.32) and Eq. (9.33) are obviously equal. If now the experimental set-up is mov-

ing with measuring arms longitudinal and transverse to the moving direction, and for the 

arm in longitudinal direction a spatial reduction of 𝛾 derived by the results of the Michel-

son-Morley experiment is valid, then the following calculations will be derived for the dif-

ferent situations 

𝑇∥𝐵 = 𝑇⊥𝐵 = 𝑎
2𝐿𝐶(1−𝑘𝐴 )

𝑐
+ 𝑏

2𝐿𝐶𝑘𝐴
𝑐

𝛾                                     (9.34) 

 𝑇∥𝐶 = 𝑇⊥𝐶 = 𝑏
2𝐿𝐶
𝑐
𝛾                                                       (9.35) 

where 𝑎 is an initially unknown constant for the correction of the starting time of the signal 

at the shorter arm. The additional constant 𝑏 is introduced because the result of the Michel-

son-Morley experiment shows that just the ratio between the contraction in longitudinal 

and transverse direction can be derived but not the exact dimension. 

 Now equations Eq. (9.34) and Eq. (9.35) are set equal 

𝑏
2𝐿𝐶
𝑐
𝛾 = 𝑎

2𝐿𝐶(1−𝑘𝐴)

𝑐
+ 𝑏

2𝐿𝐶𝑘𝐴
𝑐

𝛾                                        (9.36) 

𝑏
2𝐿𝐶
𝑐
(1 − 𝑘𝐴) 𝛾 = 𝑎

2𝐿𝐶(1−𝑘𝐴)

𝑐
                                            (9.37) 
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Fig. 9.3: Kennedy-Thorndike experiment: Rotation 

 

 

Fig. 9.4: Kennedy-Thorndike experiment: Acceleration 

𝑣 = 0,5𝑐 

 

𝑘𝐴 =
𝐿𝐵
𝐿𝐶
=
1

3
 

 

𝑘𝐴 =
𝐿𝐵
𝐿𝐶
=
1

3
 

𝑣 = 0,5𝑐 

𝑣 = 0,6𝑐 
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with 
𝑎

𝑏
= 𝛾                                                                     (9.38) 

 The calculation shows that a zero result for the measurements is only possible when the 

ratio between the constant for the starting time of the shorter measuring arm and the factor 

for the spatial contraction are exactly equal to the constant 𝛾 of the Lorentz Equations. To-

day we know, derived by additional experiments concerning time dilatation (e.g. by Ives-

Stilwell, see chapter 9.3), that 𝑏 = 1. During the time of the first execution of the experiment 

in the year 1932, however, this was not the case. 

 It is possible to illustrate the experimental set-up as presented in Fig. 9.3 and Fig. 9.4, 

were for the relation between the lengths of the measuring arms a ratio of 1/3 was chosen. 

At first the behavior during a rotation is presented (Fig. 9.3) afterwards the situation for 

acceleration (Fig. 9.4). In reality, it will be generally the case that both situations cannot be 

separated and will appear together, so that the effects will superimpose each other. Light 

pulses are transmitted and reflected at mirrors B and C; the denomination  C∥, C⊥,B∥ and B⊥ 

shows, whether the reflection will be in longitudinal or in transverse direction relative to 

the movement of the system. 

 The coordinates of the relevant points were calculated and are presented in table 9.1. 

The format 𝑥, 𝑦, 𝑡 was chosen; in the direction of 𝑧 no movement takes place and so those 

values were not included (this means 𝑧 = 0). For the relation between longitudinal and 

transverse direction the spatial contraction was considered by the factor of 𝛾 according to 

the results of the Michelson-Morley experiment. 

Coordinate 𝒙 𝒚 𝒕 

C∥ 
𝐿𝐶

𝛾 (1 −
𝑣
𝑐
)

 0 
𝐿𝐶

𝛾𝑐 (1 −
𝑣
𝑐
)
 

C⊥ 
γ𝐿𝐶𝑣

𝑐
  𝐿𝐶 

γ𝐿𝐶
𝑐

 

A1 
2γ𝐿𝐶𝑣

𝑐
(1 − 𝑘𝐴) 0 

2γ𝐿𝐶
𝑐
(1 − 𝑘𝐴) 

B∥ 
2γ𝐿𝐶𝑣

𝑐
(1 − 𝑘𝐴) +

𝐿𝐶𝑘𝐴

𝛾 (1 −
𝑣
𝑐)

 0 
2γ𝐿𝐶
𝑐
(1 − 𝑘𝐴) +

𝐿𝐶𝑘𝐴

𝛾𝑐 (1 −
𝑣
𝑐)

 

B⊥ 
2γ𝐿𝐶𝑣

𝑐
(1 − 𝑘𝐴) +

γ𝐿𝐶𝑣

𝑐
𝑘𝐴  𝐿𝐶𝑘𝐴 

2γ𝐿𝐶
𝑐
(1 − 𝑘𝐴) +

γ𝐿𝐶
𝑐
𝑘𝐴 

A2 
2γ𝐿𝐶𝑣

𝑐
 0 

2γ𝐿𝐶
𝑐

 

Table 9.1: Presentation of coordinates according to Fig. 9.3 
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 The values in Table 9.1 for A2 can be derived according to the effective length of the beam 

in 4 different ways which are all leading to the same results. This is presented in Table 9.2. 

It was presented here, that a rotation of the apparatus and the comparison between a 

moved system and a system at rest show the same results. The calculation reveals further 

that correction factors for the starting time and for the spatial contraction are equal and 

must be exactly 𝛾 in both cases. This will be discussed further in more detail in the next 

chapter. 

 The presentation for acceleration in Fig. 9.4 shows the same correlations already pre-

sented in chapters 4 and 5 and so there is no need for further evaluation. There are in prin-

ciple no discrepancies when transitions between systems with different velocities are ana-

lyzed. 

Path 
over: 

𝒙 𝒕 

C∥ 
𝐿𝐶

𝛾 (1 −
𝑣
𝑐)
−

𝐿𝐶

𝛾 (1 +
𝑣
𝑐)

 
𝐿𝐶

𝛾𝑐 (1 −
𝑣
𝑐)
+

𝐿𝐶

𝛾𝑐 (1 +
𝑣
𝑐)

 

C⊥ 
γ𝐿𝐶𝑣

𝑐
+
γ𝐿𝐶𝑣

𝑐
 

γ𝐿𝐶
𝑐
+
γ𝐿𝐶
𝑐

 

B∥ 
2γ𝐿𝐶𝑣

𝑐
(1 − 𝑘𝐴) +

𝐿𝐶𝑘𝐴

𝛾 (1 −
𝑣
𝑐)
−

𝐿𝐶𝑘𝐴

𝛾 (1 +
𝑣
𝑐)

 
2γ𝐿𝐶
𝑐
(1 − 𝑘𝐴) +

𝐿𝐶𝑘𝐴

𝛾𝑐 (1 −
𝑣
𝑐)
+

𝐿𝐶𝑘𝐴

𝛾𝑐 (1 +
𝑣
𝑐)

 

B⊥ 
2γ𝐿𝐶𝑣

𝑐
(1 − 𝑘𝐴) +

γ𝐿𝐶𝑣

𝑐
𝑘𝐴 +

γ𝐿𝐶𝑣

𝑐
𝑘𝐴 

2γ𝐿𝐶
𝑐
(1 − 𝑘𝐴) +

γ𝐿𝐶
𝑐
𝑘𝐴 +

γ𝐿𝐶
𝑐
𝑘𝐴 

 
Table 9.2: Calculations of value A2 using paths over the positions C∥,C⊥, B∥ and B⊥. 

  All calculations reveal the same result. 

 

9.2.4  Evaluation of results 
 

When the results of the experiments of Michelson-Morley and Kennedy-Thorndike with the 

apparent zero results are viewed closely it becomes clear, that a final definition of the con-

stants 𝑎 and 𝑏 is not possible without further information and a statement about the validity 

of the Lorentz equations will remain incomplete. Usually the Ives-Stilwell-experiment will 

be used for this purpose, which is described shortly in chapter 9.3. It is in addition also 

possible to use other simple possibilities to validate the results. 

 If for example the assumption is made that 𝑎 = 1 and thus 𝑏 = 1 𝛾⁄ , this would mean that 

a moving system is not subject to any time dilatation at all, but on the other hand the spatial 

contraction in moving direction would be of the factor 𝛾2 and in addition in transverse di-

rection the factor 𝛾 must be taken. 

 Tests concerning effects like these are not complex and could be subject to several dif-

ferent experiments. This would be possible for example for the exchange of signals between 
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moving observers (see chapter 2.1) or for the frequency measurements of moving bodies 

(chapter 8). Beside the differences in the measurements, furthermore the principle of rela-

tivity will be violated, and different results must appear whether a situation is monitored 

by an observer at absolute rest or from a moving system. The deviations are not only valid 

for this example but for all other configurations when the constants are not chosen as 𝑎 =

𝛾 and 𝑏 = 1. 

 The title of the publication from Kennedy and Thorndike was “Experimental Establish-

ment of the Relativity of Time”. Because of the dependencies between the constants 𝑎 and 

𝑏 expressed above it is today generally rejected, that the approach expressed in the head-

line was successful, see e.g. [19]. However, if in the year 1932 the authors would have car-

ried out a correct interpretation by using the principle of constant phase velocity, then al-

ready at that time the statement would have been possible. Independent from this, this ex-

periment with all the improvements in accuracy carried out in the meantime, is an im-

portant tool for the understanding of the nature of signal exchange between moving ob-

servers. 

9.3  Further important experiments 

There are many further pioneering experiments connected with the nature of light and ra-

diation. Those with high importance concerning the evaluations presented here will be dis-

cussed shortly in the following. 

a) Rømer-Experiment 

This was the first experiment with the attempt to measure the speed of light. Most im-

portant was, that it was proved for the first time (in the year 1676!) that the speed of light 

is limited. The detection was conducted by O. C. Rømer measuring the occultation of the 

Jupiter moon Io that occurs earlier when the planet is close to earth and later when the 

distance is larger. With his measurement results C. Huygens in 1678 was able to calculate 

the speed of light and he found a value of ca. 213.000 km/s which is approximately 71% of 

the correct result. 

b) Aberration of light 

This experimental effect was established the first time by J. Bradley in the year 1725. He 

discovered that the star Gamma Draconis showed a small deviation of its position in the sky 

during the progress of a year and supposed that this was caused by the finiteness of the 

speed of light. His measurements already achieved a precision of 2% (for further details see 

also chapter 1.3). 

c) Double star experiment 

The examination of double star systems provided evidence for the first time that the speed 

of light is independent of the speed of the object that is transmitting the signals. These con-

siderations were mainly carried out by W. de Sitter, who was able to verify by spectroscopic 

examinations that the addition of the speeds of light and the emitting source would lead to 

a violation of Kepler’s laws [55]. 
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d) Ives-Stilwell-Experiment 

This experiment is confirming directly that time is running more slowly for a moved ob-

server compared to a reference system [17,18]. To prove this the transversal Doppler Effect 

of light was investigated using canal rays that were approaching or increasing the distance 

to the installed measuring equipment. The values found are showing impressively the value 

of the Lorentz-Factor 𝛾. 

e) Trouton-Noble-Experiment 

In this case a charged capacitor was taken, which could turn free around an axis. In case of 

evidence of the ether it would tilt around this axis because of a reaction which would be 

caused by the rotation of the earth. The basic principle of this experiment is comparable to 

the Michelson-Morley-Experiment. Although electromagnetic effects are not part of the 

considerations presented here the mentioning of this important experiment shall not be 

missed [56]. 

 If additional information is required further experiments can be found in other publica-

tions (e.g. [19,21,57,58]). 

9.4  Final examination of the experiments 

In the year 1949 H. P. Robertson was the first to establish a summarizing classification of 

the different types of measurements and created a concept that is still in use today [59]. The 

following measuring methods and the significance connected with these are defined: 

1. Michelson-Morley: 

The total time required for light to traverse a certain distance and return is inde-

pendent of its direction. 
 

2. Kennedy-Thorndike 

The total time required for light to traverse a closed path is independent of the ve-

locity of the system compared to an arbitrary reference system. 
 

3. Ives-Stilwell 

The frequency of a moving atomic source is reduced by the factor 𝛾 compared to an 
arbitrary reference system. 

 Modern presentations of the experiments are sometimes using slightly different inter-

pretations, but the description shown here is very close to the first classification by Robert-

son. 

 When the relations of the invariance of phase velocity presented before are considered, 

it can be stated that the new improved interpretation of the experiments is leading to a 

better understanding of the processes, but that the fundamental results of the experiments 

are still valid. The Michelson-Morley and the Kennedy-Thorndike experiment are not able 

to describe the situations appearing in moving systems in full detail. It is possible, however, 

to use other simple experiments to validate the results (see chapter 9.2.4). 
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 The question remains, why the great importance of the phase invariance of light between 

systems moving relative to each other was not in focus and is not part of the discussion till 

now. The fundamental principle belongs to the standard knowledge of today’s physics, e.g. 

[46a]. The effect of the movement of an experimental set-up was also discussed quite often 

(see e.g. [49,50,51,52]). Further comprehensive theoretical examinations concerning the 

“invariance of phase-velocity” exist [27]. Despite of the great importance of the discussed 

matter for modern physics up to now no approach was made to combine these findings. It 

seems to be highly likely, that the results presented here are caused mainly by the conse-

quent approach regarding the observation of a system at rest compared to moving systems 

and following the resulting relations. 

 Finally, some examples shall be presented, how the precision of measurements was de-

veloping in the last decades.  

• In the year 1960 the definition of the length of 1 meter was defined in the following 

way using the wavelength: “The metre is the length equal to 1650763.73 wave-

lengths in vacuum of the radiation corresponding to the transition between the lev-

els 2𝑝10 and 5𝑑5 of the krypton 86 atom” [87]. 

• This definition was valid for many years and was then replaced by a new regulation 

with the time as basis. Since 1967 the second has been defined as the duration of 

9192631770 periods of the radiation corresponding to the transition between the 

two hyperfine levels of the ground state of cesium 133 atoms [88]. 

 Without the principle of invariance of the phase velocity both definitions are not possi-

ble, because already smallest movements relative to reference systems containing one of 

these experiments would have led to discrepancies in observations. 

 There is a further aspect referring to the invariance of phase velocity. This is the “fre-

quency comb”, where pulses of extreme shortness are produced with a femtolaser and then 

reflected in a mirror-system to interfere. Thus, a standing wave is produced that is also re-

ferred to as “comb” (to background and historical development see e.g. [53]). It is interest-

ing that this technique is a “hybrid” type of generation of light; the extreme short pulses can 

be interpreted in their collectivity as waves. Here a classical interpretation with the com-

parison of frequencies makes definitely no sense at all. 

  

https://en.wikipedia.org/wiki/Caesium
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10.  Electromagnetism and Gravity 

In the 19th century, electrical and magnetic effects were intensively researched. As already 

described in chapter 1.4, the invention of the first functional battery by Alessandro Volta 

made experimental investigations possible. The chapter also summarizes further details on 

the key developments and the many people involved. 

The most important result is that all electromagnetic processes can be summarized in 

the representation of Maxwell's equations. These are listed in chapter 10.1, followed by a 

formal comparison with the conditions concerning gravity. To understand these relation-

ships, a basic knowledge of vector calculus is required, the most important elements of 

which are summarized briefly in Appendix E. 

10.1  Maxwell’s equations 

The system of Maxwell's equations consists of 4 laws. Their names and a brief explanation 

are given below. The formulaic representation and the basic meanings are summarized in 

Table 12.1. Table 12.2 shows the designation of the formula symbols and the associated 

dimensions. 

1. Gauss’s law 

In the physical fields of electrostatics and electrodynamics, Gauss's law describes 

the electrical flow through a closed surface. It is named after the mathematician 

Carl Friedrich Gauss, who developed the integral theorem named after him for a 

vector field. 

2. Gauss’s law for magnetism 

Analogous to the electric field, this describes the magnetic flux through a closed 

surface. 

3. Faraday’s law 

The law of induction, discovered by Michael Faraday, describes the structure of 

electric fields. 

4. Ampère's law with Maxwell's addition 

Based on André-Marie Ampère's law, this describes the structure of a magnetic 

field. 
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For a better understanding of the relationships, the 4 Maxwell equations in Table 10.1 

have been arranged in such a way that the sequence from the static electric field via the 

dynamic changes in electric and magnetic properties leads to the static magnetic field. The 

coupling of the electric and magnetic field constants represents the connection between the 

two parts. In the right half of the table, the respective meaning of the relationships has been 

added in short words. 

  (1)        ▽⃗⃗⃗⃗· E⃗⃗⃗ =
ρel
ε0
                       

                       F⃗⃗ =
Q1 Q2
4πε0s

2
·  𝑠0 

                      ε0 = 8,8542 · 10
−12

C2

Nm2
  

Electric Field 
 

Source: Electric Charge 

 

Charges of the same type repel each other 

   (3)      ▽⃗⃗⃗⃗⨯ E⃗⃗⃗ = −
∂B⃗⃗⃗

∂𝑡
 

The change of a magnetic field B⃗⃗⃗ causes 

the build-up of an electric field E⃗⃗⃗ 

(in the form of a closed loop) 

                  ε0μ0 =
1

c2
 

The field constants are coupled  

with the speed of light 

  (4)       ▽⃗⃗⃗⃗⨯ B⃗⃗⃗ = μ0j⃗el − ε0μ0
∂E⃗⃗⃗

∂𝑡
 

The flow of an electric current j⃗el  

and the change of an electric field E⃗⃗⃗  

cause the build-up of a magnetic field B⃗⃗⃗ 

  (2)        ▽⃗⃗⃗⃗· B⃗⃗⃗ = 0 

                      M⃗⃗⃗⃗ = m⃗⃗⃗⃗  ⨯ B⃗⃗⃗ 

                     μ0 = 1,2566 · 10
−6
Ns2

C2
 

Magnetic Field 
 

Free of sources (closed loop) 

 

Similar poles repel each other 

Tab. 10.1: Maxwell's equations and their interpretation (definition of symbols in Table 10.3) 

The numbers of the laws precede the respective formula. 

10.2  Comparison between electric field and gravity 

Due to the formal similarity between the electric field and the gravitational field, it was as-

sumed early on that Maxwell's equations should also apply here. Heaviside was the first to 

put forward this thesis in 1895. Today, there is a general consensus that this assumption is 

correct but only applies to the limit range of small masses and velocities [94]. For other 

conditions, especially when processes with large masses, such as black holes, are 
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considered, other relationships apply and space curvature etc. must be taken into account, 

as is the case in the general theory of relativity, for example. 

There is a formal difference between the representations of the electric field and gravity. 

Because the relationships for the electric field were derived for a homogeneous situation 

(as it is the case in a capacitor, for example, with Q as charge and s as plate distance), but 

gravitation for a spatial distribution (with m as mass, r as radius), the calculations for the 

forces differ: 

Force in electric fields Force in gravitational fields 

F⃗⃗ =
Q1 Q2
4πε0s2

·  𝑠0            (10.01) F⃗⃗ = − 𝐺 
𝑚1 m2
𝑟2

·  𝑟0               (10.02) 

Since the following task is a comparison of the fields, it makes sense to standardize the 

representation and convert one of the quantities accordingly. If the gravitational constant 

is chosen for this, the result is 

𝐺′ =
1

4π𝐺
 

If this modified formula is used, a comparison results in the form shown in Table 10.2. 

Further the Maxwell equations are presented here in a modified form, in which the mag-

netic field constant is not used and the coupling with the speed of light is considered instead 

(see Tab 10.1). In this way, it is not necessary to redefine corresponding quantities for the 

gravitational field. The resulting analogy to Maxwell's equations leads to the definition of a 

system of equations whose physical meaning is generally interpreted today as "Gravitoelec-

tromagnetism (GEM)" [94]. 

Maxwell's equations for 

Electromagnetism 

Maxwell's equations for 

Gravitoelectromagnetism 

  (1)        ▽⃗⃗⃗⃗· E⃗⃗⃗ =
ρel
ε0

 (1)        ▽⃗⃗⃗⃗· E⃗⃗⃗g = −
ρg

𝐺′
 

  (3)      ▽⃗⃗⃗⃗⨯ E⃗⃗⃗ = −
∂B⃗⃗⃗

∂𝑡
 (3)      ▽⃗⃗⃗⃗⨯ E⃗⃗⃗g = −

∂B⃗⃗⃗g

∂𝑡
 

  (4)       ▽⃗⃗⃗⃗⨯ B⃗⃗⃗ =
j⃗el

ε0 · c2
−
1

c2
∂E⃗⃗⃗

∂𝑡
 (4)       ▽⃗⃗⃗⃗⨯ B⃗⃗⃗g = −

j⃗g

𝐺′ · c2
+
1

c2
∂E⃗⃗⃗g

∂t
 

  (2)          ▽⃗⃗⃗⃗· B⃗⃗⃗ = 0 (2)          ▽⃗⃗⃗⃗· B⃗⃗⃗g = 0 

Tab. 10.2: Application of Maxwell's equations to the gravitational field. 

The numbers of the laws precede the respective formula. 
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It is assumed here that the speed of light c and the propagation speed of gravity are the 

same. 

The equations shown correspond to each other with the difference that the prefixes for 

equations 1 and 4 are different. For equations 1, this firstly has the simple meaning that 

masses attract each other, while similar charges repel each other. With regard to equation 

4, it follows in the same way that poles of the same direction in the GEM field do not repel 

each other as in electromagnetism but attract each other. 

In this context, there is the interesting question of whether there is an equivalent for 

gravity for positive and negative charges. This could apply to the pair of matter/antimatter. 

Of great importance for theoretical considerations is whether matter and antimatter at-

tract, repel or, as some theories predict, attract each other more weakly than pure matter. 

There was a first breakthrough in this regard in 2023, when investigations at CERN on an-

tihydrogen atoms showed that they are attracted by the Earth's gravity [95]. This is one of 

the most interesting current experiments, the accuracy of which is to be further increased 

in order to clarify fundamental questions. 

 

 Physical Variable Dim.  Physical Variable Dim. 

E⃗⃗⃗ Electric field 
N

C
 E⃗⃗⃗g Gravitational field 

m

 s2
 

B⃗⃗⃗ Magnetic flux 
Ns 

Cm 
 B⃗⃗⃗g Gravitomagnetic field 

 1 

 s 
 

M⃗⃗⃗⃗ Moment Nm m⃗⃗⃗⃗ Magnetic dipole moment 
 Cm2

s
 

j⃗el Electric current flow 
C

m2s
 j⃗g Mass flow 

kg

m2s
 

ρel Electrical charge density 
C

 m2
 ρg Mass density 

kg

 m2
 

Tab. 10.3: Definition of the used physical variables with dimensions. 

 For the definition and application of the Nabla operator ▽⃗⃗⃗⃗  see Appendix E 

Despite the formal similarity between the variables shown in Table 10.2 and Table 10.3, 

there are substancial differences in their characteristics. This will first be considered for 

the electric field and gravitational field. If the difference in the respective attractive forces 

between a proton and an electron is calculated in a simple example, the formulae (10.01) 

and (10.02) can be used. The values for the specific quantities are listed in Table10.4. If the 

values are used, the result for this case is an extreme difference between the electric and 

gravitational forces of attraction, namely by a factor of 2,27· 1039! 
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Mass 

Proton 
𝑚𝑃 = 1,6726 · 10

−27kg Mass  

Electron 
𝑚𝐸 = 9,1094 · 10

−31kg 

Electr. Charge 

Proton 
QP = 1,6022 · 10

−27C Electr. Charge 

Electron 
Q𝐸 = −1,6022 · 10

−27C 

Gravitational 

constant 
𝐺 = 6,6743 · 10−11

 m3

kg s2
 Electric 

constant 
ε0 = 8,8542 · 10

−12
C2

Nm2
 

Tab. 10.4: Values of the physical quantities used for the calculations. 

Note on Table 10.4: The values for ε0 are often given in the literature with the dimension 

As⁄Vm. This can be easily converted using the power P in watts [W] and results with the 

charge C (Coulomb) as As (Ampere-seconds) 

[1W = 1
kg m2

s3
= 1

Nm

s
= 1 VA] 

The difference between the electric field and the gravitational field lies not only in the 

magnitude of the attractive force, but above all in the fact that electric charges compensate 

each other in everyday life, i.e. every positive atomic nucleus is opposed by a negative elec-

tron. In addition, electric charges can be shielded. In the case of gravity, on the other hand, 

all masses add up and, according to current knowledge, the effective attractive forces can-

not be influenced in any way. 

Other important differences are that electric charges always occur as multiples of the 

elementary charges, whereas gravity has no known smallest indivisible unit. In addition, 

the kinetic energy of masses is dependent on the state of motion, whereas this does not 

apply to electric charges. Furthermore, permeability effects are unknown for gravity. 

Despite the small effects, the gravitational balance developed by the Englishman H. Cav-

endish [1731-1810] made it possible to determine density differences in the earth and cal-

culate the gravitational constant as early as 1798. 

Direct experimental proof of the existence of gravitomagnetism in the form shown here 

has not yet been achieved on the Earth's surface due to the extremely small effects that 

occur. According to calculations by D. Giulini, a gyroscope set up at the North Pole would 

cause a precession at a speed of 0.6 milliarcseconds per day; given the current experimental 

conditions, this is still 1 to 2 orders of magnitude outside today’s detection limits [96]. 

In cosmic dimensions, on the other hand, larger effects occur, whereby the shape of such 

a field can be determined by calculations. Fig. 10.1 shows the characteristics of a gravito-

magnetic dipole field in a graphical representation, evaluated at points at an angular dis-

tance of 30°, which lie on a circle around the center [96]. In the center is the rotating star, 

whose angular momentum is symbolized by an upward-pointing arrow (vector). It gener-

ates the dipole field. 
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Fig. 10.1: Expression of a gravitomagnetic dipole field generated by a rotating star in the 

center [96]. 

 

Experimental proof was only possible with the launch of the Gravity Probe B into space 

in 2004, with which the interactions between 4 counter-rotating gyroscopes and the rotat-

ing Earth were investigated. After lengthy and complicated evaluations due to interference 

effects that occurred, results were published in 2011 that were obtained as part of investi-

gations to verify the general theory of relativity [97]. These are the effects of spacetime 

curvature and the Lense-Thirring effect. For details, please refer to further literature [96, 

97]. 

Finally, another interesting aspect should be considered. For years there have been in-

vestigations into the amplification of gravitomagnetic effects, similar to those observed 

when the permeability of magnetic fields is increased (e.g. by feeding an iron core into a 

magnetic coil). Such evidence would have enormous implications for the foundations of the 

theory of general relativity and is therefore subject to special observation. In one of the 

experiments, for example, a large quantity of rotating liquid helium was used in a super-

conducting Nb tube, and a gyroscope was placed in it. However, after initial positive results 

for increasing the gravitomagnetic effect, it became apparent that these could not be repro-

duced [98]. None of the experiments carried out so far have been successful and therefore 

no effects on the theory are recognizable. 
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11.  Limits of the Theory of Special 
Relativity 

It was already demonstrated at lengths that an impressive number of examples exist, which 

are conforming to the Theory of Special Relativity. This was shown e.g. for kinematic con-

siderations of moving observers, further it was proved for the processes during clock 

transport and also for the relations between mass, momentum, force, energy and for elastic 

or non-elastic collisions of moved bodies and further the relativistic observation of rocket 

acceleration. It was shown for a large number of configurations that using the Lorentz-

Transformation no differences can be found for a system at rest or for moving observers 

and that no possibility exists to decide inside a system whether it is moving or at rest. This 

is in accordance with the postulates of the Theory of Special Relativity which stipulates that 

all observers are considered as equal and so no evidence could be found that the principles 

of relativity are not valid. 

 All these examples share the basis that the transport of signals is occurring with the 

speed of light. However, when superluminal velocities are considered, which were discov-

ered during tunneling processes, it can be shown that – provided that also information are 

transported with superluminal speed (a concept which is still controversially discussed) − 

the appearing effects are not in accordance with Special Relativity. This will be reviewed in 

detail. Finally, the situation concerning synchronization after acceleration will be discussed 

and it will be shown that in this case conflicts will appear. 

11.1  Superluminal effects during tunneling processes and their signifi-

cance 

 

Optical examinations with prisms were conducted already since a very long time. It is well 

known that Newton, Huygens, and many other scientists focused their work on the funda-

mental relations. 

 With the development of modern research methods, the examination of effects based on 

quantum mechanics started. Fritz Goos (1883-1968) and Hilda Hänchen (1919-2013) were 

the first to find that a linear polarized light-wave during the transition from a medium with 

a higher to a lower optical thickness is not reflected at the boundary layer but at a virtual 

surface with an orientation parallel to it situated inside the medium with the lower optical 
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thickness. It is not possible to explain this observation with a standard model and quantum 

mechanics are used instead. The investigations were made during the 2nd world war in 

Berlin and published partly not before 1947 [60,61]. 

 Further examinations revealed that optical boundaries generate tunneling effects, which 

are independent of their thicknesses [62]. This led to intensive discussions concerning the 

appearing of superluminal velocities. 

 

11.1.1  Tunneling effects 
 

Tunneling effects and connected measurements of velocities of electromagnetic waves dur-

ing passing of an optical boundary were already part of numerous examinations. For a bet-

ter understanding a comprehensive survey about the investigations using prisms and other 

optical devices carried out with waves of different frequencies, published by H. G. Winful, is 

recommended [63]. 

 Out of the multitude of possibilities an example shall be chosen, where double prisms 

are used for experiments. A typical experimental set-up is presented as shown in Fig. 11.1. 

 

 

             
 
Fig. 11.1: Experimental set-up for measuring of tunneling effects (after [64]) 

 An electromagnetic wave is reaching point A of a prism and is transmitted into the body. 

If an appropriate angle is taken (see e.g. [64]) the wave will be reflected at point B. When 

another identical prism is situated opposite to it, a tunneling effect will be observed which 

can only be explained using quantum mechanics. In this case the paths BC̅̅̅̅  and CD̅̅ ̅̅  will be 

passed without delay. The largest part of the wave will reach point E, a much smaller part 

is detected at F. The exit of both will be exactly at the same time. Experiments of this type 

allow the use of set-ups with large dimensions, though the intensity of the beam on the way 

DF̅̅̅̅  is strongly dependent on the distance 𝑏 of the prisms. Experiments with 𝑑 = 280 mm 

were already performed and the corresponding effects could be observed. Because of the 

multitude of possible experiments, it is referred for further details to publications with a 

general survey [63,64]. 

 At present there is no consensus concerning the interpretation of the observed results 

at all. Very often the argument is used that superluminal velocities occur, but that it is 
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impossible during these experiments to transport information faster than light. The reason 

for this is that the results of the measurements are interpreted not as the velocity of a single 

pulse but as an effect caused by the group velocity of a signal. Complex information (e.g. 

speech) can only be transported by a wave-packet and the velocity of this is supposed to be 

the speed of light. Because of the importance of this argument in the following a short in-

troduction concerning this matter shall be presented before a final investigation is made. 

 To describe the effect of group velocity in a simple way in publications dealing with this 

matter some analogies are found like the comparison between fly and elephant, the inter-

pretation of a tortoise race or the consideration of the behavior of a very long train [63,65]. 

Specially the last example is very suitable to understand the circumstances and shall be 

discussed shortly: 

A train needs for the travel between 2 points a defined time span. If this train is con-

sidered as extremely long, then a simple definition of departure and arrival time is no 

longer suitable and differences will occur, whether the locomotive, the middle of the 

train or the end is observed. If in a second tour a train with the same length travels 

with the same speed the same distance, and during the trip wagons are uncoupled 

than the middle and of the train, which is consequently moving forward during the trip, 

is arriving earlier than in the example discussed before. However, independent of this 

the locomotives of both trains are reaching the destination at the same time. Following 

this interpretation, the velocity of the middle of the train (the group velocity) is faster 

than the speed of the locomotive. 

 Transferred to the discussed example it is obvious, that during the tunneling of the wave 

no even damping occurs but that the end of the wave-packet must be perpetually cut off. In 

this case the group velocity is faster than light although this is not valid for the front and so 

in this case no violation of the Theory of Relativity would occur. 

 The authors dealing with superluminal velocities measured at prisms and other optical 

devices are using quite different interpretations for the results. Beside the argument con-

cerning group velocities described before this covers a total denial of superluminal effects 

because of complete misinterpretation of the experimental results [63], assumed contami-

nation effects which demands an infinite size of the prisms when a reasonable signal trans-

fer is required [66] or the final discussion is left completely open [67,68]. Some authors still 

today have the opinion that it is possible during these experiments to transport information 

with a speed faster than light [65,69]. The main reason for this is the observation, that a 

tunneled wave after amplification has the same shape compared to a reflected wave and 

that it shows no cut off like it must be assumed when the above-mentioned example of 

group velocity would be valid. 

 However, for clearly documented evidence it is not necessary to transport complex in-

formation, but a single pulse would be sufficient (like using the Morse alphabet). Consider-

ing this, the thesis that measurements are not possible because of lack of information 

transport, is assessed as not plausible. If the distinct detection of a transmitted pulse with 

superluminal velocity would be possible, then this result would cause severe consequences 

for Special Relativity which will be discussed in the following. 
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11.1.2   Significance of superluminal velocities for Special Relativity 

Whereas all considerations discussed so far have led to the perception that observers dur-

ing the exchange of signals in a system at rest or when moving will find the same measuring 

results, this will definitely not be the case when information is transmitted using superlu-

minal velocities. This can be derived easily when the situation presented in Fig. 11.2 is an-

alyzed. 

 

 
 
 
Fig. 11.2: Differences between a system at rest and a moving observer when information is 

transmitted with superluminal velocity. 

 On the left-hand side as usual a system at absolute rest is presented. The transmission of 

signals is carried out with superluminal velocity 𝑣𝐸  between observer B to the points A and 

C. Immediately at arrival a responding light signal (𝑣 = 𝑐) is triggered and sent back to B. 

Because the experimental set-up is symmetrical the arrival at B will be at the same time. 

 On the right-hand side the same situation is presented for a moving system. Because ob-

servers A and C have different positions, the light signal will arrive at different times at B. 

The time span is depending on the superluminal velocity (values for 𝑣𝐸 =  2𝑐, 4𝑐 and ∞ are 

shown) and also on the speed of the system 𝑣𝑆 (in this case values of  𝑣𝑆 =  0 and 0,5𝑐 were 

chosen). This diagram also includes the values for the time difference 𝛥𝑡4𝐶  that would ap-

pear when a superluminal velocity of 𝑣𝐸 = 4𝑐 would be achieved. 

 The time span relevant for different superluminal velocities can easily be derived using 

simple geometric considerations as presented in Fig. 11.3. 
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Fig. 11.3: Geometric dependencies of used dimensions for 𝑣𝐸 = 2𝑐 
 

The following general dependencies apply 

       𝑡𝑎𝑛𝛼 =
𝑐𝑡

𝑥
=
𝑐

𝑣𝑆
         𝑡𝑎𝑛𝛽 =

𝑐𝑡

𝑦
=
𝑐

𝑣𝐸
       ⤇      𝑥𝑣𝐸 = 𝑦𝑣𝑆                (11.01) 

The cases for the signal transmission in moving direction and opposite to it must be treated 

separately. It applies 

𝑆𝑖𝑔𝑛𝑎𝑙 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑜 𝑡ℎ𝑒                                              𝑆𝑖𝑔𝑛𝑎𝑙 𝑖𝑛  
    𝑚𝑜𝑣𝑖𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛                                           𝑚𝑜𝑣𝑖𝑛𝑔 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

 
𝑎

𝛾
= 𝑥 + 𝑦                                                               

𝑎

𝛾
= 𝑦 − 𝑥                                          (11.02) 

  ⤇     𝑥𝑣𝐸 =
𝑎

𝛾
𝑣𝑆 − 𝑥𝑣𝑆                                      ⤇       𝑥𝑣𝐸 =

𝑎

𝛾
𝑣𝑆 + 𝑥𝑣𝑆                                 (11.03) 

 𝑡1 =
𝑎

𝛾(𝑣𝐸+𝑣𝑆)
                                                      𝑡3 =

𝑎

𝛾(𝑣𝐸−𝑣𝑆)
                                (11.04) 

To calculate the entire time for the signal exchange the part for the way back must be added. 

Thus, the total time for the path B→A→B is: 

𝑡𝑇(𝐶) = 𝑡1 + 𝑡2 =
𝑎

𝛾(𝑣𝐸+𝑣𝑆)
+

𝑎

𝛾(𝑐−𝑣𝑆)
                                  (11.05) 

The path B→C→B leads to 

𝑡𝑇(𝐴) = 𝑡3 + 𝑡4 =
𝑎

𝛾(𝑣𝐸−𝑣𝑆)
+

𝑎

𝛾(𝑐+𝑣𝑆)
                                  (11.06) 

To discuss the influence of the signal velocity on the measuring effect finally the difference 

must be determined 

𝑡𝑇 = 𝑡𝑇(𝐶) − 𝑡𝑇(𝐴) =
𝑎

𝛾(𝑣𝐸+𝑣𝑆)
+

𝑎

𝛾(𝑐−𝑣𝑆)
−

𝑎

𝛾(𝑣𝐸−𝑣𝑆)
−

𝑎

𝛾(𝑐+𝑣𝑆)
       (11.07) 

and be compared with 𝑣𝐸 → ∞. Hence 

𝑡𝐷 =
𝑡𝑇
𝑡∞
                                                                (11.08) 

In Fig 10.4 the results for different velocities for the signal and the used reference sys-

tems are presented. Generally, it can be stated that the speed of the system has only limited 
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influence on the results and a noteworthy effect appears at remarkably high values. Further 

it becomes clear that the signal velocity of 𝑣𝐸 = 2𝑐 is already reaching half values which are 

calculated for 𝑣𝐸 → ∞. The relations show, that it is not necessary to suppose signal veloci-

ties of extreme magnitude because the sensitivity of the measurement is extraordinarily 

strong. 

 
 

Fig. 11.4: Expected measuring effect 𝑡𝐷 in relation to signal velocity 𝑣𝐸 and  

system velocity 𝑣𝑆 

 
 Further additional considerations concerning the existence of superluminal velocities 

exist, where it is assumed that in this case the principle of causality would be violated [63]. 

Other publications are denying effects like this [64,65]. 

 In general, the violation of the principle of causality would stand for the fact, that an in-

coming signal would be received earlier than the outgoing signal. This would mean that a 

negative time must be assumed, for which no experimental evidence exists. It is clear, how-

ever, that inside a system with high velocity compared to a system at rest (as shown at the 

right-hand side of Fig. 11.2) the incoming signal will arrive earlier (case B → A → B) or later 

(case B → C → B) as expected according to the synchronization procedure before. In this 

case no violation of the principle of causality will occur because the signal measured is ear-

lier or later (depending on the speed of the system) than expected due to synchronization 

but in no case before the start of the procedure. 

 It shall be mentioned that the existence of superluminal velocities for the transport of 

signals would lead to severe conflicts with the principle of relativity which cannot be solved. 

Differences in measurements between systems would occur, which travel at different 

speed. An undisputed measuring effect would provide evidence that a system of absolute 

rest must exist. In chapter 13.1 a possible experiment to prove this will be presented and 

the dimensions of values which can be expected will be discussed in detail. 

System velocity 

 Signal velocity 
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11.2  Synchronization after acceleration 

In the past many scientists tried to detect the one-way speed of light in a moved system in 

a direct way. Concerning this problem different concepts were taken into consideration; 

one of these is the “slow clock transport”. The principal idea in this case is that in a moved 

laboratory a clock is slowly transported from one end (e.g. the back end) to the other side 

and then compared with a second clock at that place which was synchronized before. It was 

already shown, that during this transport, irrespective of the chosen speed, the synchroni-

zation remains unchanged, and a zero result will be achieved (see also chapter 5). 

 Another possible alternative, which was first considered by E. Dewan and M. Beran [70] 

and later reviewed in detail by J. S. Bell [71] and also by D. J. Miller [72] and F. Fernflores 

[73] is the investigation of changes in systems before and after acceleration. In this case 

observers, which are transporting synchronized clocks, are accelerated homogenous in a 

way, that they show the same speed compared to each other before and after. It is required 

that the acceleration for all observers shall be the same; further preconditions are not nec-

essary. 

 
Fig. 11.5: Exchange of signals before and after an acceleration (𝑣 = 0,5𝑐) 
  a) Left:  System at rest to moved system 

  b) Right: Moved system to system at rest 

𝑣 = 0,5𝑐 
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 At first the situation shall be examined, when the observers are lined up in direction of 

acceleration. The configuration of this experimental set-up is presented in Fig. 11.5. 

 The left-hand side is showing the case, that in a system at rest the observers A and B first 

synchronize their clocks and then start at the same time with acceleration. Concerning this 

it was determined before that A is starting directly after receiving a signal from B, but B is 

first calculating the starting time and takes ∆𝑡2 for his start of acceleration (see diagram). 

The time ∆𝑡2 is exactly half of the time ∆𝑡0, that a signal is taking for travelling the distance 

between B and A and then back. The acceleration is running homogenously until the points 

C and D, which are fixed to each other, are met (A is contacting C, B reaches D). Here accel-

eration is stopped, and a signal is transmitted to the other observer. 

 A and B will now find that 

1. the distance between each other has (subjectively) increased to 𝛾𝑎, 

2. time ∆𝑡3 is larger and ∆𝑡4 is smaller compared to ∆𝑡2 

 The issue presented in point 1 is also named “Bell’s Spaceship Paradox”. J. S. Bell sup-

posed the existence of a thread between these spaceships and assumed, that this would also 

be contracted. 

 In a further investigation a moved system is considered, in which the participants A and 

B are (from their point of view) subject to the same conditions (right side of Fig. 11.5). In 

this case an observer at rest will find, that ∆𝑡1 is larger compared to the value monitored 

before. For this reason, A will start acceleration later than B, because he will start ∆𝑡2 =

∆𝑡0/2 after receiving the signal from A. Therefore, participant A will reach C later than B is 

reaching D. After the end of this trial, the distance and the times will be checked again and 

it will be proved, that all values are the same compared to the case looked at before. In the 

following the calculations of the space- and time-coordinates are presented in detail. 

 
a) From a system at rest to a moved system 

In this case the calculation is easy. Because of the accelerations running parallel it is obvi-

ous, that (from the point of view of an observer at rest) the distance 𝑎 will be constant in 

the moved system as well. Furthermore, the following calculations apply 

∆𝑡0 = 
2𝑎

𝑐
                                                              (11.11) 

∆𝑡1 = ∆𝑡2 =
𝑎

𝑐
                                                         (11.12) 

∆𝑡3 = 
𝑎

𝑐 (1 −
𝑣
𝑐)
                                                        (11.13) 

∆𝑡4 = 
𝑎

𝑐 (1 +
𝑣
𝑐)
                                                        (11.14) 

b) From a moved system to a system at rest 

In this case some additional calculations are necessary. 
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∆𝑡0
′ = 

2𝑎𝛾

𝑐
                                                             (11.15) 

∆𝑡1
′ = 

𝑎

𝑐𝛾 (1 −
𝑣
𝑐)
=
𝑎𝛾

𝑐
(1 +

𝑣

𝑐
)                                         (11.16) 

∆𝑡2
′ = 

𝑎𝛾

𝑐
                                                             (11.17) 

∆𝑡𝐵
′ = ∆𝑡0

′ − ∆𝑡0 + 𝑡2 =
2𝑎

𝑐
(𝛾 − 1) + 𝑡2                                  (11.18) 

∆𝑡𝐴
′ = ∆𝑡1

′ + ∆𝑡2
′ − ∆𝑡0 + 𝑡2 =

𝑎

𝑐
(2𝛾 + 𝛾

𝑣

𝑐
− 2) + 𝑡2                      (11.19) 

𝑥(B2
′ ) = ∆𝑡𝐵

′ · 𝑣 = (
2𝑎

𝑐
(𝛾 − 1) + 𝑡2) 𝑣                                   (11.20) 

𝑥(A2
′ ) = ∆𝑡𝐴

′ · 𝑣 +
𝑎

𝛾
= (
𝑎

𝑐
(2𝛾 + 𝛾

𝑣

𝑐
− 2) + 𝑡2) 𝑣 +

𝑎

𝛾
                     (11.21) 

∆𝑥 (
A2
′

B2
′ ) = (

𝑎

𝑐
(2𝛾 + 𝛾

𝑣

𝑐
− 2) + 𝑡2) 𝑣 +

𝑎

𝛾
− (
2𝑎

𝑐
(𝛾 − 1) + 𝑡2) 𝑣 

=
𝑎𝑣

𝑐
𝛾
𝑣

𝑐
+
𝑎

𝛾
= 𝑎𝛾                                                       (11.22) 

∆𝑡3
′ = 

𝑎𝛾

𝑐
+ ∆𝑡𝐵

′ − ∆𝑡𝐴
′ = 

𝑎

𝛾𝑐 (1 −
𝑣
𝑐)
=
1

𝛾
∆𝑡3                              (11.23) 

∆𝑡4
′ = 

𝑎𝛾

𝑐
+ ∆𝑡𝐴

′ − ∆𝑡𝐵
′ = 

𝑎

𝛾𝑐 (1 +
𝑣
𝑐)
=
1

𝛾
∆𝑡4                              (11.24) 

 These calculations show, that 𝑎, ∆𝑡3  and ∆𝑡4 in a moved system and a system at rest are 

connected by 𝛾 and that the observers A and B from their point of view cannot decide after 

the end of the trial whether they changed their position from a system at rest to a moved 

system or vice versa. 

 However, concerning the behavior of “Bell’s thread”, which is situated between the 

spaceships, initially a difference can be observed in the considerations between the cases 

a) and b). While in a) the distance and caused by this the strain on the thread increases 

constantly, the case b) will lead to a considerable change in the beginning of the experiment. 

This is caused by the fact, that observer B starts before A with the acceleration and there-

fore uneven strain occurs. However, this effect is only appearing seemingly and not real 

because the thread has a limited rigidity. Like already discussed in connection with the trig-

gering of engines after synchronization in chapter 4.3, the strain in the thread will be trans-

ported with limited velocity and so all differences will disappear. 

 The validity of this argument shall be demonstrated in the following by using a simple 

example. The beginning of the experiment relates to the fact that in a system of absolute 

rest both spaceships are starting at the same time. If no total rigidity of the thread is as-

sumed, but the transport of tension with arbitrary velocity is considered, then a thin and 

almost massless thread will behave like a rope and this is resulting in the fact, that a loop 
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will be formed near the second observer. This would cause an extremely complicated situ-

ation and so a simple model is considered here instead were 

1. the force will be induced into the thread not only by traction (by observer B, see Fig. 

10.5) but also by compression (observer A) into a stable thread (no rope), 

2. a buckling or bending of the thread will not occur. 

 For the start of the spaceships from the state of absolute rest it is obvious, because of 

symmetry conditions, that any arbitrary velocity will lead to the situation that traction and 

compression will reach the middle within the same time. For the moving system, the con-

ditions already discussed in chapters 4.1 and 4.3 are valid. The relativistic addition of ve-

locities in combination with appearing synchronization differences will also cause the effect 

that traction and compression will appear in the middle simultaneously. Thus, for the ob-

servers no differences will be measurable. 

 In publication concerning this matter different perceptions can be found, whether the 

thread will be contracted or not after acceleration or, in simple words, whether it is break-

ing or not. (This discussion for obvious reason contains the precondition that the thread is 

of infinite small mass and has no influence on the behavior of the spaceships). The calcula-

tions presented here lead to the clear opinion that the thread is strained, which means it 

will break. This is simply derived out of the fact that the acceleration phases for both space-

ships can also be performed and monitored separately and in this case, when the spaceships 

act autonomously, the same results must appear. 

 Before closing the discussion, the additional issue shall be reviewed, that the observers 

are not lined up in acceleration direction but transverse to it. In this case the quite simple 

effect occurs, that during an exchange of signals after acceleration the distance between the 

observers is increased by the factor 𝛾 compared to the situation at rest. This must be valid 

because of geometrical reasons; the observer at rest will find that the signal is following a 

triangle with a side length larger by factor 𝛾 compared to its height. This effect is compen-

sated exactly by the time-dilatation and so in this case no change in synchronization is ob-

served. 

 Summing up the discussion two points are worth mentioning. First the chosen experi-

mental conditions are causing tensions between two observers, which are independently 

accelerated under the same conditions, and this could be part of experimental observations. 

Obviously in this case differences in measurement results can be expected, dependent on 

the situation whether the observers are considered as point-shaped or spatially expanded. 

Second the calculations show that in case of clocks lined up in the direction of acceleration 

differences in synchronization will occur; this is valid for independent observers and in ad-

dition for extended spatial bodies. This effect will not be found if the observers are arranged 

transverse to acceleration direction. This is required by Special Relativity because of the 

“Relativity of Simultaneity” and represents a fundamental test regarding the principles of 

the theory. Details concerning this are discussed in chapter 13.2. 
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12.  Conclusions and proposals for 
modification 

The Theory of Special Relativity postulated by A. Einstein in combination with the transfor-

mation equations derived by Larmor, Lorentz and Poincaré and further the relativistic in-

crease of mass makes it possible to describe all conceivable relations between moving bod-

ies in arbitrary inertial systems without contradictions. To prove this a wide selection of 

examples concerning this issue was already discussed in detail in the chapters presented 

before. 

 However, this concept is not sufficient to describe all observed cosmological cases. At the 

beginning of the second half of the 20th century it was found that a cosmic microwave back-

ground radiation exists, which is isotropic and constant in all directions. Therefore, based 

on the “Ether-theories” already developed at the end of the 19th century, new attempts 

were made to bring special relativity in accordance with a state of absolute rest. However, 

none of these theories were able to show results without severe discrepancies to experi-

mental findings. The most important theories will be discussed briefly in the following. In 

addition, the Einstein synchronization already discussed in chapter 3.4. will be evaluated 

again. 

 Furthermore, it is proved that by using light pulses for a signal exchange between two 

observers moving arbitrarily to each other, additionally a superordinate system of absolute 

rest can be incorporated. With the use of the Lorentz transformation as only precondition 

this system can be integrated without contradiction. This is done first for the case that two 

observers are on a straight line in orientation to the system at rest, then for arbitrary con-

stellations. 

12.1  Alternative theories 

In the following theories shall be presented, which are not in accordance with the calculus 

of the Lorentz-Transformation (LT). They were developed to avoid the principle of “relativ-

ity of simultaneously”, which is integral part of LT. The main difference is the introduction 

of an absolute time which is concurrent valid in any arbitrary inertial system. Although all 

these theories in their initial form are not in compliance with experimental results, they are 

historically important and, because of the basic approach concerning violations of LT, are 

still basis for current research programs. 
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12.1.1  Simple addition of velocities 

At the early beginning of discussion concerning speed of light and “ether-drift” it was gen-

erally assumed, that the velocity of an observer (together with the measuring device carried 

with him) and the speed of light must be simply added [12c]. Also, the theoretical approach 

connected with the Michelson-Morley-Experiment is based on this assumption, and for the 

calculation of light beams coming and going to mirrors the value was either higher or lower 

than the speed of light 𝑐. 

 Already in the year 1913, however, the examination of double star systems by W. de Sit-

ter provided evidence, that the speed of light is independent of the speed of the object that 

is transmitting the signals [55]. It was now proven for the first time that this assumption is 

not in accordance with the facts. 

12.1.2  Theory of „Neo-Lorentzianism“ 

Following a similar idea of H. Ives and developed further by J. S. Prokhovnik [74] it is as-

sumed that in all parts of the universe a reference system S exists, which is at absolute rest. 

When a different inertial system is moving relative to it, the only related attribute valid for 

this system is, that space is contracting according to 

𝑥𝐴 =
𝑥𝑆
𝛾
                                                                (12.01) 

Consequently, for the coming and going of a light signal inside this system the following 

different velocities will appear 

𝑐1 = 𝑐 + 𝑢𝐴                                                             (12.02) 

𝑐2 = 𝑐 − 𝑢𝐴                                                             (12.03) 

The characteristics of time can be calculated by the consideration of a closed loop for a 

signal 

𝑡𝐴 =
𝑥𝐴
𝑐1
+
𝑥𝐴
𝑐2
=
𝑥𝑆(𝑐 − 𝑢𝐴 + 𝑐 + 𝑢𝐴)

𝛾(𝑐 + 𝑢𝐴)(𝑐 − 𝑢𝐴)
=
2𝑥𝑆
𝑐
𝛾 = 𝛾𝑡𝑆                        (12.04) 

This means that time dilatation is only a seemingly effect which is not real. Effects con-

nected with this theory should be found easily using e.g. synchronization experiments and, 

because this is not the case, the theory must be rejected. However, the involved persons, 

mainly Herbert E. Ives (1882-1953), are still today of historical interest. He was all his life 

in strict opposition to Einstein and, apart from his different theoretical approach, tried hard 

to discredit him in any possible way. He denied his contribution to Special Relativity and 

even tried to show that the equation 

𝐸 = 𝑚𝑐2                                                                   (6.17) 

was not originally developed by Einstein [75]. Nevertheless, he provided evidence with the 

Ives-Stilwell-experiment (co-working with G. R. Stilwell) that time-dilatation for moved 

bodies exists [17,18] and thus supported, surely without intention, the validity of the Lo-

rentz-equations. 
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12.1.3  RMS-Test theory 

The development of another alternative theory started with a proposal by H. Robertson 

[59] and was finalized by R. Mansouri and R. Sexl [24] and is today usually referred to as 

Robertson-Mansouri-Sexl- or RMS-Theory. In this case it is assumed, that a system of abso-

lute rest (called “ether system”) exists. For the notation of this ether-system capital letters 

and for any arbitrary initial reference system small letters are used for calculation. The fol-

lowing general transformation equations are valid: 

𝑡 = 𝑎𝑇 + 𝜀𝑥                                                              (12.10) 
 

𝑥 = 𝑏(𝑋 − 𝑣𝑇)                                                         (12.11) 

where the factors 𝑎 and 𝑏 can be determined by measurements (e.g. Michelson-Morley- and 

Kennedy-Thorndike-experiments) and 𝜀 out of synchronization effects as 
 

1

𝑎
= 𝑏 =

1

√1 − (
𝑣
𝑐)
2
                                    𝜀 = −𝑣                           (12.12) 

Hence 

𝑡 =
𝑇

𝛾
− 𝑣𝑥                                                             (12.13) 

 

𝑥 = 𝛾(𝑋 − 𝑣𝑇)                                                          (12.14) 

Equation (12.14) is obviously corresponding to the Lorentz-Transformation according 

to Eq. (1.08). Eq. (12.13) can be transformed to 

𝑡 =
𝑇

𝛾
− 𝑣𝑥 = 𝛾𝑇(1 − 𝑣2) − 𝑣𝑥 = 𝛾𝑇 − 𝛾𝑇𝑣2 − 𝑣𝑥                        (12.15) 

If Eq. (12.11) is converted, then 

𝑇 =
𝑋 −

𝑥
𝛾

𝑣
                                                             (12.16) 

with 

𝑡 = 𝛾𝑇 − 𝛾
𝑋 −

𝑥
𝛾

𝑣
𝑣2 − 𝑣𝑥 = 𝛾𝑇 − 𝛾𝑣𝑋 + 𝑣𝑥 − 𝑣𝑥                         (12.17) 

and 
𝑡 = 𝛾(𝑇 − 𝑣𝑋)                                                          (12.18) 

This means that the calculations follow exactly the Lorentz-Transformation. The RMS-

Theory now predicts that during passing of a moving system a comparison of clocks inside 

both systems shows the result 

𝛥𝑡 = −𝑣𝑥                                                              (12.19) 

Eq. (12.13) is transforming to 

𝑡 =
𝑇

𝛾
                                                                 (12.20) 
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A graphic presentation leads to the diagram shown in Fig. 12.1. 

    
Fig. 12.1: Space-time diagram following Eq. (12.18) 

  (according to [24]) 

 

It is obvious that in this case during a synchronization performed with light signals dif-

ferences inside the moving system should occur; however, no experimental evidence could 

be provided up to now [54,75]. Although the theory shows severe shortcomings, it is further 

developed until today [54]. The reason is that new approaches using quantum gravitation 

resp. string theory are suggesting violations of the Lorentz-Transformation. In combination 

with the equation 

𝑦 = 𝑑 · 𝑌                     𝑧 = 𝑑 · 𝑍                                             (12.21) 

now effort is made to find small differences to the equations given by the Lorentz-Transfor-

mation 

1

𝑎
= 𝑏 = [1 − ( 

𝑣

𝑐
 )
2 

]
 − 
1
2
                         𝑑 = 1                               (12.22) 

The intention is that with increasing accuracy of experiments following the methods of 

Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell these differences will be detected 

and that it will be possible to integrate the results into a generally valid overall picture. 

Examples for new measurements with highest precision are given e.g. [76,77,78,79], how-

ever, up to now no violations of the Lorentz-Invariance could be detected. 

12.1.4  Further alternatives 

In the last years many alternative theories were developed, which are demanding varia-

tions of the Lorentz-Equations. These approaches are usually connected with a further de-

velopment of the “Theory of General Relativity”, trying to find a general unifying theory 

tan𝛼 =
𝑣

𝑐
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(GUT), which can possibly bridge the gap to quantum mechanics. These new theories are 

generally of high complexity, but despite of fierce struggle it was not possible to find a rea-

sonable formalism during the last decades. Here the question is allowed, why such an effort 

is made and how this can be justified. To answer this, a remarkable statement shall be cited 

out of a publication by C. M. Will [64]. This is in principle dealing with the position of Gen-

eral Relativity, but because further developments of this theory are mainly connected with 

the search for violations of the Lorentz-Invariance, it is also valid for the relations discussed 

before: 

 ”We find that general relativity has held up under extensive experimental scrutiny. The 

question then arises, why bother to continue to test it? One reason is that gravity is a fun-

damental interaction of nature, and as such requires the most solid empirical underpinning 

we can provide. Another is that all attempts to quantize gravity and to unify it with the other 

forces suggest that the standard general relativity of Einstein is not likely to be the last 

word. Furthermore, the predictions of general relativity are fixed; the theory contains no 

adjustable constants so nothing can be changed. Thus, every test of the theory is either a 

potentially deadly test or a possible probe for new physics. Although it is remarkable that 

this theory, born 80 years ago out of almost pure thought, has managed to survive every 

test, the possibility of finding a discrepancy will continue to drive experiments for years to 

come.” 

11.2  Interpretation of Einstein-synchronization 

In chapter 3.4 the Einstein synchronization was already discussed shortly. Because of the 

paramount importance it shall be investigated again and a close look at this topic will be 

taken. In a first step the theoretically appearing synchronization differences for an observer 

at rest and in a moved system are established. 

 In the following space-time-diagram the synchronization differences 𝛥S and 𝛥S′ experi-

enced by an observer at rest A in view of a moved observer B are presented (Fig. 12.2). The 

diagram is standardized (which means a scaling of 𝛥𝑡 = 𝛥𝑥 = 1). In a diagram scaled this 

way, light pulses show a graphic orientation of 45° to 𝑡 and 𝑥 axis. The velocity used for B 

in this diagram is 𝑣 = 𝑥 𝑡 = 0,5𝑐⁄ . 

The cases appear, that: 

a) A is sending a signal which is reflected by B, 
 

b) B is sending a signal which is reflected by A. 

The equations necessary for the calculation of the synchronization differences are com-

piled in Tab. 11.1. For A the interpretation of diagram a) is simple and because of the ap-

pearing symmetry 𝛥𝑡0 = 𝛥𝑡2 = 𝛥𝑡1 is valid. 

The situation of part b) is different and the calculation more complex. Observer A is mon-

itoring in his view, that the signal will be sent later from B, because time is running slower 

by factor 𝛾, but that it is arriving earlier compared to the signal sent by him. The latter is 

caused by the effect, that B is increasing distance to A during the transmission of the signal 

(for exact definition and modes for calculation see chapter 2.). 

The synchronization difference for A can be calculated as follows 
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𝛥S = 𝛥𝑡𝑆

1 −
1
𝛾

1 −
𝑣
𝑐

                                                           (12.30) 

 
Fig. 12.2: Definition of synchronization differences 𝛥S resp. 𝛥S′ 

𝛥𝑡𝑆 𝛥𝑡𝑆
′ = 𝛾𝛥𝑡𝑆 

𝛥𝑡0 = 𝛥𝑡𝑆 [
𝑣

𝑐 (1 −
𝑣
𝑐)
] 𝛥𝑡0

′ = 𝛥𝑡𝑆𝛾
𝑣

𝑐
 

𝛥𝑡2 = 𝛥𝑡𝑆 [
𝑣

𝑐 (1 −
𝑣
𝑐)
] 𝛥𝑡2

′ = 𝛥𝑡𝑆𝛾 [
𝑣 (1 +

𝑣
𝑐
)

𝑐 (1 −
𝑣
𝑐)
] 

𝛥S = 𝛥𝑡𝑆 + [
𝛥𝑡0 + 𝛥𝑡2

2
] − [𝛥𝑡𝑆

′ + 𝛥𝑡0
′ ] 

= 𝛥𝑡𝑆

1 −
1
𝛾

1 −
𝑣
𝑐

 

𝛥S′ = 𝛥𝑡𝑆
′ + [

𝛥𝑡0
′ + 𝛥𝑡2

′

2
] − [𝛥𝑡𝑆 + 𝛥𝑡0] 

= 𝛥𝑡𝑆
𝛾 − 1

1 −
𝑣
𝑐

 

Tab. 12.1: Equations for the calculation of 𝛥S resp. 𝛥S′ 
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In view of the moving observer B in b) a similar situation appears. In this case also the signal 

will arrive too early with 

𝛥S′ = 𝛥𝑡𝑆
𝛾 − 1

1 −
𝑣
𝑐

                                                        (12.31) 

Because time is running slower for the moving observer the subjective values for both 

are equal and it applies 

𝛥S′ = 𝛾𝛥S                                                                 (12.32) 

The Einstein-Synchronization now specifies the following: 

At time 𝑡𝑆 resp. 𝑡𝑆
′  a signal will be transmitted by observers A and B. When the signals are 

received by B resp. A, the clocks are considered as synchronized, when the following con-

ditions apply: 

𝑡1 = 𝑡𝑆 +
𝑡2−𝑡0
2

                                                         (12.33) 

and 

𝑡1
′ = 𝑡𝑆

′ +
𝑡2
′−𝑡0

′

2
                                                         (12.34) 

For system a), the validity of the determination results directly from the representation 

in the diagram and there are no differences to the calculations carried out. For b), however, 

there are serious changes. 

An essential statement is first that 𝛥𝑡1
′  is hereby uniquely determined and the division 

between the single times 𝛥𝑡0
′  and 𝛥𝑡2

′  does not play any role. Together with the statement 

that the speed of light is the same in all inertial systems, in this way the synchronization 

difference becomes a virtual quantity which cannot be determined from the moving system. 

Since this value would be measurable for a resting observer, however, at the transmission 

of impulses with superluminal velocities, there must be no information transmission faster 

than the light and also no system of absolute rest on the basis of these determinations. Here-

with, a central statement of the special relativity theory is described. 

So, it becomes clear that the Einstein synchronization is a definition and not covered by 

an observation. 

The use of the Einstein synchronization has beside the possibility for the calculation of 

the Lorentz equations still another meaning. As already described in detail, from the point 

of view of an observer at rest it is not possible to describe the course of oscillation of an 

electromagnetic wave (e.g. light) without contradiction without using the principle of con-

stant phase velocity in a moving system.  

To avoid this, it is a simple means to use the definition of the Einstein synchronization in 

such a way that oscillation considerations are permitted in principle only within the respec-

tive inertial system. If one proceeds according to this principle, it follows that a state of 

absolute rest cannot be inserted; this leads to apparent contradictions, and then the princi-

ple, that a system of absolute rest can exist, must be rejected as erroneous. This will be an 

important consideration in a final study of the speed of light in chapter 13.1. 
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In the following, another important aspect on the subject of the speed of light will be 

dealt with. The statement: "The speed of light is the same in all inertial frames" must be 

considered and interpreted carefully. 

However, if several test participants from different inertial systems moving against each 

other observe the same event, e.g. the signal exchange between different spatially separated 

points, different observations must occur. If the speed of light of the own system is taken as 

a basis for measurements and if the times and distances necessary for the signal exchange 

are determined for the way there and back, they come to different results. Path and time 

are not divided symmetrically. This effect is caused by the "relativity of simultaneity". 

 

 
Fig. 12.3: Schematic presentation of a signal in a laboratory L between E and A from the point 

of view of an inertial system S moving relative to it (𝑣 = 0,5𝑐). 

a) Correct: 𝑐 = const. referred to S. 

b) Not correct: 𝑡1 = 𝑡2 referred to S 

To make this clear, the situation is shown in fig. 12.3. While the situation is always clear 

for an observer at rest (the outward and return paths are of equal length and the individual 

times are also equal), this does not apply to an observer from an inertial system S moving 

relative to the lab. 

The determination of the Einstein synchronization, i.e. at the outward and return path 

for the signal exchange between two points (e.g. the ends of a laboratory A and E) time and 

path are in each case divided to the half, is valid only subjectively for the system L which is 

in rest to the laboratory. If from another inertial system S moving relative to it this deter-

mination would also apply and the times 𝑡1 = 𝑡2 would be equal, the situation would arise 

a) b) 

𝑣 = 0,5𝑐 𝑣 = 0,5𝑐 
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as shown in the right part of the diagram with signal velocities larger or smaller than c as 

well as measurable synchronization differences. Moreover, according to these considera-

tions, a situation where the path is constant in both directions cannot even theoretically 

occur because the lab end moves away from the original point immediately after the signal 

is emitted and is at a different location on the return path. Instead, the situation as shown 

in the left partial picture applies. This means that the determination of a reference system 

can always only be subjective. 

12.3  Integration of a system at absolute rest into the Lorentz-Equations 

 

The approaches to combine a system of absolute rest with the Lorentz-equations presented 

in chapter 11.1 were obviously not successful. In the following it will be examined whether 

it is possible for two observers moving in arbitrary directions against each other to inte-

grate an additional superior system which is at absolute rest. In this case the use of the 

Lorentz equations must lead to a consistent connection without discrepancies. First a sim-

ple comparison reveals the fact, that this must be possible because the discussed equations 

can be considered as a mathematical group. The implementation of the Lorentz equations 

in a system  A→ B  can therefore easily being carried out using  A→ S→ B, where S could be 

a system with a basis at absolute rest. 

 Because of the importance of this proposition the validity of this correlation will be pre-

sented here in detail. To show this, the possible constellations between the observers will 

be treated separately in the following. 

1. Observers A and B are moving on a straight line in relation to S 

In the following the experimental relation shall be examined in an analytical way, where 

the system at rest S and an arbitrary reference system 1 with observer A, which is moving 

in relation to it with 𝑣0 and the investigated system 2 with observer B (moving with 𝑣1 

compared to the reference system) are lined up and 𝑣0 < 𝑣1 applies. To simplify the calcu-

lation the values of the velocities shall be replaced by their quotient to the speed of light 𝑐. 

 The Lorentz equations between Reference System 1 and the investigated System 2 are 

given by 

𝑥2 = 𝛾1(𝑥1 − 𝑣1𝑡1)                                                       (12.40) 
 

𝑡2 = 𝛾1(𝑡1 − 𝑣1𝑥1)                                                       (12.41) 

where 𝑥1 and 𝑡1 are coordinates of the Reference System 1 and 𝑥2 and 𝑡2 coordinates of the 

investigated System 2, which is traveling with speed 𝑣1 compared to system 1. If a system 

which is at absolute rest is introduced, then system 1 will generally show a movement com-

pared to this. In view of the system at rest the following relations apply 

𝑥1 = 𝛾0(𝑥0 − 𝑣0𝑡0)                                                       (12.42) 
 

𝑡1 = 𝛾0(𝑡0 − 𝑣0𝑥0)                                                       (12.43) 

𝑥2 = 𝛾2(𝑥0 − 𝑣2𝑡0)                                                       (12.44) 
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𝑡2 = 𝛾2(𝑡0 − 𝑣2𝑥0)                                                       (12.45) 

where 𝑣0 is the speed between system at rest and Reference System 1, whereas 𝑣2 repre-

sents the speed between the system at rest and system 2. Furthermore, the equation for 

relativistic addition of velocities applies 

𝑣2 =
𝑣0 + 𝑣1
1 + 𝑣0𝑣1

                                                          (12.46) 

Equations Eq. (12.42) and (12.43) are leading to the following relationship for the coor-

dinates 𝑥0 and 𝑡0 

𝑥0 = 𝛾0(𝑥1 + 𝑣0𝑡1)                                                       (12.47) 
 

𝑡0 = 𝛾0(𝑡1 + 𝑣0𝑥1)                                                       (12.48) 

In combination with (12.44) and (12.45) this yields 

𝑥2 = 𝛾2(𝛾0(𝑥1 + 𝑣0𝑡1) − 𝑣2𝛾0(𝑡1 + 𝑣0𝑥1))                                (12.49) 
 

𝑥2 = 𝛾2𝛾0((1 − 𝑣0𝑣2)𝑥1 − (𝑣2 − 𝑣0)𝑡1)                                   (12.50) 
 

𝑡2 = 𝛾2(𝛾0(𝑡1 + 𝑣0𝑥1) − 𝑣2𝛾0(𝑥1 + 𝑣0𝑡1))                                (12.51) 
 

𝑡2 = 𝛾2𝛾0((1 − 𝑣0𝑣2)𝑡1 − (𝑣2 − 𝑣0)𝑥1)                                  (12.52) 

The equations (12.40) and (12.41) shall be identical with equations (12.50) resp. 

(12.51). To prove this a comparison of coefficients is carried out and the following equa-

tions apply 

(12.40)  (12.50)         𝑥1:                𝛾1 = 𝛾2𝛾0(1 − 𝑣0𝑣2)                                                   (12.53) 

(12.40)  (12.50)          𝑡1:               𝑣1𝛾1 = 𝛾2𝛾0(𝑣2 − 𝑣0)                                                  (12.54) 

(12.41)  (12.51)          𝑡1:                𝛾1 = 𝛾2𝛾0(1 − 𝑣0𝑣2)                                                   (12.55) 

(12.41)  (12.51)         𝑥1:               𝑣1𝛾1 = 𝛾2𝛾0(𝑣2 − 𝑣0)                                                  (12.56) 

Obviously, the equations (12.53) and (12.55) as well as (12.54) and (12.56) are identical. 

Because of 

𝑣1 =
𝑣2−𝑣0
1 − 𝑣0𝑣2

                                                          (12.57) 

Eq. (12.54) can be replaced by Eq. (12.53) since 
 

(𝑣2 − 𝑣0)𝛾1 = 𝛾2𝛾0(𝑣2 − 𝑣0)(1 − 𝑣0𝑣2)                                   (12.58) 
 

It is now proved that all 4 equations are identical. To show the validity of the complete sys-

tem it is necessary to validate only one of these equations. 

 If now both sides of the Eq. (12.54) are squared and the respective values for 𝛾 are in-

serted, it follows 

𝑣1
2

(1 − 𝑣1
2)
=

(𝑣2 − 𝑣0 )²

(1 − 𝑣2
2) · (1 − 𝑣0

2)
                                          (12.59) 
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and 

(1 − 𝑣2𝑣0 )
2𝑣1
2 = (𝑣2 − 𝑣0)²                                             (12.60) 

If for 𝑣2 the equation (12.46) is used, then 

(1 −
𝑣0 + 𝑣1
1 + 𝑣0𝑣1

𝑣0)
2

𝑣1
2 = (

𝑣0 + 𝑣1
1 + 𝑣0𝑣1

− 𝑣0)
2

                               (12.61) 

 If this equation is expanded completely, then 20 terms will occur which will add up to 

zero. It was thus shown for this case that the integration of a system at rest will not lead to 

any violations or to mathematical inconsistencies by using the Lorentz equations. Modified 

conditions taking 𝑣0 > 𝑣1 into consideration lead to the same result, because in any case 

only linear conditions are present which can be combined without restrictions. 

 When an arbitrary dependency between the combinations of velocities for the move-

ment of observers in different directions is considered, however, the calculation will be 

more difficult. In this case the observers will not contact each other but approaching to a 

minimum before they increase the distance again. It was already shown in chapter 2.1.2, 

that for any observer in a system at rest (A) or in a moved system (B) there is no difference 

in their observation of the situation and that it is not possible for both of them to decide 

with measurements during a signal exchange, whether they are moving or at rest. If a sys-

tem of absolute rest is integrated, which is different from zero to an observer A which was 

stipulated to be as at rest before, then the calculation will be more complex, but the situa-

tion can be simplified considerably if a suitable point of origin for the calculation is defined. 

 For simple calculation the fact is used that the direction vectors of both observers are 

passing along a straight line. If the vectors are moving along these lines the correlation be-

tween them are changing as a linear quantity, which means in a mathematical sense a con-

stant is added which can be subtracted later after the calculation is finalized. Two different 

cases must be dealt with: 

2. The straight lines of the direction vectors are intersecting 

For this purpose, the fact is used that if a system at rest is assumed then no further require-

ments concerning the point of origin are necessary from which the examination would have 

to start. This means that out of the unlimited possibilities the point of origin can be defined 

in a way that A is distancing to it and is part of the directional vector; this line is defined as 

corresponding to the 𝑥-axis. Further the vectors of both observers are moved in such a way 

that they are intersecting. These are the conditions to determine the point of origin as zero-

coordinates of 𝑥, 𝑦, 𝑡 in view of the system at rest S, the values for the 𝑧 axis are always zero 

due to the definition of the coordinates. In this case the correlations must follow the Lorentz 

equations. 

 For verification the following experiment shall be discussed: Starting from observer A 

observer B is departing with an arbitrary angle in relation to the 𝑥-axis. After a certain time 

𝛥𝑡 this observer is emitting a signal. The related coordinates will be determined by observer 

A and in the system at rest S. When these are identical after use of the Lorentz equations 

then the system at rest can be integrated without discrepancies. 
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The following calculations apply: 

Observer A finds that the signals transmitted by observer B distancing with the velocity 𝑣1  

are arriving with the delay 

𝑡1 = 𝛾1𝛥𝑡                                                               (12.62) 

The connected coordinates are 

𝑥1 = 𝑣1𝑡1𝑐𝑜𝑠 𝛼
′                                                         (12.63) 

𝑦1 = 𝑣1𝑡1𝑠𝑖𝑛 𝛼
′                                                         (12.64) 

In view of system S the velocity of observer B is calculated according to Eq. (4.20), see also 

chapter 4.1: 

𝑣2 =
√(𝑣0

2 + 𝑣1
2 + 2𝑣0𝑣1𝑐𝑜𝑠𝛼′) − (𝑣0𝑣1𝑠𝑖𝑛𝛼′)2

1 + 𝑣0𝑣1𝑐𝑜𝑠𝛼′
                          (12.65) 

where in his view the velocity of A is equal to 𝑣0. The angle 𝛼 measured by S is following 

equation Eq. (7.43) 

𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝑠𝑖𝑛 𝛼′

𝛾0 (𝑐𝑜𝑠𝛼′ +
𝑣0
𝑣1
)
]                                          (12.66) 

(For details see chapter 7.2). Analogous to the coordinates found before it is 

𝑡2 = 𝛾2𝛥𝑡                                                              (12.67) 

𝑥2 = 𝑣2𝑡2𝑐𝑜𝑠𝛼                                                           (12.68) 

𝑦2 = 𝑣2𝑡2𝑠𝑖𝑛𝛼                                                           (12.69) 

Finally, the coordinates are calculated which can be found using the Lorentz equations and 

it applies 

𝑡1
′ = 𝛾0(𝑡2 − 𝑣0𝑥2)                                                       (12.70) 

𝑥1
′ = 𝛾0(𝑥2 − 𝑣0𝑡2)                                                       (12.71) 

The following correlations must apply: 

𝑡1
′ = 𝑡1                                                                  (12.72) 

𝑥1
′ = 𝑥1                                                                 (12.73) 

 𝑦2 = 𝑦1                                                                 (12.74) 

Eq. (12.74) shows that the values in 𝑦 direction are the same in all systems, what is a direct 

requirement of the Lorentz transformation. 
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Tab. 12.2: Comparison of calculations using Lorentz-Transformation. Values marked grey: 

Approximation (otherwise division by zero); Presentation in frames: 180 °+angle 

Equations for 𝑡1 → Eq. (12.33) to 𝑥1
′  → Eq. (12.42) see text. 

An analytical solution of these equations is complex, a direct numerical comparison not. 

In tab. 12.2 the results for the calculation of different angles between A and B and varying 

velocities are presented. No differences occur and Eq. (12.72), (12.73) and (12.74) are un-

restrictedly valid. 
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3. The straight lines of the direction vectors are not intersecting 

In the case where the direction vectors of observers A and B are not intersecting, this means 

in the terminology of analytical geometry, that the straight lines are “out of square”. For the 

solution of this problem first the position must be determined where the distance between 

the straight lines for both observers reach a minimum. In this case, here (and only here) the 

angle of the connecting line is matching the value of 90° in relation to the straight lines for 

both observers. 

 This connecting line is now selected as basis for the 𝑧-axis, which played no role in the 

interpretation up to now. The intersection point with the 𝑥-axis is now defined as origin of 

the coordinate system and the direction of the 𝑦-axis is perpendicular to both. When ob-

server B has reached the minimum distance to the center of origin with distance 𝑧𝑚𝑖𝑛 on 

the 𝑧-axis then 𝑥 = 𝑦 = 0 applies. Now the fact is used that the values in 𝑧-direction do not 

change during Lorentz transformation and that therefore a projection by factor 𝑧𝑚𝑖𝑛 is pos-

sible. The situation appearing now is identical to the case, where the direction vectors 

showed intersection. So, in a final statement it can be noticed, that it was possible to prove 

that a system of absolute rest can be integrated in any arbitrary inertial system without 

violation of the Lorentz equations or showing any other discrepancies. 
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13.  Possible experiments 

In the following it shall be discussed, which possibilities exist to clarify the situation created 

by the survey presented in this elaboration. For this purpose, the set-up of possible experi-

ments is introduced, and an approach will be made to evaluate output data on the basis of 

realistic input. The proposals for these experiments are based on the considerations pre-

sented in chapter 10, were major subjects of the theory of Special Relativity were discussed. 

 A new approach to the subject is, when during quantum mechanical tunneling experi-

ments it is assumed that information – considered as a simple pulse – could be transported 

with superluminal velocity. This would only be possible, when in contrast to the well-

known preconditions of Special Relativity a system at absolute rest is assumed as general 

frame. 

 Further an experiment will be proposed to clarify, whether differences in the synchroni-

zation within a system in motion before and after acceleration really exist. With this exper-

iment it could be possible to find distinct evidence about the statements concerning Rela-

tivity of Simultaneity as already discussed in chapter 11.3, which is classified as not valid 

by some new theories. Further an experiment is described that could measure the relativ-

istic mass increase of a non-elastic collision in an indirect way. 

13.1  Measurement of tunneling in different spatial directions 

 

It was already presented in chapter 10.1 that transport of information with superluminal 

velocities and Special Relativity are leading to a severe conflict. If such an effect could be 

verified it would be possible to solve the appearing discrepancies by assuming a state of 

absolute rest in the universe as general frame. In the following an experiment will be de-

scribed, which would allow to detect a relative motion relative to a resting frame using 

quantum mechanical tunneling and the connected superluminal velocity of a pulse 

transport. 

 First the principle and limits of the experimental set-up shall be discussed in detail. As 

already presented in chapter 10.1 the principle to conduct measurements is that a pulse is 

induced into a double-prism and afterwards the reflected and the tunneled pulses are com-

pared relating to their transit time. The reflected beam is leaving the prism with almost 
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unchanged intensity and in contrast the intensity of the tunneled beam is much smaller. It 

is therefore part of the experiment to amplify the tunneled beam with an extremely high 

intensity. 

 Starting an analysis, the measured values must first be amplified to the same size, i.e. 

they have to be normalized. One of the most important difficulties during the evaluation of 

these normalized values of reflected and tunneled pulses is the fact that the results are not 

obeying the form of sharp rectangular pulses but appear as bell-shaped Gaussian distribu-

tion curves and must be interpreted in a correct way. As an example, for this effect in Fig. 

13.1 experimental values published in the literature for a reflected and a tunneled beam 

after normalization are presented [64]. To show the difficulty for evaluation the “original” 

value of the tunneled pulse – already with high amplification – was added. 

 

  

Fig. 13.1: Published data [64] of normalized values during tunneling experiments 

Presentation of reflected and tunneled pulses  

“Original” tunneling pulse (already with high amplification) was added. 

 

 According to G. Nimtz [64] the evaluation of these experiments showed values for the 

reflected beam 𝑣𝑅 = 0.665c and for the tunneled beam 𝑣𝑇 = 4.6c. Although measurements 

like these, which were verified during several other experiments, are not generally ques-

tioned, it is argued in many cases that in fact superluminal velocities occur, but it is not 

possible to transport information faster than light during these trials. The general back-

ground was already discussed in chapter 10.1. Independently of considerations concerning 

Special Relativity, the appearing measuring effects are of general interest, and it would be 

worth finding out whether a single pulse, which can also be taken as small part of infor-

mation, is travelling faster than light or not. 
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Because of the experimental challenges an unambiguous verification is very difficult. The 

function profile is generally expressed by 

𝑓(𝑡) =
𝑒𝑥𝑝 [−(

𝑡 − 𝛥𝑡
𝑘

)
2

]

√𝑘 · 𝜋
                                                (13.01) 

where for normalization the original values relate to the maximum of the function at point 

𝑓𝑚𝑎𝑥 = 𝑓(𝑡 − 𝛥𝑡)                                                        (13.02) 

 In this relation 𝑘 describes the width of the bell-shaped curve (which is appearing 

smaller for increasing values of  𝑘) and 𝛥𝑡 the distance of the maximum of the function com-

pared to the initial value 𝑡 = 0. 

 In the past already several experiments using double prisms were carried out. The larg-

est dimensional set-up used a measuring distance of approximately 280mm. As already dis-

cussed, a superluminal transport of information is only possible when the existence of a 

system at absolute rest is assumed. It is well known that our solar system is moving with a 

speed of about 369km/s against the isotropic cosmic background radiation. When it is sup-

posed that the latter is connected to a frame of absolute rest, then it could be possible to 

detect a measuring effect using an apparatus with a double prism and taking measurements 

in different spatial directions. 

 However, the effects to be expected are exceedingly small. To show this, based on the 

considerations in chapter 10.1 the expected values are calculated and presented in Tab. 

13.1. The calculations for the measuring effects are valid for a distance of 280mm and a 

signal velocity of 4.6c as taken from [64]. Inserting these values in Eq. (10.07) the calcula-

tion will give the results presented in Tab. 13.1 for the orientation in moving direction (𝑡1 +

𝑡2) and opposite to it (𝑡3 + 𝑡4). It is instantly clear that the resulting differences in time are 

quite small and approximately 2-3 orders of magnitude smaller than the differences using 

the original experiment. 

 
 

Tab.13.1: Maximum of expected values using prisms according to Fig. 10.1  

with 𝑎 = 280 𝑚𝑚; 𝑣𝐸 = 4.6𝑐; 𝑣𝑆 = 369 km/s 
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 To increase the informational value of an experiment it is therefore necessary to adjust 

one of the parameters. This could be achieved by a tight decrease of the length of the pulse, 

i.e. using a femtolaser. However, this approach would be limited by the absorption capabil-

ity of the beam at the surface of the prism and by the increasing complexity of the measure-

ment technique. Further it is theoretically possible to enlarge the distance of the measuring 

device to increase the value of 𝛥𝑡; in this case it must be respected that an extreme reduc-

tion of the tunneling effect will appear. 

 An experimental set-up on basis of the discussed parameters is therefore not reasonable 

and has to be optimized considerably by suitable modifications. To respect this, the pro-

posal presented in Fig. 13.2 shall be brought into discussion. In this case instead of the typ-

ically used single beam and the comparison between reflected and tunneled pulse a second 

beam is symmetrically passing the device. For examination only the tunneled parts of the 

pulses are amplified and compared with each other. Using this concept all problems with 

the interpretation of the experiment as discussed before, where the comparison between 

reflected and tunneled pulses was necessary, will be avoided. 

 

 

 

Fig. 13.2: Possible experimental set-up for the measurement of tunneling effects in different 

spatial directions. 

 Using this set-up, the experiment will start when the modulator is sending signal S and 

S′ to the transmitting antennas situated at opposite directions. The generated pulses will 

pass the device according to the presentation of Fig. 13.2. 
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 For a reasonable evaluation, the use of differential analysis should be preferred. In this 

case the apparatus must be gauged in an arbitrary direction in such a way that the tunneled 

pulses of both prisms are exactly matching; measurements of a time-difference will in this 

case show by definition a zero-result. When in a second step the apparatus is turned and an 

effect like discussed before exists, then between both prisms a time difference for the pass-

ing pulses will appear. The height will be dependent on the direction to the state of absolute 

rest, the velocity of the signal and on the total length of the used apparatus. 

 

  

Fig. 13.3: Expected values for an apparatus with a length of 280 mm, 

𝑣𝑆 = 369 km/s and 𝑣𝑇 = 4.6𝑐 

 To amplify the signals, the enlargement of the prisms or the distance between them is no 

suitable option, because in these cases the measuring effects will be considerably reduced. 

However, it is possible to detect the signals of the prisms and after amplification to transmit 

these into a secondary set-up to repeat the measurements. The converting of the signals 

will most probably result in small differences of the measured time which will have an in-

fluence on the related values. However, these effects are not detrimental for the experiment 

and can be neglected because in principle only differences between both parts are meas-

ured. 

 It is noticeable that the expected values are exceedingly small, but that the proposed ex-

periment has a realistic chance to provide reliable data. Particularly important is the me-

chanical stability of the set-up. This must be placed on a turning table to realize measure-

ments in different spatial directions. Further on if a positive result could be achieved, the 

differences between values measured during the realization over a day and the connected 

change of the position of earth to a system of absolute rest will appear. 
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 With the presented experiment it could be possible to provide evidence about basic 

physical aspects. Either a positive effect will be detected and then the already discussed 

consequences for Special Relativity must be considered, or, if it is not the case, the possibil-

ity of superluminal information transport during tunneling experiments is finally answered 

in a negative way. 

13.2  Measurement of synchronization differences 

As already described in chapter 10.2 the Lorentz Transformation is causing differences in 

synchronization because of the relativity of simultaneously for systems with different ve-

locities. There are possibilities for measurements, when between two clocks, which are 

placed in a certain distance in a laboratory, synchronization is realized first, the lab is then 

accelerated in direction of their orientation and finally the procedure is repeated. In this 

case according to laws of the Lorentz Transformation synchronization differences at both 

clocks must appear. 

 In Fig. 13.4 the relations discussed before are presented. To ensure proper graphical re-

production exceedingly high velocities were chosen (𝑣 = 0,5𝑐 ± 0,25𝑐, this is correspond-

ing to values of 𝑣1 = 0,667𝑐 and 𝑣2 = 0,286𝑐 when the correlations for relativistic addition 

of velocities are used). 

 When 𝑡0 is the time for a signal running between positions A and B in a system at rest 

then for the left part of the diagram the following measuring effects will be achieved: 

 

𝑡𝐴𝐵 =
𝑡0

𝛾1 (1 −
𝑣1
𝑐 )
         𝑡𝐴𝐵

′  =
𝑡0

𝛾2 (1 −
𝑣2
𝑐 )
                                   (13.10) 

 

𝑡𝐵𝐴 =
𝑡0

𝛾1 (1 +
𝑣1
𝑐
)
         𝑡𝐵𝐴

′  =
𝑡0

𝛾2 (1 +
𝑣2
𝑐
)
                                  (13.11) 

and 

∆𝑡𝐴𝐵 = 𝑡𝐴𝐵
′ − 𝑡𝐴𝐵 =

𝑡0

𝛾2 (1 −
𝑣2
𝑐 )
−

𝑡0

𝛾1 (1 −
𝑣1
𝑐 )
                            (13.12) 

 

∆𝑡𝐵𝐴 = 𝑡𝐵𝐴
′ − 𝑡𝐵𝐴 =

𝑡0

𝛾2 (1 +
𝑣2
𝑐 )
−

𝑡0

𝛾1 (1 +
𝑣1
𝑐 )
                            (13.13) 

Because of 

𝑐 =
𝑎

𝑡0
                                                                 (13.14) 

this leads for 𝑣1 , 𝑣2 ≪ 𝑐 to 
 

∆𝑡𝐴𝐵 ≅
𝑎[𝑣1 − 𝑣2]

𝑐2
                                                       (13.15) 

and 

∆𝑡𝐵𝐴 ≅
𝑎[𝑣2 − 𝑣1]

𝑐2
                                                       (13.16) 
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 Further the difference to the situation in chapter 10.2 is that in this case not 2 independ-

ent observers perform the test, but 2 clocks in just one integrated laboratory. 

 
Fig. 13.4: Space-time-diagram for systems after changing velocities 

  Left:  Reducing speed 

  Right:  Increasing speed 

 

 

For the right-hand side of the diagram the same relations apply, with the difference that 

𝛾1 and 𝛾2 are changed. For the measurement of these differences the following experiment 

is proposed: 

a)  Experimental set-up 

For the experiment 2 clocks are placed in a distance 𝑎 at the positions A and B. In a moving 

system (see Fig. 13.4) the distance changes to 𝑎 𝛾⁄ . After the exchange of signals for each 

clock a synchronization procedure is carried out. It is important that the signals are not 

reflected to a central station for comparison because − as it is the case for the Michelson-

Morley or Kennedy-Thorndike-Experiment − a null result would appear. Afterwards the la-

boratory is accelerated in orientation direction of the clocks and after another exchange of 

signals the synchronizations are repeated. Following this procedure, then because of the 

Lorentz Transformation a synchronization difference between the positions before and af-

ter acceleration must appear which reads ∆𝑡𝐵𝐴 for clock A and ∆𝑡𝐴𝐵 for clock B. 

𝑣 = 0,286𝑐 𝑣 = 0,667𝑐 

𝑣 = 0,667𝑐 𝑣 = 0,286𝑐 
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 When an experiment like proposed before is conducted it would make sense to consider 

the differences between ∆𝑡𝐴𝐵 and ∆𝑡𝐵𝐴 (in this case one of the values will be positive, the 

other negative). First this will result in the fact that the measuring value is doubled, second 

distortions caused by deviations in the length of the device (i.e. by temperature changes or 

effects due to acceleration) of the dimension ∆𝑡𝑆 are eliminated because effects of increas-

ing or reducing length would have the same influence. In this case the following equation is 

obtained: 

∆𝑡 ≅ ∆𝑡𝐴𝐵 + ∆𝑡𝑺 − (∆𝑡𝐵𝐴 + ∆𝑡𝑺) =  
2𝑎[𝑣1 − 𝑣2]

𝑐2
                           (13.17) 

The result is depending on the distance between the clocks 𝑎 and the velocities 𝑣1 and 𝑣2 

only. 

b) Estimations of the size of possible generated results 

The best and most accurate method to perform a measurement like this would be to place 

the whole experimental device in a rocket and drive it to space, but without doubt the effort 

in this case would be extremely high. On the other hand, the speed differences that could be 

realized would be also high and so standard 87Rb-clocks, which are already in use for the 

GPS satellite navigation system with a standard deviation of approx. 3 · 10−12𝑠 could create 

very reasonable results. 

 When terrestrial experiments are considered, the requirements concerning accuracy 

would increase significantly. An experiment like this could be e.g. conducted using an air-

plane. A synchronization procedure at the ground and a comparison with data after the 

start is useless, however, because differences in the height above ground would lead to a 

distortion of the values. Instead, measurements after the start using a constant height are 

proposed. Reasonable values are e.g. differences between 300 km/h and 900 km/h. The 

experiment should be repeated in several directions relative to the rotation of the earth to 

eliminate distortions (i.e. by the Sagnac-effect). 

 When a difference of 600 km/h for the velocities and a length of 30m for the set-up is 

assumed, then values of approximately 1,1 · 10−13𝑠 will be obtained according to Eq. 

(13.17). An experiment like this could reveal reasonable data, because using advanced 

atomic clocks measurements in the range of 10−17𝑠 are possible. This is of course not a 

simple operation and needs careful verification processes, because it must be shown first, 

that the clocks needed for the experiment are sufficiently stable for the use in an accelerated 

system. 

 In alternative considerations the use of a train or magnetic levitation train transporting 

the experiment could be possible. Because of lower speed differences the measuring sensi-

tivity would be reduced but the necessary budget is smaller. In an alternative experimental 

set-up, the complete equipment could be placed in a container, tested on the ground and 

then loaded into a plane. If a usual commercial 40 feet container is used values of approxi-

mately 5 · 10−14s could be expected which are, with the limitations already discussed, also 

sufficient to create a significant result. 

 At this stage of the discussion, it is possible to make the objection that in principle meas-

urements like these are not feasible inside the gravity field of earth. As a counterargument 
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it can be stated, however, that important experiments with a positive and meaningful result 

were executed in this way. In particular the trials of J. C. Haefele and R. E. Keating [81,82] 

shall be mentioned. In this case high precision atomic clocks were transported by plane 

around the earth and their values were compared afterwards with reference clocks which 

were not transported. The flight in direction of earth’s rotation showed, that the trans-

ported clocks run slow and in opposite direction they were faster than the clocks on the 

ground. The results were in good compliance with the values predicted by the theory. So, 

with these experiments it was possible to identify a condition of rest not including the ro-

tation of the earth. 

 However, if a terrestrial measurement is not possible then the use of a rocket is the only 

alternative left for the execution of the proposed experiment. 

 If any of these experiments whether on ground, in air or in space will show a positive 

result, experimental evidence is provided, that the “Relativity of Simultaneously”, which is 

a necessary condition when the Lorentz-Transformation is valid, reveals the expected dif-

ferences in local time after acceleration. It shall be pointed out again that this experiment 

must generate values possible to measure. This is in contradiction to many other experi-

ments where the theory of Special Relativity is predicting a zero result. This experiment 

could therefore deliver the final answer, whether the proposed Relativity of Simultane-

ously, which is a major and necessary part of the Lorentz-Transformation, does really exist. 

13.3  Measurement of velocity after non-elastic collision 

In chapter 7.1 it was already demonstrated that an increase of mass must appear during 

non-elastic collision to avoid conflicts with the laws of conservation for momentum and 

energy. When this is the case the speed of a combined body after collision can be easily 

derived by using the relativistic addition of velocities. If this would not be the case, or partly 

not, then the measurement of the speed of a joined body after non-elastic collision would 

provide interesting new information. 

 To verify this, the following experiment is proposed: Mass 𝑚2 is accelerated to the ex-

actly defined speed 𝑣2. When it is hitting a mass at rest 𝑚1, both objects form a composite 

body, and the resulting velocity is subject to exact measurement. This experiment could 

verify that during a nonelastic collision the potential energy of 𝑚2 is completely trans-

formed into mass. Although this conversion is verified on microscopical scale, however, for 

objects with large dimensions it could be possible that during deceleration a part of the 

energy is transformed into thermal energy and carried out of the system by radiation and 

not be available for reduction of the speed (concerning radiation see also chapter 7.2). This 

behavior would violate the principles of relativity and could be measured. 

Example: 

An object with mass 𝑚1 is considered, which is at absolute rest ( 𝑣1 = 0), an identically sec-

ond mass (i.e. 𝑚2 = 𝑚1) is hitting it with velocity 𝑣2, both objects are joining and moving 

on with the speed 𝑣3.  

 According to the discussions in chapter 7.1 the following values for the different concepts 

can be calculated: 
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a) Nonrelativistic 

In this case the Galilei-Transformation is valid 

𝑣3 =
𝑣2
2
                                                                (13.20) 

b) Relativistic 

This requires a transformation analog to Eq. (7.04) which leads to 

𝑣2 =
2𝑣3R

1 + (
𝑣3𝑅
𝑐 )

2                                                         (13.21) 

𝑣3𝑅
2 −

2𝑣3𝑅𝑐
2

𝑣2
= −𝑐2                                                     (13.22) 

and finally 

𝑣3𝑅
𝑐
=
𝑐

𝑣2
−√

𝑐2

𝑣2
2 − 1                                                     (13.23) 

An examination of this equation shows that positive results of the square root are leading 

to values 𝑣3𝑅 > 𝑐 and therefore cannot be permitted because of plausibility reasons. If this 

square root in Eq. (13.23) is solved by Taylor expansion (for 𝑣2 → 0) then the result 

√
𝑐2

𝑣2
2 − 1 =

𝑐

𝑣2
−
𝑣2
2𝑐
−
𝑣2
3

8𝑐3
−⋯                                           (13.24) 

appears. Values of higher order can be neglected. Eq. (13.23) is changing accordingly to 

𝑣3𝑅
𝑐
=
𝑐

𝑣2
−√

𝑐2

𝑣2
2 − 1 ≅

𝑣2
2𝑐
+
𝑣2
3

8𝑐3
                                         (13.25) 

In table 13.2 calculated results for impact-velocities between 1 and 100.000 km/s are 

shown. To allow a better comparison, only the differences to the non-relativistic case 𝛥𝑣 

according to Eq. (13.26) are presented. The value of 𝛥𝑣 is always positive, i.e. the calculation 

of 𝑣3𝑅 is leading in all cases to results higher than that of 𝑣3. 

𝛥𝑣 = 𝑣3𝑅 − 𝑣3                                                           (13.26) 

Tab. 13.2: Calculation of differences for end velocity after nonelastic collision. 

Initial value: Galilei-Transformation Eq. (12.20). Velocities in km/s. 



13.3  Measurement of velocity after non-elastic collision 

193 

 The results for velocities 𝑣2 ≥ 1000 km/s related to the relativistic approach were cal-

culated using the basic equation Eq. (13.23). For smaller values, the precision of a standard 

computer with 15 digits accuracy is no longer useful, and Eq. (13.25) must be used instead. 

This equation, however, must be extended with higher order terms using velocities of more 

than 10.000 km/s, so, a combination of both approaches was chosen. 

 For the realization of the proposed experiment, it would be reasonable to use a massive 

and compact body for the moving part, e.g. a sphere. For the not moving object it is proposed 

to use a ring with high plasticity. The ring should have an inner diameter slightly smaller 

than the diameter of the sphere. A set-up like this should allow precision measurements of 

the velocity directly on the surface of the sphere and would avoid problems which appear, 

when a plate or a deformable foil, which is wrapping around the sphere during the execu-

tion of the experiment, is used instead for the body at rest. Because of the expected small 

effects, the experiment must be conducted using a vacuum. 

 An evaluation of the expected results clearly shows that with increasing velocity by one 

order of magnitude the measuring effect will be boosted by 3 orders (with other words: 

factor 10 compared to factor 1000). It is therefore reasonable to increase the speed as much 

as possible. On the other hand, the demands concerning the precision of the required test-

ing equipment will rise considerably with increasing speed so that it is necessary to find a 

reasonable compromise. When for example the value of 1 km/s is chosen, which is corre-

sponding to the speed of a projectile of firearms, then according to the calculations pre-

sented here, a result of 10−9 s per meter of the measuring length would appear. It should 

be possible to detect values like this with a suitable experimental set-up. 

 For experiments like this an exact monitoring would be essential. It could for example 

happen, that because of the high accelerations at the start of the sphere and also during 

deceleration of the connected body the applied stresses on the material will be quite high 

and so vibrations could occur which could affect the results of the measurements. In this 

case maybe the use of composite materials with a soft inner core is necessary. The experi-

ment must be conducted in different spatial directions. Although as pointed out in chapter 

7.1 it is not likely that the result will differ from the relativistic addition of the velocities, 

this experiment is a reasonable addition to provide evidence about the relativistic increase 

of mass for non-elastic collisions on a macroscopic scale. 

 Finally, the question may be raised why an experiment like this should be performed at 

all, when theoretical considerations conclude that the result must be in accordance with the 

relation of relativistic addition of velocities. However, as already shown in chapter 11.3 ef-

fort is made since many years to provide evidence that Lorentz invariance can be violated 

and thus expand the theoretical basis. An experiment like it is presented here could there-

fore extend the range of possibilities in an interesting way. 
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14.  Final evaluation of Special Relativity 

At the end of the presented investigations, the various presentations of special relativity 

(SRT) available in the literature are discussed and evaluated in brief form. For this purpose, 

first the two central preconditions "principle of relativity" and "constancy of the speed of 

light" are examined. To represent the occurring range used in the literature, the possible 

representations were divided into "objective observation criterion" and "axiom". In recent 

publications very often the axiomatic approach is chosen. The earlier presentations, e.g. of 

Einstein, were mostly using the objective observation concept. 

The common interpretation of the SRT today includes the aspect that there can be no 

system of absolute rest. The chains of reasoning used in the literature concerning this mat-

ter are quoted and evaluated. It is shown that none of these approaches can deliver a gen-

erally valid proof. 

Einstein has chosen a top-down approach for the formulation of the SRT. For this pur-

pose, the principle of relativity and the constant speed of light were defined as basics and 

the Lorentz transformation and later also the relativistic mass increase were derived from 

them. Now, with an "Extended Lorentz theory", a bottom-up concept is presented where 

the relativity principle is the result. The validity was proved by a multitude of examples. 

With free choice of the base system, both approaches are completely equivalent. How-

ever, the Theory of Special Relativity has the disadvantage that it excludes the existence of 

a system of absolute rest in principle, but this can be integrated without problems into the 

extended Lorentz concept by a simple choice of the base system. From today's point of view, 

it seems reasonable to use for it the system which is the basis for the uniform cosmic back-

ground radiation in the universe. However, since up to now no experimental proof has suc-

ceeded, a decision cannot be made at present. In the context of this elaboration a proposal 

was made, how an experiment could be arranged, which makes a clear decision possible 

concerning the different approaches (chapter 13.1). 

14.1  Principles of SRT and their presentation in the literature 

It is quite surprising that until today there is no uniform formulation of the two central 

conditions "principle of relativity" and "constancy of the speed of light". Every author of a 

publication about the SRT chooses his own approach for this (only in individual cases, no 

presentation is made at all and without comment the Lorentz equations are used [89]). In 



14.1  Principles of SRT and their presentation in the literature 

195 

order to represent the occurring bandwidth, the possible formulations were divided into 

"objective observation criterion" and "axiom" (Tab. 14.1). In more recent publications, the 

axiomatic approach is rather (but not exclusively) chosen. 

       Objective observation criterion       Axiom of Special Relativity 

 

1. The execution of any physical experi-

ment leads to the same result in all iner-

tial systems. 

 

1. Principle of Relativity: 

All inertial systems are equivalent. 

 

2. Measurements of the speed of light in 

different spatial directions lead to the 

same result in all inertial systems. 

 

2. Constant speed of light: 

The speed of light in different spatial  

directions are the same in all inertial  

systems. 

Tab. 14.1: Currently common representations of the basics of Special Relativity 

To show the differences, individual examples are presented in the following. The princi-

ple of relativity is defined in its original form by Einstein as follows [12]: 

“Principle of Relativity: The laws by which the states of physical systems undergo change 

are not affected, whether these changes of state be referred to the one or the other of 

two systems in uniform translatory motion relative to each other.” 

This is therefore a formulation that can be assigned to an objective observation criterion. 

Some other authors also use the reference to measurements, although the representation 

can be completely different [27]: 

“Postulate I: It is impossible to measure, or detect, the unaccelerated translatory motion 

of a system through free space or through any ether-like medium which might be as-

sumed to pervade it.” 

This is different with the constancy of the speed of light. For this exist only few cases with 

the reference to measurements, e.g. M. Born with the following formulation [26a]: 

“The principle of the constancy of the speed of light: In all inertial systems, the speed of 

light, measured with physically identical rods and clocks, has the same value.” 

In almost all other cases, the reference to measurement methods is not mentioned and the 

form as an axiom is used. Einstein himself used a more complicated form of representation 

which describes a measuring method but makes a clear assignment difficult: 

“Principle of constancy of the speed of light: Every light ray moves in the "resting" coor-

dinate system with a certain speed V, independent of whether this light ray is emitted by 

a resting or a moving body. Here is 

velocity =
lightpath

time period
 

where "time period" is to be understood in the sense of the definition of § 1.” 
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The overall situation can be simplified as follows: 

• Objective observation: No difference can be determined. The facts are verified by 

experiments. 

• Axiom: In principle, there is no difference. 

The interpretations associated with these representations are significant in the following 

and will therefore be evaluated in detail. The discussion starts with the constancy of the 

speed of light. 

14.2  Constant Speed of light in every inertial system 

First the possibilities to measure the speed of light shall be presented and discussed on a 

principal basis. The options for measurements can be characterized first by direct and in-

direct procedures (Tab. 14.2). Whereas direct measurements create quantifiable values, the 

indirect approach only allows the comparison between values measured in different spatial 

directions. 

1. Direct 

Use of time measurements 
 

2. Indirect 

Comparison of oscillations 

1a) Measurements using light pulses 

Measurement of time differences at sender/ 

receiver between emitting and receiving a 

signal after reflection at a mirror. 

2a) Measurement of frequency 

Comparison of frequency at sender/receiver 

between emitting and receiving a signal after 

reflection at a mirror. 

1b) Measurements using moved clocks 

Two or more identical clocks shall be syn-

chronized. After the transport to reference 

objects light signals are exchanged and time 

is measured. 
 

2b) Oscillation measurements 

Analysis of light signals between sender/re-

ceiver and mirror as reference (Number of 

oscillations referring to travelling distance 

going and coming after reflection). 

Tab. 14.2: Possibilities for measurements of the speed of light 

In case when direct measurements are chosen, it is essential that the distance between 

emitter and reference object must be known exactly. It makes no difference, whether the 

reference object is at rest relative to the sender or moving. First the possibility exists that 

the time difference between emitting and receiving a light signal after reflection at a mirror 

is measured (1a). In addition, identical clocks can be synchronized and transported to de-

fined reference points, then signals can be exchanged followed by time measurements (1b). 

The disadvantage of this procedure is, however, that for test evaluation it must be recog-

nized that moving clocks are subject to time dilatation and that this effect must be consid-

ered during test evaluation.  

With the indirect methods, only possibly existing differences between the light velocities 

in different spatial directions can be determined. The distance to a reference object might 

be unknown but must remain constant during the measurement. First, the comparison of 

frequencies between outgoing and incoming signals is possible (2a). Furthermore, 
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oscillation measurements have often been performed in the past, comparing the number of 

oscillations on the way to and from a mirror (2b). Here, the use of measurement providing 

interference patterns is particularly suitable, such as it is the case in the Michelson-Morley 

experiment. 

The methods were all examined in the context of this elaboration, namely 1a) in chap. 2, 

then 1b) in chap. 5 as well as 2a) and 2b) in chap. 8. It is important for the interpretation of 

experiments of the type 2b) that here the phase velocity of light must be used for the eval-

uation. In the past, this was not done in a sufficient way, so that new and consistent results 

became visible in a new interpretation of the Michelson-Morley and Kennedy Thorndike 

experiments, taking this effect into account. If this effect is not respected, false conclusions 

are drawn. 

In the following, another important aspect about the speed of light will be dealt with. The 

statement: "The speed of light is the same in all inertial systems" must be considered and 

interpreted carefully. Equal speed of light means: 

In every inertial system the speed of light can be chosen in such a way that the own sys-

tem serves as basis. All conditions of the theory of special relativity are then valid without 

restrictions. The following relation was defined by Einstein for a base system called "rest-

ing" by him, related to another arbitrarily moved system [12a]: 

1

2
(𝜏0  +  𝜏2) =  𝜏1                                                         (3.60) 

This condition, today also called “Einstein synchronization”, means that the times for a 

signal exchange between two points are divided exactly in half for the way there and back 

(for details see chapter 3.4 and 12.2). This statement is independent of whether the refer-

ence object is at rest with respect to the origin or is in motion. Together with the statement 

that the speed of light is constant in all directions, the distances must also be the same. 

The situation is different when the system emitting the signal itself is moving. Let's con-

sider the simple case that the origin of the signal and the reference object have the same 

velocity. Also, here it is possible that the light velocity of the origin is taken as resting and 

the same conditions apply as already derived. The same procedure is possible for a signal 

exchange likewise for any other system from its subjective view. 

However, if several test participants from different inertial systems moving against each 

other observe the same event, e.g. the signal exchange between different spatially separated 

points, different observations must occur. If the speed of light of the own system is taken as 

a basis for measurements and if the times and distances necessary for the signal exchange 

are determined for the way there and back, different results appear. Distance and time are 

not divided symmetrically. This effect is caused by the "relativity of simultaneity". 

This fact has already been presented in detail in chapter 12.2. At this point it shall be 

shown additionally that the data taken from this diagram correspond exactly to the results 

of the Lorentz transformation. For this purpose, first in Fig. 14.1 the left side of Fig. 12.3 is 

shown again, which represents the correct signal course from the point of view of the mov-

ing system S. 

The determination of the Einstein synchronization for the outgoing and returning path 

for the signal exchange between two points (e.g. the ends of a laboratory A and E), which 
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means time and path are in each case divided to the half, is valid only subjectively for the 

system L which is at rest to the laboratory. If from another moving inertial system S this 

determination would also apply and the times 𝑡1 = 𝑡2 would be equal, the situation would 

arise as shown in the right part of the diagram 12.3 with signal velocities larger or smaller 

than c as well as measurable synchronization differences. Moreover, according to these con-

siderations, a situation where the path is constant in both directions cannot even theoreti-

cally occur because the lab end moves away from the original point immediately after the 

signal is emitted and is at a different location on the return path. Instead, the situation as 

shown in the left part of the diagram applies. This means that the determination of a refer-

ence system can always only be subjective. 

  

Fig. 14.1: Schematic presentation of a signal in a laboratory L between E and A from the point 

of view of an inertial system S moving relative to it (𝑣 = 0,5𝑐). 

Table 14.3 shows the coordinates for displacement and time taken from Fig. 14.1. The 

values subjectively valid for the moving system were calculated by using the Lorentz equa-

tions. It is immediately recognizable that in this normalized representation the value of the 

speed of light is c in all cases; for the reference system this results immediately from the 

position of the signal course in the diagram (45° to x and t), for 𝑥′ and 𝑡′ from the relations 

between path and time. 

 
𝑥 𝑡 𝑥′ 𝑡′ 

E0  0 0 0 0 

A1  1,73205081 1,73205081 1 1 

E2  1,15470054 2,30940108 0 2 

Tab. 14.3: Determination of the coordinates of E0, A1 and E2 from Fig. 13.1 

  The values of 𝑥′ and 𝑡′ were calculated using the Lorentz-Transformation. 

𝑣 = 0,5𝑐 
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In summary, the following is valid: If the same event is considered from different inertial 

systems, this leads subjectively to the situation that in all cases the definition of the own 

speed of light is possible as a basis. The connection between the systems is given by the 

Lorentz equations, furthermore the principle of the relativity of simultaneity is valid. 

14.3  Principle of relativity 

For a better understanding of the specifics of this point, it is useful to consider the historical 

development first. As a main issue to mention here is the conviction, which lasted until the 

20th century, that light, because of the wave properties attributed to it, requires a carrier 

medium for propagation, which was called "ether". This was a general consensus for centu-

ries, although there were great differences in the understanding of the structure of this 

ether. 

Until the Michelson-Morley experiment was carried out in 1887, the idea existed that 

this ether penetrates everything and shows similarities in its properties with air and sound 

waves transported in it. Derived from various experimental results, however, there were 

different opinions about whether ether is influenced by matter and is carried with it com-

pletely, partially, or not at all. (Further details of these experiments and subsequent discus-

sions are presented in chapter 1.3). 

However, there was a general understanding that when passing through ether, there 

must be an effect caused by an occurring "ether wind". On the basis of these considerations, 

the Michelson-Morley experiment was carried out, which, however, gave a null result. This 

result led to a multiplicity of considerations, which brought however over nearly two dec-

ades no breakthrough. It is reported that Lord Kelvin spoke on the subject of "ether" during 

the international physics congress in Paris in 1900. He said at that time: "The only cloud in 

the clear sky of the theory was the null result of the Michelson-Morley experiment" [49h]. 

He as well as many other physicists of his time shared the opinion that the experiment 

should be repeated with higher accuracy and then would bring the expected positive result; 

however, none of these attempts were successful. 

A first solution appeared when Hendrik A. Lorentz developed the equations later named 

after him, which allowed a contradiction-free calculation of the correlations. The key point 

was the introduction of different local times and an effect which was later called "relativity 

of simultaneity" by Einstein. It was essential in the development that these relations had a 

similar structure as the previously developed Maxwell equations for electromagnetism. Lo-

rentz was convinced that the ether, which he still considered necessary, must have these 

properties. 

Einstein revolutionized the view on this problem. In 1905, he first showed that light 

propagation does not need a medium but can be understood as emission of "discontinuous 

energy quanta" [48]. Until then, the idea of their existence had not existed, but only the 

nature of light as a wave and the existence of a transport medium connected with it was in 

the focus. With this approach, Einstein was able to reduce the fundamentals of the theory 

he presented to the two principles already discussed. The dualism between corpuscle and 

wave, which is evident for physics today, was not yet known at that time; it was formulated 

for the first time in 1924 by Louis de Broglie. 
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The principle of relativity formulated by Einstein also requires a precise interpretation. 

First, this can be divided into the following detailed statements: 

a) If identical experiments are carried out by different observers in reference systems 

moving uniformly relative to each other, the results will be the same. 

b) An observer can describe results of any experiment in another inertial system that 

shows a constant relative movement using only the Lorentz transformation equa-

tions and the relativistic increase of mass. In particular, the observation of the time 

sequence of events is the same in all cases. 

c) All systems moving uniformly relative to each other are equivalent and there is no 

absolute "system at rest". 

The statement a) will now be defined as “principle of identity”, b) as “principle of equivalent 

observations” and c) as “principle of complete equivalence of all inertial systems”. While 

points a) and b) are today backed up by multiple test results, this must be considered in a 

differentiated manner for point c). This will be done in the following. From the literature, 

several argumentations are known to support the statement of point c), namely: 

1. The results of the Michelson-Morley experiment show that there can be no system of 

absolute rest.  

This becomes clear e.g. in the formulation of Kneubühl [46c] with the evaluation of the Mi-

chelson-Morley experiment: 

“The Galilei transformation is not valid for the light! The concept of a "resting" universe 

is not tenable.” 

 While the first sentence is correct without doubt (the Lorentz transformations are valid as 

known) the conclusion in the second sentence cannot be derived from it. If the principle of 

constancy of the phase velocity of light is taken as a basis, the integration of a system of 

absolute rest is possible without contradictions, which has already been presented in detail 

in chapter 8. Therefore, contrary to the author's opinion, the Michelson-Morley experiment 

does not provide evidence for this thesis. 

Furthermore, there exists another argument: 

2. What is not measurable does not exist. 

This view is held, for example, by Born [26b]. The formulation he uses is:  

“If two observers moving relative to each other have the same right to say that they are 

resting in the ether, there can be no ether.” 

The term “ether” is to be understood here as a synonym for a system of absolute rest, whose 

existence is completely rejected based on the available knowledge. Einstein himself has said 

the following about the topic ether and Theory of Relativity in his inaugural speech as vis-

iting professor in Leiden in 1920 (for explanation: the systems K and K1 are inertial systems 

moving relatively to each other) [86]: 

“Now the anxious question arises: Why should I distinguish the system K, to which the 

systems K1 are physically completely equivalent, in the theory in favor to the latter by 
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the assumption that ether rests relative to it? Such an asymmetry of the theoretical build-

ing, to which no asymmetry of the system of experiences corresponds, is unbearable for 

the theoretical physicist. It seems to me that the physical equivalence of K and K1 with 

the assumption that ether is resting relative to K, but is moving relative to K1, is not ex-

actly incorrect from the logical point of view, but nevertheless unacceptable.” 

The ether concept was not completely rejected by him. In the following explanations he 

even pointed out that it is necessary for General Relativity; however, he contradicts the idea 

that it is a system of absolute rest and was of the opinion that ether must exist for every 

inertial system. 

From this representation another argument becomes recognizable, which can be formu-

lated as follows: 

3. The Theory of Relativity is preferable to the ether theory according to "Ockham's 

principle”. 

"Ockham's principle" is the basic approach to a problem and is named after William of Ock-

ham (1287-1347) and concerns the "law of parsimony". In short, it describes a problem-

solving procedure according to which, when several possible explanations are available, the 

simplest theory is always to be preferred to all others. The simplest theory has the fewest 

variables and hypotheses. The application of this principle is also called "Occam's razor“ 

because it cuts off everything superfluous and allows only one sufficient explanation.  

If the theories on this fundamental basis are compared with each other, then the Theory 

of Relativity contains 2 basic assumptions, the ether theory on the other hand needs, with 

the condition of a state of absolute rest (which cannot be proved experimentally at present) 

a further one. According to the general concept that a theory should be based on as few 

assumptions as possible, the Theory of Special Relativity is therefore preferable. 

The topic ether versus relativity principle was subject of long and controversial discus-

sions at the beginning of the 20th century. Especially because of the considerations pre-

sented here, the controversy was clearly decided in favor of Special Relativity and there 

were no serious objections against it for many decades. 

This did not change before the beginning of the second half of the 20th century with the 

discovery of the uniform cosmic background radiation. Latest measurements with extreme 

precision showed, that our sun is moving relative to it with a velocity of 369.1 km/s. The 

maximum deviation of the measurements is actually 0.9 km/s, i.e. 0.25% [23]. Various ap-

proaches have been developed to reconcile this measurement result with SRT. However, 

these were all connected with the consideration to cancel the "relativity of simultaneity" 

and to introduce a state of absolute rest on this basis. None of these theories were able to 

show results without severe discrepancies to experimental findings. Major characteristic 

for all formulated theories was that the simple concept of the invariant phase velocity of 

light had found no entrance into the considerations and consequently the following inter-

pretations could not be useful. 

The Theory of Special Relativity says so far nothing about the cosmic background radia-

tion. But if this phenomenon is also considered, the fact would have to be added that an 

unspecified coincidence has led to the uniform alignment of this radiation. Here the view of 
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a coincidental givenness is possible; this theory is represented e.g. by Johann Rafelski in 

"Relativity Matters" (2017). Thereby the cosmic background radiation is ascribed the status 

of an appearing "beacon" to which one can refer [93]. 

If now the two competing theories are compared again, it becomes clear that Ockham's 

principle cannot be effective here because of the same number of fundamental assump-

tions, since Special Relativity needs an additional hypothesis by the appearance of the cos-

mic background radiation. This is not necessary for the ether theory. So, based on these 

considerations it is not possible to decide which of the theories is preferable. Only an un-

ambiguous experiment could provide clarity. 

As already mentioned, in this compilation the basic approach was applied that all phe-

nomena are considered from the point of view of a stationary and a moving observer. How-

ever, none of the calculations performed showed any difference. These are the following 

topics, for which the relevant chapter is given in this elaboration: 

→ Exchange of signals between point-shaped observers (2.1) 

→ Exchange of signals inside moving bodies (2.2) 

→ Exchange of signals and correlation of angles (2.3) 

→ Signal exchange in any spatial direction (2.4) 

→ Experiments with transparent media in motion (4.2) 

→ Triggering of engines after synchronization (4.3) 

→ Exchange of signals between observers with spatial geometry (4.4) 

→ Clock transport t (5.1) 

→ Twin paradox (5.2) 

→ Relativistic mass increase and energy (6.1) 

→ Spring paradox (6.2) 

→ Relativistic elastic collision (6.3) 

→ Exchange of signals in systems with constant acceleration (6.4.1) 

→ Relativistic rocket equation (6.4.2) 

→ Relativistic non-elastic collisions (7.1) 

→ Analysis of disintegration into 2 particles (7.2.1) 

→ Disintegration into 2 photons (7.2.2) 

→ Invariance of phase velocity during transition between different inertial systems (8.) 

In summary, there is only one reason to prefer the Theory of Special Relativity to the ap-

proach of Lorentz. This is the fact that SRT generally covers all conceivable physical exper-

iments, while the Lorentz transformation only describes the signal exchange between dif-

ferent inertial systems. To guarantee a general validity, therefore, an addition must be 

made, which is given by the solution of the Einstein equation regarding kinetic energy. This 

will be shown in the following chapter. 

14.4  Alternative presentation: Extended Lorentz-Theory 

As already explained in chapter 1.6, Einstein had chosen a top-down approach for the The-

ory of Special Relativity. For this purpose, the principle of relativity and the constant speed 
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of light were defined as basics and the Lorentz transformation and later also the relativistic 

mass increase were derived from them. For the formulation of the principle of relativity, a 

similar variant must be chosen as by Einstein himself, namely the representation as objec-

tive observation criterion. Also, the statement about the velocity of light can be made in this 

way, but here it is better to use the constancy of the phase velocity of light. The proposal for 

a contradiction-free and unambiguous formulation of the principles of the SRT reads ac-

cordingly: 

1. The execution of any physical experiments leads to the same results in all inertial 

systems. 

2. The phase velocity of the light is invariant in all inertial systems and its speed is equal 

to the value of the velocity of light measurable in every inertial frame. 

However, the investigations presented here have also shown that a bottom-up approach 

with an extended Lorentz theory is also possible. In this case, the necessary physical basic 

laws are defined, and the relativity principle can then be derived from them. This approach 

reads as follows: 

1. From the unlimited number of existing inertial systems, one is selected as base sys-

tem and marked with index 0. 

2. In this basic system, measurements of the speed of light show the same value c in all 

directions. 

3. The properties of all other inertial systems are defined by their relative velocity 𝑣 to 
the base system, and the following relations are valid for time t, displacement x and 
mass m 

a)  𝑡 = 𝛾 (𝑡0 − 
𝑣

𝑐2
𝑥0) , 𝑥 = 𝛾(𝑥0 − 𝑣𝑡0) 

b)  𝑚 = 𝛾𝑚0 

with:          𝛾 =
1

√1 −
𝑣2

𝑐2

     

First some formal remarks: The equations under a) are the Lorentz transformation (related 

to the basic system with index 0). In order to unify the formulas, the traditional represen-

tation with 𝑡′ and 𝑥′ was not used here (see. chapter 1.6). Equation b) describes the relativ-

istic mass increase and contains the Einstein equation for the kinetic energy (see also chap-

ters 1.6 and 6.1) 

              𝐸𝑘𝑖𝑛 = 𝑚0𝑐
2(𝛾 − 1)                                                         (6.14) 

In this representation, special relativity and the extended Lorentz approach are mathe-

matically completely equivalent. However, the Theory of Special Relativity excludes with 

usual interpretation the existence of a system of absolute rest, which can be integrated in 

the extended Lorentz approach by simple choice of the basic system without further as-

sumptions or restrictions. From today's point of view, it seems to be reasonable to use for 

this the system which is the basis for the uniform cosmic background radiation. However, 

since up to now no experimental proof has succeeded, a decision cannot be made at present. 
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From today's point of view, the only possibility for an experimental proof of a system of 

absolute rest is the realization of experiments with superluminal velocities. Today there are 

investigations within quantum mechanics, e.g. in tunneling experiments, where superlumi-

nal effects have been detected. Regarding the interpretation of the results, however, there 

are still big differences. On the one hand it is assumed that despite superluminal effects 

were detected, no information is transmitted faster than light and therefore the validity of 

Special Relativity need not be questioned, on the other hand it is assumed that a simple 

signal transmission, e.g. by a pulse, can indeed be faster than light. In the context of this 

elaboration a proposal was made, how an experiment could be arranged, which allows a 

clear decision concerning the different approaches (chapter 13.1). 

Further experiments were also presented, which should experimentally confirm other 

interesting aspects such as the "relativity of simultaneity" and "mass increase after a non-

elastic impact". 

If these experiments would be carried out, important fundamental questions of physics 

could be investigated and possibly finally decided. There is certainly some effort involved, 

but compared to today's costs for experiments, this should be bearable. It is hoped that 

teams of researchers will be found to undertake the experiments. 

In conclusion, it is remarkable that even more than a century after the formulation of the 

Theory of Special Relativity, new aspects still become apparent when intensively examined. 
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13.   

 
 
 
 

Annex 

The attachments presented in the following were utilized in those cases when calculations 

could not be provided in a closed analytical way, and it was necessary to use numerical 

calculations. 

 For every calculation first the mathematical foundations are presented and based on this 

the used formula for the program. For the execution Microsoft Excel© was used. In every 

case in addition the original codes are provided to allow a simple confirmation when re-

quested. 

 To every evaluation, examples with selected reasonable basic conditions are added. 
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Annex A:  Relativistic elastic collision   

Annex A:  Relativistic elastic collision 

In this attachment the necessary calculations for the elastic collision are presented (see also 

chapter 6.3). For this purpose, the equations 

𝑝 = 𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = 𝑚1𝛾3𝑣3 +𝑚2𝛾4𝑣4                                    (A. 01) 

𝐸0
𝑐2
= (𝛾1 − 1)𝑚1 + (𝛾2 − 1)𝑚2 = (𝛾3 − 1)𝑚1 + (𝛾4 − 1)𝑚2                (A. 02) 

are used. Eq. (A.02) is transformed to 

𝛾4 =

𝐸0
𝑐2
− (𝛾3 − 1)𝑚1

𝑚2
+ 1                                                 (A. 03) 

with 

𝑣4 = ±𝑐 · √1 −
1

𝛾4
2                                                         (A. 04) 

Further Eq. (A.03) and Eq. (A.04) are inserted in Eq. (A.01) 

𝑓(𝑣3) = 𝑚1𝛾3𝑣3 ± 𝑐 (
𝐸0
𝑐2
− (𝛾3 − 1)𝑚1 +𝑚2) [1 − (

𝐸0
𝑐2
− (𝛾3 − 1)𝑚1

𝑚2
+ 1)

−2

]

1
2⁄

   (A. 05) 

This relation is depending solely on the defined values for 𝑣1 and 𝑣2. Using the principle 

of bisection, the values for 𝑣3 and in a second step also 𝑣4 can now be determined (for com-

parisons of different calculation methods see annex D). First the appropriate starting values 

(𝑣3+)0 and (𝑣3−)0 must be identified for which the following conditions apply: 

𝑓(𝑣3+)0 > 𝑝                                                              (A. 06) 

𝑓(𝑣3−)0 < 𝑝                                                              (A. 07) 

In the interval [(𝑣3−)0; (𝑣3+)0] the function 𝑓(𝑣3) must be continuous and differentiable 

and further 𝑓′(𝑣3) ≠ 0 is required. This means, that in the chosen interval minima and max-

ima are not allowed, because otherwise no exact solution exists. Now the mean value is 

determined using 

(𝑣3)1 =
(𝑣3+)0 + (𝑣3−)0

2
                                                   (A. 08) 

and 𝑓(𝑣3)1 is calculated according to Eq. (A.05). The following equations apply: 

 𝑓(𝑣3)1 > 𝑝   ⇒ 

 

(𝑣3+)1 = (𝑣3)1 
(A. 09) 

(𝑣3−)1 = (𝑣3−)0 
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 𝑓(𝑣3)1 ≤ 𝑝   ⇒ 

 

(𝑣3+)1 = (𝑣3+)0 
(A. 10) 

(𝑣3−)1 = (𝑣3)1 

The calculation is repeated with increasing index 1 to 𝐾 until the required accuracy is 

achieved. Caused by the appearance of the indication ± in the relations Eq. (A.04) and Eq. 

(A.05), which is caused by the determination of the square root, the calculation of 𝑣4 pro-

vides 2 different results, which must be interpreted using plausibility considerations ac-

cording to the applicable situation. 

If a simple spreadsheet is used for the calculation (cf. Chap. A.2), the input parameters 

are limited due to the previously discussed boundary conditions. For the calculations, the 

starting conditions must be chosen so that the values for 𝑣1 are positive in all cases. It is 

also assumed that, through appropriate index selection, the values of 𝑣1 are always greater 

than 𝑣2 and the values for the calculated momentum in Eq. (A.01) are 𝑝 > 0. If the actual 

default values deviate from these prerequisites, adjustments are necessary whose defini-

tion is shown below. 

A.1 Program flow of the calculation process 

In the following it is described which process steps a program must execute in order to 

carry out the necessary calculations (cf. Fig. A.1). To ensure an unrestricted selection of the 

output parameters, their determination is first carried out via the subprogram "Parameter 

Input" and after completion of the calculations the reconversion is carried out by means of 

the subprogram "Parameter Output" (Fig. A.2). 

The specification of the input-parameters is determined by the following criteria: 

1. For the consideration of the velocities of objects with mass 𝑚1 and 𝑚2 the precondi-

tion 𝑣1 > 𝑣2 is necessary. The reason for this is, that the calculation starts with the 

determination of 𝑣3 (of the object with mass 𝑚1 after collision); values with 𝑣1 < 𝑣2 

would represent a situation that object 𝑚2 is moving faster than 𝑚1 and this would 

mean that the incident could not take place. 

2. Further the general conditions 𝑣1 > 0 and 𝑝 > 0 must apply. These preconditions 

are necessary to guarantee an undisturbed execution of the program because the 

presence of the square root in the formula would otherwise lead to interpretation 

problems. In the case discussed here, only positive values must be obeyed instead of 

plus and minus as possible results. 

The definition of these preconditions for the execution are severe restrictions at first 

sight, but they are representing no limit for the calculations. This is the case because several 

possibilities exist to modify the starting conditions as 

1. The algebraic sign for velocities 𝑣1 and 𝑣2 can be determined as desired, under the 

condition that they are changed simultaneously. 

2. The index between 𝑣1; 𝑚1 and 𝑣2; 𝑚2 can be changed. 
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When an appropriate combination of these conditions is used, this will cover all possible 

situations. To show this, first the case 𝑣1 > 0 shall be discussed. Instead of the theoretically 

possible 23 = 8 combinations defined by the 3 starting conditions 𝑣2 > 0, 𝑣1 > 𝑣2 and 𝑝 >

0 only 4 alternatives are remaining. This can be explained by discussing the following situ-

ations: 

• For case 𝑣2 > 0 in combination with 𝑣1 > 0 the resulting total momentum is always 

positive and so it is not necessary to consider it further. A negative momentum can 

only occur when the velocities show different algebraic signs (or are both negative). 

• The discussed case 𝑣1 > 0 in combination with 𝑣2 < 0 is obviously always leading 

to the result 𝑣1 > 𝑣2. 

These cases can be excluded from further considerations. The remaining variants can be 

summarized as follows: 

Condition 1 Condition 2 Action Code 

𝑣2 > 0 𝑣1 > 𝑣2 No action necessary F1 

𝑣2 > 0 𝑣1 < 𝑣2 Change of index F2 

𝑣2 < 0 𝑝 > 0 No action necessary F1 

𝑣2 < 0 𝑝 < 0 Change of index and algebraic sign F4 

Tab. A.1: Input-parameter depending on starting conditions for 𝑣1 > 0 

For the situation 𝑣1 < 0 the determination follows the same procedure with the only dif-

ference, that first a general change of the algebraic sign is necessary. It must be obeyed that 

in this case the algebraic sign of the momentum is changing also. Finally, the following cases 

apply: 

Condition 1 Condition 2 Action Code 

𝑣2 > 0 𝑝 > 0 Change of index and algebraic sign F4 

𝑣2 > 0 𝑝 < 0 Change algebraic sign F3 

𝑣2 < 0 𝑣1 < 𝑣2 Change of index F2 

𝑣2 < 0 𝑣1 < 𝑣2 Change algebraic sign F3 

Tab. A.2: Input-parameter depending on starting conditions for 𝑣1 < 0 

The values obtained in this way shall be named 𝑉1, 𝑉2,𝑀1, 𝑀2 and can be used for further 

calculations. Following this procedure all possible combinations of appearing masses and 

velocities can be addressed. After finishing the calculations, the results for 𝑉3, 𝑉4,𝑀1, 𝑀2 

must be converted into the needed values using a reverse scheme reapplying the code de-

fined during the Input-process. 
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It shall be mentioned that according to the transformation described above the results 

for 𝑉4 always show positive values and only after a transformation, which may be necessary 

according to the preconditions, shifting to a negative result is possible. This is important 

because the values are calculated according to Eq. (A.04) and, thus, concerning the square 

root with 

𝑉4 = +√1 −
1

𝛾4
2                                                           (A. 11) 

only the positive result must be used. 

The values determined in this way allow the initial values for (𝑉3+)0 and (𝑉3−)0 required 

for the calculations to be established in a straightforward manner. It can be easily shown 

that for all cases the conditions (𝑉3+)0 = 𝑉1 as well as (𝑉3−)0 = −𝑉1 fulfill the requirements 

and always lead to usable results. 

For the further calculations here (as in the other cases) the method of bisection was cho-

sen. For the definition of the parameter for the termination of the calculations the possibil-

ity is given here that the values of (𝑣3)K−1 and (𝑣3)K or (𝑣4)K−1and (𝑣4)K are compared with 

each other and with equality the calculation process is terminated. However, if one of these 

queries is chosen, the situation may arise that - if the values are close to zero - the other has 

not yet been calculated exactly. To avoid this problem the fact was used that from a number 

of approx. 60 iteration steps with the available accuracy of 15 digits the possible limit accu-

racy is reached (see discussion in appendix D). To avoid any problem a fixed number of 80 

iteration steps to stop the process was defined. 

All necessary process steps are represented with the help of program flow charts, 

namely in Fig. A.1 for the general flow and in Fig. A.2 for the described subprograms. Sub-

sequently, a VBA program code created for the calculations (Fig. A.3) as well as the assign-

ment of the formula characters used (Tab. A.3) is reproduced. 

In the following, a simple spreadsheet calculation program is shown in chapter A.2, 

which can be used to perform the same calculations. However, the already mentioned 

boundary conditions 𝑣1 > 𝑣2, 𝑣1 > 0 and 𝑝 > 0 must be observed or, if necessary, manually 

adjusted. 

As already mentioned in chapter 6.3, the results from VBA program and spreadsheet are 

not completely identical, although they follow exactly the same calculation scheme. While 

this does not matter for large values, deviations are noticeable for very small values of 𝑣1. 

These are caused by rounding errors during the calculation, which have different effects on 

the different procedures. However, this does not affect the general statement that in elastic 

relativistic impact no effects can occur which allow measurements to identify a system at 

absolute rest. 

If cases with very low velocities shall be investigated numerically in more detail, com-

puter systems with higher accuracy must be used to get reliable results. 
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Fig. A.1: Flowchart of the calculation process 
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Fig. A.2: Subroutines for process in Fig. A.1 
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Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code 

𝑣1 v1 𝑣2 v2 𝑣𝑐1 vc1 

𝑣𝑐1 vc2 𝑣3 v3 𝑣𝑐3 vc3 

𝑣𝑐3− vc3m 𝑣𝑐3+ vc3p 𝑣4 v4 

𝑣𝑐4 vc4 𝑚1 m1 𝑚𝑐1 mc1 

 𝑣𝑇( 𝑣1,  𝑣2) vt12  𝑣𝑇( 𝑣4,  𝑣3) vt43 𝛿𝑣 Dv 

𝑚2 m2 𝑚𝑐2 mc2 𝑝0 p0 

𝑝 pc0 𝐸0 E0 𝛾4 Ga4 

Tab. A.3:  Formula symbols and referring VBA-Codes 

 

Sub A() 

Dim v1, v2, vc1, vc2, v3, vc3, vc3m, vc3p, v4, vc4, vt12, vt43, Dv, m1, 

mc1, m2, mc2, p0, pc0, E0, Ga4, Gav, K As Double 

Dim F, F1, F2, F3, F4 As String 

'Input 

    v1 = 0.3 

    v2 = -0.1 

    m1 = 1 

    m2 = 3 

'Start calculation 

    If v1 = v2 Then 

        Debug.Print "Calculation not possible: v1 = v2" 

        GoTo Out1: 

        End If 

    p0 = v1 * m1 / (1 - v1 ^ 2) ^ 0.5 + v2 * m2 / (1 - v2 ^ 2) ^ 0.5 

'Subroutine 1 

    If v1 > 0 Then 

        GoTo P1: 

    End If 

    If v2 > 0 Then 

        GoTo P2: 

    End If 

    If v1 > v2 Then 

        F = "F4" 

        Else 

        F = "F3" 

    End If 

    GoTo Def1: 

P2: 

    If p0 > 0 Then 

        F = "F2" 

        Else 

        F = "F3" 

    End If 

    GoTo Def1: 

P1: 

    If v2 > 0 Then 

        GoTo P3: 
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    End If 

    If p0 > 0 Then 

        F = "F1" 

        Else 

        F = "F4" 

    End If 

    GoTo Def1: 

P3: 

    If v1 > v2 Then 

        F = "F1" 

        Else 

        F = "F2" 

    End If 

    GoTo Def1: 

Def1: 

    If F = "F1" Then 

        vc1 = v1 

        vc2 = v2 

        mc1 = m1 

        mc2 = m2 

    End If 

    If F = "F2" Then 

        vc1 = v2 

        vc2 = v1 

        mc1 = m2 

        mc2 = m1 

     End If 

     If F = "F3" Then 

        vc1 = -v1 

        vc2 = -v2 

        mc1 = m1 

        mc2 = m2 

    End If 

    If F = "F4" Then 

        vc1 = -v2 

        vc2 = -v1 

        mc1 = m2 

        mc2 = m1 

    End If 

'End Subroutine 1 

'Calculation 

   pc0 = vc1 * mc1 / (1 - vc1 ^ 2) ^ 0.5 + vc2 * mc2 / (1 - vc2 ^ 2) ^ 0.5 

   E0 = mc1 * ((1 - vc1 ^ 2) ^ -0.5 - 1) + mc2 * ((1 - vc2 ^ 2) ^ -0.5 - 1) 

    vc3m = -vc1            'Values for start 

    vc3p = vc1 

    K = 0 

Do 

        K = K + 1 

        vc3 = (vc3m + vc3p) / 2 

        Ga4 = (E0 - ((1 - vc3 ^ 2) ^ -0.5 - 1) * mc1) / mc2 + 1 

        vc4 = (1 - 1 / Ga4 ^ 2) ^ 0.5 

        If (vc3 * mc1 / (1 - vc3 ^ 2) ^ 0.5 + vc4 * mc2 / (1 - vc4 ^ 2) ^ 

0.5) > pc0 Then 

        vc3p = vc3 

        Else 

        vc3m = vc3 

        End If 

Loop Until K = 80 

'Subroutine 2 

    If F = "F1" Then 

        v3 = vc3 

        v4 = vc4 

        m1 = mc1 
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        m2 = mc2 

    End If 

    If F = "F2" Then 

        v3 = vc4 

        v4 = vc3 

        m1 = mc2 

        m2 = mc1 

     End If 

     If F = "F3" Then 

        v3 = -vc3 

        v4 = -vc4 

        m1 = mc1 

        m2 = mc2 

    End If 

    If F = "F4" Then 

        v3 = -vc4 

        v4 = -vc3 

        m1 = mc2 

        m2 = mc1 

    End If 

'End Subroutine 2 

    vt12 = (v1 - v2) / (1 - v1 * v2) 

    vt43 = (v4 - v3) / (1 - v4 * v3) 

    Dv = (vt12 / vt43) - 1 

'Presentation of results: Calculated values in view of observer at rest 

    Debug.Print "F =", F 

    Debug.Print "v3 =", v3  

    Debug.Print "v4 =", v4  

    Debug.Print "vt12 =", vt12 

    Debug.Print "vt43 =", vt43 

    Debug.Print "Dv =", Dv 

Out1: 

End Sub 

Fig. A.3:  VBA Program-Code for the calculation process presented in Fig. A.1 and A.2 

 

A.2 Spreadsheet calculation 

The following equations are used for calculation: 

 

𝑝0 =
𝑝

𝑐
=
𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2

𝑐
                                 

𝐸0
𝑐2
= (𝛾1 − 1)𝑚1 + (𝛾2 − 1)𝑚2 

 
 

(𝑣3)𝑘
𝑐

=
(𝑣3+)𝑘−1 + (𝑣3−)𝑘−1

2 · 𝑐
                                  𝛾4 =

𝐸0
𝑐2
− (𝛾3 − 1)𝑚1

𝑚2
+ 1 

 

 

𝑣4
𝑐
= √1 −

1

𝛾4
2 

 

Determination:  𝑓(𝑣3)1 > 𝑝:⇒
(𝑣3+)𝑘
𝑐

=
(𝑣3)𝑘
𝑐

 and 
(𝑣3−)𝑘
𝑐

=
(𝑣3−)𝑘−1

𝑐
 

 

(Remark: Because of appropriate selection of basic conditions, 
only positive results of the square root must be considered.  
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Determination:  𝑓(𝑣3)1 < 𝑝:⇒
(𝑣3+)𝑘
𝑐

=
(𝑣3+)𝑘−1

𝑐
 and 

(𝑣3−)𝑘
𝑐

=
(𝑣3)𝑘
𝑐
  

 
 

Useful starting values: For 
(𝑣3−)0
𝑐

= − 
𝑣1
𝑐
 and for 

(𝑣3+)0
𝑐

=  
𝑣1
𝑐

 

 

Values in the fields for results (blue color): 

 
 
𝑣3
𝑐
=
(𝑣3)𝑘=80

𝑐
                                                           

𝑣4
𝑐
=
(𝑣4)𝑘=80

𝑐
 

 
 𝑣𝑇( 𝑣1,  𝑣2)

𝑐
=
 𝑣1 −  𝑣2

1 −
 𝑣1 𝑣2
𝑐2

                                 
 𝑣𝑇( 𝑣4,  𝑣3)

𝑐
=
 𝑣4 −  𝑣3

1 −
 𝑣4 𝑣3
𝑐2

 

 

𝛿𝑣 =
 𝑣𝑇( 𝑣1,  𝑣2)

 𝑣𝑇( 𝑣4,  𝑣3)
− 1 

 

As examples for 𝑚1 = 2;  𝑚2 = 1 the cases  𝑣1 = 0,5𝑐  and 𝑣2 = −0,5c as well as 

 𝑣1 = 0,00001𝑐  and 𝑣2 = 0 are shown. 

Codes for calculation: 

Coordinate  Code 

B3 = B1*D1*(1-B1^2)^-0,5+B2*D2*(1-B2^2)^-0,5 

D3 = D1*((1-B1^2)^-0,5-1)+D2*((1-B2^2)^-0,5-1) 

B8 = (E7+F7)/2 

C8 = (D$3-((1-B8^2)^-0,5-1)*D$1)/D$2+1 

D8 = (1-1/C8^2)^0,5 

E8 = IF((B8*D$1*(1-B8^2)^-0,5+D8*D$2*(1-D8^2)^-0,5)>B$3;E7;B8) 

F8 = IF((B8*D$1*(1-B8^2)^-0,5+D8*D$2*(1-D8^2)^-0,5)>B$3;B8;F7) 

G9 = IF(B9=B8;"x";"") 

H9 = IF(D9=D8;"x";"") 

F1 = B87 

F2 = D87 

F3 = (B1-B2)/(1-B1*B2) 

F4 = (F2-F1)/(1-F2*F1) 

F5 = F3/F4-1 

Codes B8 to G8 to be copied as far as B87 to G87. 

The status queries in columns G and H are used to determine whether the values for 𝑣3 and 

𝑣4 still differ. For 𝑣3 there are only slight deviations (Fig. A.4: step 51, Fig. A.5: step 52),  𝑣4 

shows strongly different behavior depending on the initial values; in these examples there 

are no further changes from step 49 (with interruptions), resp. already from step 19. 
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Fig. A.4: Results when using the spreadsheet calculation. 𝑣1 = 0,5𝑐, 𝑣2 = −0,5𝑐 

  Green fields: Input values. Steps between 20 and 40 hidden 
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Fig. A.5: Representation as in Fig. A.4. 𝑣1 = 0,00001𝑐, 𝑣2 = 0 

  Values for 𝑣4 already unchanged as of iteration step 19 
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 Annex B:  Exchange of signals during and after acceleration 

Annex B:  Exchange of signals during and af-
ter acceleration 

In this annex it is shown that the reception of signals from an accelerated system by an 

observer at rest at the beginning of the acceleration phase and by an observer in uniform 

motion leads to the same results. The analytic relations valid here were already derived in 

chapter 6.4.1 in the equations (6.60) to (6.80). However, there is also a numerical method 

for the solution of this problem, which will be presented in the following. There are ad-

vantages and disadvantages between the analytical and the numerical method, which be-

come visible in a comparison, also with comparable results of the numerical method from 

Annex C. 

B.1 Numerical solution 

The following general correlation between velocity and acceleration within the moving sys-

tem S apply 

∆𝑣 = 𝑎(𝑣) · ∆𝑡(𝑣) = 𝑎𝑆 · ∆𝑡𝑆                                                (B. 01) 

The values of 𝑎𝑆 and ∆𝑡𝑆 are constant by definition. A numerical solution requires the mul-

tiple calculation of different steps; for this, first the relativistic velocity addition is used, 

then the determination of the increase of time and distance follows for each case. 

1st step: 

𝑣1 =
𝑣0 + ∆𝑣

1 +
𝑣0∆𝑣
𝑐2

=
𝑣0 + 𝑎𝑆∆𝑡𝑆

1 +
𝑣0𝑎𝑆∆𝑡𝑆
𝑐2

                                              (B. 02) 

2nd step: 

∆𝑡1 = ∆𝑡𝑆 ·
𝛾(𝑣1) + 𝛾(𝑣0)

2
                                                 (B. 03) 

3rd step: 

∆𝑥1 = ∆𝑡1𝑣0 +
𝑣1 + 𝑣0
2

∆𝑡1                                                 (B. 04) 

It should be noted that the functions for 𝛾(𝑣) and 𝑣(𝛥𝑣) are not linear and thus the for-

mation of a mean value is only an approximation, and the error must be compensated by 

choosing suitably small intervals for ∆𝑡𝑆. These steps are now to be repeated N times and 

the single results added. In general, it applies 

𝑡𝑁 = ∆𝑡𝑆∑
𝛾(𝑣𝐾) + 𝛾(𝑣𝐾−1)

2

𝑁

𝐾=1

                                             (B. 05) 
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𝑥𝑁 = ∑∆𝑡𝐾
𝑣𝐾 + 𝑣𝐾−1

2

𝑁

𝐾=1

                                                    (B. 06) 

with 

𝑣𝐾+1 =
𝑣𝐾 + ∆𝑣

1 +
𝑣𝐾∆𝑣
𝑐2

− 𝑣0 =
𝑣𝐾 + 𝑎𝑆∆𝑡𝑆

1 +
𝑣𝐾𝑎𝑆∆𝑡𝑆
𝑐2

− 𝑣0                                 (B. 07) 

At any arbitrary time 𝑡𝐾  a signal from the accelerated system S shall be transmitted back 

to observer A. In case of 𝑣0 ≠ 0 observer A is moving during signal propagation in view of 

B either in direction to S or in the opposite way. Because 𝑎𝑆 and 𝑣0 can be both positive 

and/or negative, for the calculation different regulations are necessary (see also the com-

prehensive presentations in chapter 2.1). If first the situation is discussed that 𝑎𝑆 and 𝑣0 are 

both positive, then observer B will find the situation according to type “b” referring to Fig. 

2.2 as 

𝛥𝑡 = ∆𝑡𝑆 (1 +
𝑣0
𝑐
)                                                        (B. 08) 

When 𝑎𝑆 and 𝑣0 show in different directions, however, the algebraic sign is changing in 

equation Eq. (B.08) according to situation of type “d” from Fig. 2.2. 

In summary, the following combinations arise for the time between two pulses 𝑡𝐾,𝑅 per-

ceived by observer B due to the increasing distance, into which any positive or negative 

values for the velocity 𝑣0 can be inserted: 

𝑎𝑆 > 0:                                               𝑡𝐾,𝑅 =
𝑥𝐾 − 𝑣0𝑡𝐾

𝑐 (1 +
𝑣0
𝑐 )
                                                           (B. 09) 

𝑎𝑆 < 0:                                              𝑡𝐾,𝑅 =
|(𝑥𝐾 − 𝑣0𝑡𝐾)|

𝑐 (1 −
𝑣0
𝑐 )

                                                      (B. 10) 

For 𝑣0 = 0 both equations for any value of 𝑎𝑆 simplify to 

𝑡𝐾,𝑅 =
|𝑥𝐾|

𝑐
                                                                (B. 11) 

The total time from the start of the acceleration to the transmission and subsequent recep-

tion of the signal is then in all cases 

𝑡𝐾,𝑇 = 𝑡𝐾 + 𝑡𝐾,𝑅                                                           (B. 12) 

Further, the signals received by observer A must be adjusted in view of B according to equa-

tion 

𝑡𝐾,𝑇(𝑣0) =
𝑡𝐾 + 𝑡𝐾,𝑅
𝛾(𝑣0)

                                                       (B. 13) 

to cover the effect, that for A in view of B the time is running slower by the factor 𝛾(𝑣0) 

according to the Lorentz-equations. 
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With the relations presented here it is possible to determine the values for the reception 

times of observers moving relative to each other. For this purpose, first the time intervals 

are calculated, with which the accelerated system S transmits the signals. While these are 

subjectively ∆𝑡𝑆 within the system S, from a non-accelerated observer the values for the 

time interval can be determined using the equations presented before. The calculation 

scheme can also be used to define the distance of S when transmitting the signals. Thus, the 

total times for the arrival of the signals can be determined for any arbitrarily moving ob-

server. 

Fig. B.1 shows the program flow chart for the numerical calculation of 𝑣𝑁 , 𝑡𝑁, 𝑡𝑇 and 𝑥𝑁 

according to the equations mentioned (the values for 𝑡𝐾  and 𝑥𝐾 are calculated throughout; 

since only the last results are considered, these correspond to 𝑡𝑁 and 𝑥𝑁). In addition, the 

acceleration 𝑎𝑁 is determined for an observer moving relative to the system S; the value 

deviates from the acceleration 𝑎𝑆, which can be measured subjectively in S. As already 

shown in chapter 6.4.1, the subjectively adjusted acceleration in S and the acceleration 

measured by an external observer moving relative to it with the velocity 𝑣 must differ by 

the factor 𝛾3(𝑣). Therefore, to verify this theoretically expected effect, the value 𝛾3𝑎𝑁 was 

also calculated from the data. The results show a very good agreement between 𝑎𝑆 and 

𝛾3𝑎𝑁. 

The used VBA program (Visual Basic) code is shown in Fig. B.1. In Tab. B.1 the formula 

symbols taken for the calculation program are assigned to those used in the text. The pro-

gram was designed in such a way that the initial velocity 𝑣0, as well as the subjectively valid 

acceleration 𝑎𝑆 and total duration of the experiment 𝑡𝑆 are to be specified. In addition, the 

number of intended iteration steps N can be freely selected, which provides an important 

influencing variable. With the VBA program, values up to N = 107 were investigated. These 

calculations only make sense with such programs, since with a conventional spreadsheet 

each iteration step requires separate program fields, and this would lead to enormous file 

sizes. 

Tab. B.2 shows in the parts a) to c) the results from calculations with the boundary con-

ditions  𝑎𝑆 = 10 m/s
2 and  𝑡𝑆 = 1000s. Values of 𝑣0 = 0, 𝑣0 = 369 km/s and 𝑣0 = 0.5𝑐 

were chosen as initial velocities. For all results, 𝛿-values were calculated according to the 

scheme 

𝛿𝑣𝑇 =
 𝑣𝑇(K)

 𝑣𝑇(K − 1)
− 1                                                         (B. 14) 

and compared, where K in this case represents a potency of 10 according to the specifica-

tions in the table. 

The calculations performed show that within a range of about 102 to 104 the differences 

between the results reach a minimum. This suggests that these zones have the largest con-

fidence range. This is primarily dependent on the chosen calculation system; Microsoft Ex-

cel© was used as the method here, which has an accuracy of 15 digits. If computer systems 

with higher accuracy would be used, other results are to be expected. However, the overall 

quality of the calculations can only be verified in the comparison between the analytical and 

numerical methods, which will be carried out subsequently. 
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Fig. B.1:  Flowchart of the calculation process 

Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code 

𝑣0 v0 𝑎𝑆 a0 𝑡𝑆 tS 

𝛥𝑡𝑆 dtS 𝑡𝐾 tK 𝑡𝐾−1 tKm1 

𝑥𝐾 xK 𝑣𝐾 vK 𝑣𝐾−1 vKm1 

𝛾𝐾 GaK 𝛾𝐾−1 GaKm1 𝑡𝐾,𝑅 tKR 

𝑡𝑇 tT 𝑎𝐾 aK  𝛾3𝑎𝐾 aKGa3 

Tab. B.1:  Formula symbols and referring VBA-Codes 
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Sub B() 

Dim c, v0, a0, aK, tS, dtS, tK, tKm1, xK, vK, vKm1, GaK, GaKm1 As Double 

Dim aKGa3, tKR, tT, vT, K, N As Double 

'Input 

    v0 = 299792.458 / 2 'Initial velocity in km/s 

    a0 = 10             'Acceleration in m/s² 

    N = 1000            'Number of iteration steps 

    tS = 1000           'Time for S between transmission of signals in s 

'Start Calculation 

    c = 299792.458       'Speed of light in km/s 

    a0 = a0 / 1000       'Acceleration in km/s² 

    dtS = tS / N 

    tK = 0 

    xK = 0 

    vK = v0 

    For K = 1 To N 

        vKm1 = vK 

        tKm1 = tK 

        GaKm1 = 1 / (1 - (vKm1 / c) ^ 2) ^ 0.5 

        vK = (vK + a0 * dtS) / (1 + vK * a0 * dtS / c ^ 2) 

        GaK = 1 / (1 - (vK / c) ^ 2) ^ 0.5 

        tK = tK + (GaKm1 + GaK) / 2 * dtS 

        xK = xK + (vK + vKm1) / 2 * (tK - tKm1) 

            If a0 > 0 Then 

            tKR = (xK - tK * v0) / c / (1 + v0 / c) 

            Else 

            tKR = Abs((xK - tK * v0) / c / (1 - v0 / c)) 

            End If 

        tT = (tK + tKR) * (1 - (v0 / c) ^ 2) ^ 0.5 

    aK = (vK - vKm1) / (GaK * dtS) * 1000 

    aKGa3 = aK * GaK ^ 3 

    vT = vK - v0 

    Next K 

'Results in view of an observer moving with v0 at beginning of trial 

    Debug.Print "vT", "vK", "tN", "xN", "aN", "aNGa3" 

    Debug.Print vT, vK, tT, xK, aK, aKGa3 

End Sub 

Fig. B.2:  VBA Program-Code for the calculation process presented in Fig. B1 

Basically, it can be stated that all 𝛿-values are very low at 𝑣0 = 0 and then increase 

slightly at higher numbers. In particular, the values for 𝑡𝑇 , which would be well suited for 

experimental verification, hardly differ between the individual values of 𝑣0 within a range 

with constant acceleration 𝑎𝑆. Also, between the different acceleration values the differ-

ences are so small that a systematic influence cannot be assumed, but the effects are due to 

influences of the numerical calculation. 

The deviations between the results for the selected iteration steps between 1 and 107 

show that there are no systematic deviations. In the range of 103 the results show a high 

stability and the smallest differences; therefore, they are particularly suitable for compara-

tive considerations. 

The additional value of 𝑣0 = 369 km/s was chosen because it corresponds to the velocity 

of the sun with respect to the cosmic background radiation and therefore, if an effect would 

show up in the calculations, it could be an appropriate basis for further considerations (see 

also chapter 1.7). 
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It is to be noted, however, that in none of these evaluations a noticeable difference be-

comes recognizable and thus the subjectively determined observations between differently 

moving observers agree. This is also true for the high velocity of 𝑣0 = 0,5𝑐. 

In addition, it should be mentioned that the values of 𝑡𝑁, 𝑥𝑁 etc. used here were named 

in this way exclusively because of the numerical calculation method and correspond to the 

analytically determined data for 𝑡𝐴 and 𝑥𝐴, respectively. Accordingly, these values also refer 

to the measurement results of the observer A moving with the same speed as S at the be-

ginning of an experiment. 
 

 

a)  𝑣0 = 0,  𝑎𝑆 = 10m/s²,  𝑡𝑆 = 1000s 

 

 

b)  𝑣0 = 369 km/s,  𝑎𝑆 = 10m/s²,  𝑡𝑆 = 1000s 
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c)  𝑣0 = 0.5𝑐,  𝑎𝑆 = 10m/s²,  𝑡𝑆 = 1000s 

Tab. B.2: Results for 𝑣𝑇, 𝑡𝑁, 𝑡𝑇, 𝑥𝑁 and 𝛾3𝑎𝑁 acc. to calculations of Program B   

  presented in Fig. B.2 as a function of the number of iteration steps N. 

  Values for 𝑣𝑇 in km/s, 𝑡𝑇 in s, 𝑥𝑁 in km and 𝑎𝑁 in m/s2. 

 

B.3 Improved accuracy by using a Taylor expansion 

If the analytical calculations shown are to be carried out for very small values for time or 

speed, larger differences result depending on the calculation accuracy. This concerns in par-

ticular equation (6.74) for the distance covered during an experiment 

𝑥𝐴 =
𝑐2

𝑎𝑆
 {(1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

− 1} =
𝑐2

𝑎𝑆
 (𝛾 − 1)                                     (6.74) 

For small values for 𝑣𝐴, the effect arises that the value for 𝛾 deviates only slightly from 1 

and the final result becomes inaccurate because of the difference formation to 1. In the pre-

sent case, the spreadsheet program Microsoft Excel© was used which provides an accuracy 

of 15 digits, and thus for values for 𝑣𝐴 below about 400 km/s, deviations occur which can 

become very high for small values. In this case, instead of using Eq. (6.74), it is recom-

mended to use a Taylor expansion for 𝛾 that contains "1" as the first value. This is: 

𝛾 = (1 −
𝑣𝐴
2

𝑐2
)

−1 2⁄

= 1 +
1

2

𝑣𝐴
2

𝑐2
+
3

8

𝑣𝐴
4

𝑐4
+
15

48

𝑣𝐴
6

𝑐6
++⋯                                 (B. 15) 

1.        2.          3.          4.           Taylor − elements                  

The following table B.3 shows the effect on the results for different test times 𝑡𝑆 or velocities 

of 𝑣𝐴 using different approaches. 
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Tab. B.3: Values of 𝑣𝐴, 𝑡𝐴 and 𝑥𝐴 depending on 𝑡𝑆 acc. to different procedures 

  𝑥𝐴(1): Eq. (6.74) 

  𝑥𝐴(2): Eq. (B.15) Taylor elements 1−3 

  𝑥𝐴(3): Eq. (B.15) Taylor elements 1−4 

  Optimal values for 𝑥𝐴 marked in green. Results in km and s. 

For 𝑡𝑆 values up to 20,000s, the calculation according to 𝑥𝐴(3) using the first 4 Taylor ele-

ments has the highest accuracy, up to 1,000s the solution with 𝑥𝐴(2) is also sufficiently ac-

curate. For values from approx. 40,000s, Eq. (6.74) is preferable (or further Taylor elements 

would have to be added). 

B.4 Comparison of results of the different methods 

Finally, the results calculated from the different methods will be compared. In addition to 

the numerical and analytical methods presented here, the numerically obtained results 

from Annex C based on the relativistic rocket equation have been added. While in the first 

two calculations a constant acceleration is made a prerequisite, the same situation arises in 

the relativistic rocket equation for the special case that the ejection of the propellant mass 

is kept constant in relation to the remaining mass of the rocket. 

Tab. B.4 shows the values determined according to the different methods 𝑣𝑇 = 𝑣𝑁 − 𝑣0, 

𝑡𝐴, 𝑡𝑇 and 𝑥𝑁 for the initial velocities 𝑣0 = 0 as well as 369 km/s and 0.5c. The values listed 

in A were calculated analytically using the equations Eq. (6.60) to (6.74). For the velocities 

𝑣0 = 0 and 369 km/s the Taylor expansion was used as described in Tab. B3, details are 

presented in the table. The values for B are the numerical results corresponding to Annex 

B, and C are from Annex C, type “B1”. The comparison shows that the velocities 𝑣𝑇  for A and 

B agree very well, but this deviates somewhat for variant C, especially for higher initial val-

ues. Moreover, for A, slightly higher values for 𝑥𝑁 result in the range of small velocities. In 

general, however, it can be said that the agreement of the results is good despite the com-

pletely different approaches. 

Furthermore, for a comprehensive overlook the values for 𝛾3𝑎𝑁 were added. It is shown 

in all cases that they correspond very exactly to the value of 𝑎𝑆 subjectively valid for the 

accelerated observer. 
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Tab. B.4: Calculated values for 𝑣𝑇, 𝑡𝐴, 𝑡𝑇, 𝑥𝑁 and 𝛾3𝑎𝑁 using different procedures  

  A: Analytically acc. to calculation using Eq. (6.60) to (6.74) 

  B: Numerically acc. to VBA-Code from Fig. B.2 

  C: Numerically acc. to VBA-Code from Fig. C.2, Type “B1” 

  𝑎𝑆 = 10m/s
2. 𝛥𝑡𝑆 = 1.000s. Results in km and s. 

  a) 𝑣0 = 0,  results for 𝑥𝐴 calculated using Eq. (B. 15), 𝑥𝐴(3) and 𝑥𝐴(2) 

  b) 𝑣0 = 369 km/s, results for 𝑥𝐴 calculated using Eq. (B. 15), 𝑥𝐴(3) 

  c) 𝑣0 = 0.5𝑐, results for 𝑥𝐴 calculated using Eq. (6.74) 
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Annex C:  Relativistic rocket equation  

Annex C:  Relativistic rocket equation 

For numerical calculation, the equations derived in chapter 6.4.2 

𝑝𝐾 + 𝑝𝐾
′ = (𝑚𝐾−1−𝛥𝑚𝐾−1)𝑣𝐾𝛾𝑘 + 𝛥𝑚𝐾−1𝑣𝐾

′ 𝛾𝐾
′ = 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1                  (6.84) 

and 

𝑣𝐾
′ =

𝑣𝐾 + 𝑣0
′

1 +
𝑣𝐾𝑣0

′

𝑐2

                                                               (6.85) 

are used. For the determination of 𝑣𝐾 , as already presented in other chapters, the method 

of bisection was chosen (see also the comparison of different numerical calculation meth-

ods in annex D). The basis is the momentum calculation of the total system, consisting of 

the momentum of the rocket 𝑝𝐾 as well as that of the propulsion gas 𝑝𝐾
′  with mass 𝛥𝑚𝐾−1 

moving in the opposite direction, and the determination of the corresponding rocket veloc-

ity 𝑣𝐾 . Due to the law of conservation of momentum, the total value must be constant before 

and after the velocity increase of the rocket including the consideration of mass ejection. 

First, suitable starting values for (𝑣+)0 and (𝑣−)0 must be defined; it makes sense that 

these values should be far apart since it must be ensured that the final result 𝑣𝐾  lies within 

these limits. Thereupon a new index L is defined. Now the mean value 

(𝑣𝐾)𝐿=1 =
(𝑣+)0 + (𝑣−)0

2
                                                      (C. 01) 

is formed and for the velocity calculated here the momentum is determined according to 

equation (6.84). Then the following definitions must be used: 

(𝑝𝐾 + 𝑝𝐾
′ )𝐿=1 > 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1   ⇒ 

 

(𝑣+)1 = (𝑣)1     
(C. 02) 

(𝑣−)1 = (𝑣−)0 

(𝑝𝐾 + 𝑝𝐾
′ )𝐿=1 ≤ 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1   ⇒ 

 

(𝑣+)1 = (𝑣+)0 
(C. 03) 

(𝑣−)1 = (𝑣)1     

This calculation is repeated with increasing index L until the results for 𝑣+ and 𝑣− are 

equal. Thus, the velocity of the rocket, whose mass is now reduced by 𝛥𝑚𝐾−1, is determined 

for this partial step. Subsequently, the next step is performed for 𝐾 = 2 and so on. 

The time that subjectively elapses inside the rocket between the emission of 2 signals is 

by definition 𝛥𝑡0. For an external observer the view is different, and the value must be sup-

plemented according to 
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𝛥𝑡𝐾 = 𝛥𝑡0𝛾𝐾                                                               (C. 04) 

and the distance covered is 

𝛥𝑥𝐾 = 𝛥𝑡𝐾𝑣𝐾                                                               (C. 05) 

After adding all N single values, the final result is 

𝑡𝑁 = ∑𝛥𝑡0𝛾𝐾

𝑁

𝐾=1

                                                           (C. 06) 

𝑥𝑁 = ∑𝛥𝑡0𝑣𝐾

𝑁

𝐾=1

                                                          (C. 07) 

At any arbitrary time 𝑡𝐾 , a signal is sent back from the accelerated system S to the ob-

servers A and B. Observer A has moved with the same velocity as the rocket at the beginning 

of the experiment and continues its path without acceleration, while B measures a velocity 

𝑣0 with respect to A. From B's point of view, A is either moving in direction to S or in the 

opposite way during signal propagation. In case of 𝑣0 ≠ 0 the values for acceleration 𝑎𝐾 and 

velocity 𝑣0 can each be positive or negative, so different arrangements must be made for 

performing the calculations. This was already done in a similar form in Chap. 6.4.1 with the 

equations Eq. (6.60) to (6.74), but there the acceleration of the rocket was kept constant 

over the entire course of the experiment. In contrast, here the exit direction of the propul-

sion gas 𝑣′ represents the effect of precondition. If 𝑣′ > 0 then the acceleration is negative, 

at 𝑣′ < 0 it is positive. The equations used in section 6.4.1 must therefore be modified with 

respect to the boundary conditions and read as follows here 

    𝑣′ < 0   (𝑎𝑆 > 0):                          𝑡𝐾,𝑅 =
𝑥𝐾 − 𝑣0𝑡𝐾

𝑐 (1 +
𝑣0
𝑐 )
                                                         (C. 08) 

    𝑣′ > 0   (𝑎𝑆 < 0):                        𝑡𝐾,𝑅 =
|𝑥𝐾 − 𝑣0𝑡𝐾|

𝑐 (1 −
𝑣0
𝑐 )

                                                        (C. 09) 

Thus, for the limiting case applies 

    𝑣0 = 0:                                             𝑡𝐾,𝑅 =
|𝑥𝐾|

𝑐
                                                                    (C. 10) 

Generally follows 

                                    𝑡𝑇(𝐾) =
𝑡𝐾 + 𝑡𝐾,𝑅
𝛾(𝑣0)

                                                           (C. 11) 

In addition, for the determined final velocity 𝑣𝑁 , the following is specified for different sys-

tem velocities 𝑣0 for better comparability of the calculations 

                                  𝑣𝑇 = 𝑣𝑁 − 𝑣0                                                                 (C. 12) 
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C.2 Specific specifications for the calculation 

When defining the boundary conditions for the calculation, the ratio of outflowing mass per 

time interval is relevant.  In order to simplify the representation, here the outflow mass of 

the rocket is normalized to 1 and the standard time interval, valid subjectively inside the 

rocket, is set to 𝛥𝑡0 = 1s. From this it follows, for example, for the case when 0.5% of the 

rocket mass flows out per second for propulsion, that when 50% of the mass is ejected, a 

total of 100 iteration steps have been performed. This case can be defined for the calcula-

tions using the form 

𝛥𝑚0 = 𝛥𝑡0 · 0,5%                   N/𝛥𝑡0 = 100                              (C. 13) 

If, for example, the number of iteration steps is then increased by a factor of 10, the time 

interval and the outflowing supporting mass are reduced by the same factor for the subse-

quent calculations. 

The initial values of the velocities (𝑣+)𝐿=0 and (𝑣−)𝐿=0 for the bisection should be chosen 

far apart, but the mean value must be non-zero, otherwise there will be disturbances during 

the calculation; (𝑣+)𝐿=0 = 0,9𝑐 and (𝑣−)𝐿=0 = −0,8𝑐 were chosen in this case. 

C.3 Flowchart and VBA program code of the process 

A flow chart (Fig. C.1) shows how the running program is designed. It is a process with two 

nested iteration loops; the running indices have been labeled K and L. The representation 

of the VBA program code (Fig. C.2) follows the flowchart representation. The VBA codes 

used for the formula characters are shown in the following listing. 

Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code 

𝑣0 v0 𝑣0
′ v0g 𝛥𝑡0 dt0 

(𝑣+)𝐿 vmax (𝑣−)𝐿 vmin (𝑣+)𝐿=0 vmax0 

(𝑣−)𝐿=0 vmin0 𝑡𝐾 tK 𝑡𝐾−1 tKm1 

𝑡𝑇 tT 𝑥𝐾 xK 𝑡𝐾,𝑅 tKR 

(𝑣𝐾)𝐿 vL 𝑣𝐾−1 vKm1 𝑣𝐾 vK 

𝑚𝐾 mK 𝛥𝑚0 dm0 𝛥𝑚𝐾 dmK 

𝑝𝐾−1 pKm1 (𝑝𝐾 + 𝑝𝐾
′ )𝐿 pL 𝑣𝐾

′  vKg 

(𝑣𝐾)𝐿−1 vLm1 (𝑣𝐾
′ )𝐿 vLg 𝑣𝑇 vT 

𝑎𝐾 aK 𝛾3 Ga3 𝛾3𝑎𝐾 aKGa3 

Tab. C.1:  Formula symbols and referring VBA-Codes 
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Fig. C.1: Flowchart of the calculation process 
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Sub C() 

Dim v0, v0g, tS, dtS, dm0, mF, vmax0, vmin0, vmax, vmin, mK, tK As Double 

Dim tKm1, tKR, tT, xK, vK, vKm1, dmK, pKm1, pL, vL, vLm1 As Double 

Dim N, K, L, vKg, vT, vLg, c, aK, Ga3, aKGa3 As Double 

Dim F, A1, A2, B1, B2 As String 

'Input 

    F = "B1"            'Define A1, A2, B1 or B2 

                        'A: Linear mass reduction, B: Prop. mass reduction 

                        '1: Def. number of iteration steps, 2: Def. end mass 

    v0 = 0              'Initial velocity in km/s 

    v0g = -4            'Initial velocity gas in km/s 

    dm0 = 0.25 / 100    'Initial output mass in %/s 

'Specific input Def. 1 

    tS = 400            'Time until a signal is emitted 

    N = 1000            'Number of iteration steps 

'Specific input Def. 2 

    dtS = 1             'Iteration time in s 

    mF = 10 / 100       'Mass at end of trial in % 

'Start Calculation 

    If F = "A1" Or F = "A2" Or F = "B1" Or F = "B2" Then 

        GoTo Calc: 

        Else 

        Debug.Print "Input error: Chose A1, A2, B1, or B2" 

        GoTo Out1: 

        End If 

Calc: 

    If F = "A1" Or F = "B1" Then 

        dtS = tS / N 

        End If 

    mK = 1               'Initial value mass 

    vmax0 = 0.9          'Initial value max. for calculation (in rel. to c) 

    vmin0 = -0.8         'Initial value min. for calculation (in rel. to c) 

    c = 299792.458       'speed of light in km/s 

    tK = 0 

    xK = 0 

    vK = v0 / c 

    v0g = v0g / c 

Mainloop: 

        K = K + 1 

        If F = "A1" Or F = "A2" Then 

            dmK = dm0 * dtS 

            Else 

            dmK = dm0 * dtS * mK 

            End If 

        pKm1 = mK * vK / (1 - vK ^ 2) ^ 0.5     'Momentum rocket for K - 1 

        mK = mK - dmK                           'Rest rocket mass for K 

        If mK <= 0 Then 

            K = K - 1 

            mK = mK + dmK 

            Debug.Print "Rocket mass zero" 

            GoTo Out2: 

            End If 

        vmax = vmax0 

        vmin = vmin0                            'Req.: vmin0 unequal -vmax0 

        L = 0 

Do 

        L = L + 1 

        vLm1 = vL 

        vL = (vmax + vmin) / 2 

        vLg = (vL + v0g) / (1 + vL * v0g) 

        pL = mK * vL / (1 - vL ^ 2) ^ 0.5 + dmK * vLg / (1 - vLg ^ 2) ^ 0.5 
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If pL > pKm1 Then 

            vmax = vL 

            Else: vmin = vL 

            End If 

Loop Until vLm1 = vL 

    vKm1 = vK 

    vK = vL 

    vKg = vLg 

    tKm1 = tK 

    tK = tK + dtS * (1 / (1 - vK ^ 2) ^ 0.5 + 1 / (1 - vKm1 ^ 2) ^ 0.5) / 2 

    xK = xK + (vK + vKm1) / 2 * (tK - tKm1) * c 

    aK = (vK - vKm1) / (dtS / (1 - ((vK + vKm1) / 2) ^ 2) ^ 0.5) * c * 1000  

    Ga3 = (1 / (1 - ((vK + vKm1) / 2) ^ 2)) ^ 1.5 

    If v0g > 0 Then 

            tKR = Abs(xK - v0 * tK) / c / (1 - v0 / c) 

            Else: tKR = (xK - v0 * tK) / c / (1 + v0 / c) 

            End If 

        tT = (tK + tKR) * (1 - (v0 / c) ^ 2) ^ 0.5 

        vT = (vK * c - v0) 

        aKGa3 = aK * Ga3 

    If F = "A1" Or F = "B1" Then 

        If K < N Then 

            GoTo Mainloop: 

            End If 

        End If 

    If F = "A2" Or F = "B2" Then 

        If mK > mF Then 

            GoTo Mainloop: 

            End If 

        End If 

Out2: 

Results in view of an observer moving with v0 at beginning of trial 

Debug.Print "vT =", vT 'velocity when signal is emitted in km/s 

Debug.Print "tN =", tK 'Total time until a signal is emitted in s 

Debug.Print "tT =", tT 'Total time for transmission of signal in s 

Debug.Print "mN =", mK 'Rocket mass at emission in relation to 1 

Debug.Print "xN =", xK 'Distance covered at emission of signal in km 

Debug.Print "aN =", aK 'Acceleration in m/s² 

Debug.Print "aNGa3 =", aKGa3     'Acceleration * Gamma ^ 3 in m/s² 

Out1: 

End Sub 

    

Fig. C2:  VBA Program-Code for the calculation process presented in Fig. C1 

In the following tables Tab. C.2, C.3 and C.4 supplementary calculations are shown accord-

ing to Tab. 6.4 from Chap. 6.4.2. Instead of using the program "A1", the variant "A2" could 

also have been selected. In this case, the desired final value of the rocket mass and the iter-

ation time are specified, and the number of iteration steps results from the calculation. Ex-

ample from Tab C2: Parameters "A1" 𝑡𝑆 = 100𝑠, 𝑁 = 1000 correspond to "A2" 𝑚𝐹 = 50% 

and 𝛥𝑡𝑆 = 0,1𝑠. The calculated value for K is then 𝑁 = 1001. The results are very similar, 

but not completely identical. Since in this case the influence of the number of iteration steps 

was in the foreground, calculation "A1" was chosen. 

The values of 𝑡𝑇 are of particular interest for comparisons, since they would be accessible 

for experimental testing due to the simple use of precision clocks. The results of 𝑡𝑇 obtained 

here are shown separately in Tab. 6.6, Tab. 6.7 and Fig. 6.4, but do not show any systematic 

differences, so that the principle of relativity is also observed here as in all other cases. 
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Tab: C.2:  Calculation of relativistic rocket velocity according to program  

Type: “A1”,  𝑣0
′ = − 4 km/s,   𝛥𝑚0 = 0.5%,  𝑡0 = 100s  

a) 𝑣0 = 0,   b) 𝑣0 = 369 km/s,   c) 𝑣0 = 2000 km/s,  d) 𝑣0 = 10000 km/s   
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Tab. C.3:  Calculation of relativistic rocket velocity according to program 

Type: “A1”,  𝑣0
′ = − 4 km/s,   𝛥𝑚0 = 0.09%,  𝑡0 = 1000s  

a) 𝑣0 = 0,   b) 𝑣0 = 369 km/s,   c) 𝑣0 = 2000 km/s,  d) 𝑣0 = 10000 km/s   
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Tab. C.4:  Calculation of relativistic rocket velocity according to program 

Type: “A1”,  𝑣0
′ = − 100 km/s,   𝛥𝑚0 = 0.009%,  𝑡0 = 10000s  

a) 𝑣0 = 0,   b) 𝑣0 = 369 km/s,   c) 𝑣0 = 2000 km/s,  d) 𝑣0 = 10000 km/s   
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C.4  Relativistic rocket equation according to J. Akeret 

Since 1946 there is an analytical solution for the relativistic rocket equation by J. Akeret 

[90]. For this not only the momentum theorem and the relativistic velocity addition are 

necessary (as with the numerical derivation presented so far) but additionally the energy 

conservation theorem is used. 

For the derivation of the equations, formula symbols are used which differ from the orig-

inal text but are consistent with the representations used so far in this presentation. Func-

tions related to the outflowing gas used for causing thrust are denoted by 𝑓′; relations re-

ferring to the moving rocket, on the other hand, are shown without this label. The actual 

mass of the rocket is 𝑚, and 𝑑𝑚′ is the fraction of the propellant gas. This gives rise to the 

equations shown below. 

a) The energy theorem provides: 
  

𝑑 {
𝑚𝑐2

√1 − 𝑣2 𝑐2⁄
} = −

𝑑𝑚′ · 𝑐2

√1 − 𝑣′2 𝑐2⁄
                                (C. 21) 

b) the relation for momentum: 

𝑑 {
𝑚𝑣

√1 − 𝑣2 𝑐2⁄
} =

𝑑𝑚′ · 𝑣′

√1 − 𝑣′2 𝑐2⁄
                                (C. 22) 

 

c) the relativistic addition theorem: 
 

𝑣′ =
𝑣0
′ − 𝑣

1 −
𝑣 · 𝑣0

′

𝑐2

                                                 (C. 23) 

where 𝑣0
′  has the meaning of the (constant) exit velocity of the gas relative to the rocket. 

The equations (C.21) and (C.22) can be further developed to 

𝑑𝑚
𝑐2

√1 − 𝑣2 𝑐2⁄
+𝑚𝑐2 · 𝑑 {

1

√1 − 𝑣2 𝑐2⁄
} = −𝑑𝑚′

𝑐2

√1 − 𝑣′2 𝑐2⁄
                  (C. 24) 

 

𝑑𝑚
𝑣

√1 − 𝑣2 𝑐2⁄
+𝑚

𝑑𝑣

√1 − 𝑣2 𝑐2⁄
+𝑚𝑣 · 𝑑 {

1

√1 − 𝑣2 𝑐2⁄
} = 𝑑𝑚′

𝑣′

√1 − 𝑣′2 𝑐2⁄
    (C. 25) 

 

For the solution, the values of 𝑣′ and 𝑑𝑚′ must be eliminated. To do this, first in equation 

(C.24) in the term on the right-hand side the value for 𝑣′ from equation (C.23) is inserted 

𝑐2

√1 −
𝑣′2

𝑐2

=
𝑐2

√
1 −

(
𝑣0
′ − 𝑣

1 − 𝑣 · 𝑣0
′ 𝑐2⁄

)
2

𝑐2

 

     =
𝑐2 − 𝑣0

′𝑣

√1 −
𝑣2

𝑐2
−
𝑣0
′2

𝑐2
+
𝑣2𝑣0

′2

𝑐4

=
𝑐2 − 𝑣0

′𝑣

√1 −
𝑣2

𝑐2
√1 −

𝑣0
′2

𝑐2

                          (C. 26) 
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In the same way follows 

𝑣′

√1 −
𝑣′2

𝑐2

=
𝑣0
′ − 𝑣

√1 −
𝑣2

𝑐2
√1 −

𝑣0
′2

𝑐2

                                            (C. 27) 

Equations (C.26) and (C.27) are substituted into Eq. (C.24) and (C.25), respectively, and 

these are resolved to 𝑑𝑚′ and equated. The result is: 

𝑚{
𝑐2 − 𝑣𝑣0

′

√1 − 𝑣2 𝑐2⁄
}𝑑𝑣 + 𝑚𝑣0

′ (𝑐2 − 𝑣2) · 𝑑 {
1

√1 − 𝑣2 𝑐2⁄
} + 𝑑𝑚

𝑣0
′ (𝑐2 − 𝑣2)

√1 − 𝑣2 𝑐2⁄
= 0     (C. 28) 

The two differentials with the dependence on 𝑣 must be unified and using the differential 

chain rule it follows 

𝑑 {
1

√1 − 𝑣2 𝑐2⁄
} =

𝑣

𝑐2 {1 −
𝑣2

𝑐2
}

3
2⁄
 𝑑𝑣                                    (C. 29) 

After substituting in eq. (C.28) and separating the terms for mass and velocity, the final re-

sult is 
𝑑𝑚

𝑚
= − 

𝑑𝑣

𝑣0
′ (1 − 𝑣2 𝑐2⁄ )

                                                 (C. 30) 

The integration results in 

𝑙𝑛(𝑚) = − 
𝑐

2𝑣0
′  𝑙𝑛 { 

𝑐 + 𝑣

𝑐 − 𝑣
 } + 𝐶                                             (C. 31) 

With the initial value for mass 𝑚0 and the final value 𝑚 the relativistic rocket equation ac-

cording to J. Akeret arises 

𝑚

𝑚0
= {

1 −
𝑣
𝑐

1 +
𝑣
𝑐

}

𝑐 2𝑣0
′⁄

                                                  (C. 32) 

or 

𝑣

𝑐
=  
1 − (

𝑚
𝑚0
)
2𝑣0
′ 𝑐⁄

1 + (
𝑚
𝑚0
)
2𝑣0
′ 𝑐⁄
                                                   (C. 33) 

In Section 6.4.2, calculations from this equation are contrasted with the classical rocket 

formula of K. E. Tsiolkovsky and the numerical relations derived in this annex. 
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Annex D:  Calculation of momentum for rel-
ativistic non-elastic collision 

During ideal non-elastic, i.e. plastic collision 2 masses hit each other in central position and 

are moving forward as a combined body without rotation. An approximation procedure is 

developed to calculate the end-velocity of this body on basis of the principle of conservation 

of momentum, in a case where the validity of equation 𝑚3 = 𝑚1 +𝑚2 is postulated. This 

approach is relevant for theoretical analysis only because it can be shown, that in real cases 

an additional increase of mass 𝛥𝑚3 because the conversion of potential energy into mass 

must be considered. For details it is referred to chapter 7.1. 

 In addition, the appearing simple equation makes it possible to perform a comparison 

between the approximation procedures recursion, Newton’s calculus, and bijection. The lat-

ter proved to be superior to the others because it is the only calculation to cover all possible 

input values and is therefore used also in other calculations in Annex A – C. 

 Respecting the above-mentioned restrictions, for the relativistic momentum using rela-

tion 𝑚3 = 𝑚1 +𝑚2 referring to Eq. (7.01) 

𝑝0 = 𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = (𝑚1 +𝑚2)𝛾3𝑣3                                  (D. 01) 

applies, where 𝑣3 can be calculated on basis of numerical approximation. In the follow-

ing different procedures will be presented and the results are compared. 

D.1  Recursion procedure 

The procedure with the smallest mathematical effort is the procedure using simple recur-

sion. The equation for the development can be derived directly using Eq. (D.01) and shows 

the form 

(𝑣3)𝑘+1
𝑐

=
𝑝0

𝑐(𝑚1 +𝑚2)𝛾3𝑘
=

𝑝0
𝑐(𝑚1 +𝑚2)

√1 − (
(𝑣3)𝑘
𝑐
)

2

                  (D. 02) 

D.2  Procedure according to Newton’s calculus 

Iteration according to Newton’ calculus is generally using the sequence 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
                                                       (D. 03) 

When Eq. (D.01) is converted it applies first 

𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2
𝑚1 +𝑚2

− 𝛾3𝑣3 = 0 = 𝑓(𝑣3)                                     (D. 04) 
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and then 

𝑓 (
𝑣3
𝑐
) =

𝑝0
𝑐(𝑚1 +𝑚2)

−
𝑣3
𝑐
(1 −

𝑣3
2

𝑐2
)

−1 2⁄

                                 (D. 05) 

Using 

𝑥 =
𝑣3
𝑐
                                                                  (D. 06) 

it yields 

𝑓(𝑥) =
𝑝0

(𝑚1 +𝑚2)
− 𝑥(1 − 𝑥2)−

1
2⁄                                         (D. 07) 

and 

𝑓′(𝑥) = −(1 − 𝑥2)−
3
2⁄                                                     (D. 08) 

After inserting the result in Eq. (D.03) the iteration formula is finally 
 

(𝑣3)𝑘+1
𝑐

=
(𝑣3)𝑘
𝑐

+

𝑝0
(𝑚1 +𝑚2)

− (𝑣3)𝑘 [1 − (
(𝑣3)𝑘
𝑐
)
2

]

−1 2⁄

𝑐 [1 − (
(𝑣3)𝑘
𝑐
)
2

]

−3 2⁄
                  (D. 09) 

D.3  Bisection method 

First the starting function is defined using Eq. (D.01) 

𝑓(𝑣3) = 𝛾3𝑣3 =
𝑝0

(𝑚1 +𝑚2)
                                              (D. 10) 

where the value for 𝑝0 is defined by the initial starting conditions. For the beginning of the 

calculation appropriate values for (𝑣3+)0 and (𝑣3−)0 are determined which are following 

the conditions 

𝑓(𝑣3+)0 >
𝑝0

(𝑚1 +𝑚2)
                                                    (D. 11) 

and 

𝑓(𝑣3−)0 <
𝑝0

(𝑚1 +𝑚2)
                                                    (D. 12) 

In the interval [(𝑣3−)0; (𝑣3+)0] the function 𝑓(𝑣3) must be continuous and differentiable, 

and further 𝑓′(𝑣3) ≠ 0 is required, which means, that in the chosen interval no minima and 

maxima are allowed, because otherwise no exact solution exists. Then the mean value is 

formed 

(𝑣3)1 =
(𝑣3+)0 + (𝑣3−)0

2
                                                 (D. 13) 

and 𝑓(𝑣3)1 is calculated according to (D.10). The following equations apply: 

 𝑓(𝑣3)1 >
𝑝0

(𝑚1 +𝑚2)
:⇒ (𝑣3+)1 = (𝑣3)1 𝑢𝑛𝑑 (𝑣3−)1 = (𝑣3−)0               (D. 14) 

 𝑓(𝑣3)1 <
𝑝0

(𝑚1 +𝑚2)
:⇒ (𝑣3+)1 = (𝑣3+)0 𝑢𝑛𝑑 (𝑣3−)1 = (𝑣3)1              (D. 15) 
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The calculation is repeated with increasing index 1 to n until the required accuracy is 

achieved. Every step of the calculation is generating a bisection of the difference between 

𝑣3+ and 𝑣3−. A standard calculation program (e.g. Microsoft Excel©) with the utilization of 

15 digits is therefore requiring, because of the general estimation 

210 = 1024 ≈ 103                                                        (D. 16) 
following 

1015 ≈ 250                                                               (D. 17) 

the use of approximately 50 steps to reach maximum possible accuracy; in practice a utili-

zation of 60 proved to be safe in any case. Because of the boundary condition 𝑣1 = 0 the 

starting values can be determined easily and are (𝑣3−)0 = 0 resp. (𝑣3+)0 = 𝑣2. 

D.4  Evaluation 

In the following results for the discussed procedures are presented using different values 

for the velocities. According to the considerations in chapter 7.1 only cases will be viewed, 

where the masses are equal and one of the selected velocities (here 𝑣1) is equal to zero. All 

iteration methods lead to the same values; the procedures using simple recursion and ac-

cording to Newton share the advantage, that they converge very quickly for small values of 

𝑣 𝑐⁄ . However, as a drawback the convergence is reducing for increasing 𝑣 𝑐⁄  and starting 

with 𝑝0 = 𝛾2𝑣2 ≥ 2𝑐 (for 𝑚1 = 𝑚2 = 1) calculations are no longer possible. Bisection, how-

ever, shows a much better performance and is above approx. 𝑣2 𝑐⁄ > 0,895 the only remain-

ing procedure which is still working. 

 In the following table examples for calculations with different conditions are presented. 

In all cases it is marked, from which iteration step on no differences between consecutive 

steps can be detected and so the procedure has reached its end (Status “x” in field “St”). If 

one of the procedures is not converging, then it is marked as “not ok” in the evaluation field. 

Further on the differences to the results of the relativistic addition of velocities 𝑣3,𝑅𝑒𝑙 are 

presented as percentage-value. 

 For the calculation, the following equations are used: 

 

𝑣3,𝑅𝑒𝑙
𝑐

=
1 − √1 − (

𝑣2
𝑐 )

2

𝑣2
𝑐

                          𝛾3,𝑅𝑒𝑙 =
1

√1 − (
𝑣3,𝑅𝑒𝑙
𝑐 )

2
                    

𝑝0
𝑐
= 𝑚2𝛾2

𝑣2
𝑐

 

Recursion:           
(𝑣3)𝑘+1
𝑐

=
𝑝0

𝑐(𝑚1 +𝑚2)
√1 − (

(𝑣3)𝑘
𝑐
)

2

 

 
Newton 

             
(𝑣3)𝑘+1
𝑐

=
(𝑣3)𝑘
𝑐

+ {
𝑝0

𝑐(𝑚1 +𝑚2)
−
(𝑣3)𝑘
𝑐

[1 − (
(𝑣3)𝑘
𝑐
)

2

]

−1 2⁄

} [1 − (
(𝑣3)𝑘
𝑐
)

2

]

3
2⁄
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Bisection:         
(𝑣3)𝑘+1
𝑐

=
(𝑣3−)𝑘+(𝑣3+)𝑘

2𝑐
 

 

Condition         𝑓(𝑣3)𝑘+1 >
𝑝0

(𝑚1 +𝑚2)
:⇒ (𝑣3+)𝑘+1 = (𝑣3)𝑘+1 𝑎𝑛𝑑 (𝑣3−)𝑘+1 = (𝑣3−)𝑘 

 

Condition         𝑓(𝑣3)𝑘+1 <
𝑝0

(𝑚1 +𝑚2)
:⇒ (𝑣3+)𝑘+1 = (𝑣3+)𝑘 𝑎𝑛𝑑 (𝑣3−)𝑘+1 = (𝑣3)𝑘+1 

 

Appropriate starting values: For 
(𝑣3−)0
𝑐

= − 
𝑣1
𝑐
and for 

(𝑣3+)0
𝑐

=  
𝑣1
𝑐

 

Values in the fields for results (blue color): For Recursion, Newton and Bisection the last 

values of iteration. 

𝑣3
𝑣3,𝑅𝑒𝑙

− 1 
Comparison of results. Chosen was bisection (𝑣3) and relativistic  
addition of velocities (𝑣3,𝑅𝑒𝑙) 

For the presented calculations, the following values apply: 

Tab. D.1 Tab D.2 Tab D.3 

𝑚1 = 1; 𝑚2 = 1 
 

𝑣1 =  0  ;   𝑣2 = 0,1𝑐 

𝑚1 = 1;  𝑚2 = 1 
 

𝑣1 = 0   ;   𝑣2 = 0,8𝑐 

𝑚1 = 1: 𝑚2 = 1 
 

𝑣1 = 0  ;   𝑣2 = 0,89𝑐 

Codes for calculation: 

Coordinate  Code 

G1 = (1-SQRT(1-B2*B2))/B2 

G2 = 1/SQRT(1-G1*G1) 

B3 = B2/SQRT(1-B2*B2) 

B5 = IF(B6="ok";B70;"") 

D5 = IF(D6="ok";D70;"") 

F5 = IF(F6="ok";F70;"") 

H5 = F5/G1-1 

B6 = IF(C70="";"not ok";"ok") 

D6 = IF(E70="";"not ok";"ok") 

F6 = IF(G70="";"not ok";"ok") 

B8 = B70/D70-1 

D8 = D70/F70-1 

F8 = F70/B70-1 

G10 = B1 

H10 = B2 

B11 = B$3/(1+D$2)*SQRT(1-B10*B10) 

C11 = IF(B11=B10);"x";"") 

D11 = D10+(B$3/(1+D$2)-D10*(1-D10*D10)^-(1/2))*((1-D10*D10)^(3/2)) 

E11 = IF(D11=D10);"x";"") 

F11 = (G10+H10)/2 

G11 = IF(F11/SQRT(1-F11*F11)<B$3/(1+D$2);F11;G10) 

H11 = IF(F11/SQRT(1-F11*F11)<B$3/(1+D$2);H10;F11) 

I11 = IF(F11=F10;"x";"") 
 

The codes B11 to I11 to be copied as far as B70 to I70 
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Tab. D.1: Velocity 𝑣3 after relativistic non-elastic collision, 𝑣1 = 0 ;  𝑣2 = 0,1𝑐 
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Tab. D.2: Velocity 𝑣3 after relativistic non-elastic collision, 𝑣1 = 0 ;  𝑣2 = 0,8𝑐 
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Tab. D.3: Velocity 𝑣3 after relativistic non-elastic collision, 𝑣1 = 0 ;  𝑣2 = 0,89𝑐 
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Annex E:  Brief introduction to vector calculus 

Annex E:  Brief introduction to vector calcu-
lus 

To understand the representation of Maxwell's equations in Chapter 10, a basic knowledge 

of vector calculus is required. The necessary relationships and basic elements for under-

standing field relationships are summarized here in brief. Only the absolutely necessary 

relationships are shown, and the following restrictions apply: 

1. The representations apply to 3 dimensions; these are sufficient for the relationships 

in fields. 

2. Only Cartesian (rectangular) coordinate systems are considered (e.g. no spherical or 

cylindrical coordinates). 

First, the basic properties of vectors are presented and then the differential functions re-

quired to understand Maxwell's equations are explained. 

E.1  Scalar und Vector 

In a coordinate system, physical quantities can be assigned to each point as a scalar or vec-

tor. Vectors are direction-dependent, scalars are not. Examples of scalar quantities are tem-

perature, energy, and pressure. For directional quantities such as forces or fields, on the 

other hand, vectors are used which, in addition to the location in the coordinate system, 

also contain values for the magnitude and direction. For the representation of a vector 𝑎⃗ in 

Cartesian coordinates the following form is used: 

𝑎⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
)                                                                  (E. 01) 

The amount of 𝑎⃗, for example for the magnitude of a force, is determined by 

𝑎 = |𝑎⃗| = √𝑎𝑥2 + 𝑎𝑦2  + 𝑎𝑧2                                                     (E. 02) 

If the direction and magnitude of two vectors are the same, they are identical, but can be 

located at different points in the coordinate system. 

E.2  Vector addition 

For the addition of two vectors 𝑎⃗ and 𝑏⃗⃗ the rule applies: 
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𝑎⃗ + 𝑏⃗⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
) + (

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = (

𝑎𝑥 + 𝑏𝑥
𝑎𝑦 + 𝑏𝑦
𝑎𝑧 + 𝑏𝑧

)                                         (E. 03) 

This addition can also be performed graph-

ically. For this purpose, a representation 

with arrows is used. The position in the di-

agram is the direction, the length of the ar-

row indicates the magnitude. 

For the addition, the arrows 𝑎⃗ and 𝑏⃗⃗ are 

joined together; the resulting line between 

the start and end points is the result of the 

addition in terms of magnitude and direc-

tion. 

        

           Fig.. E.1: Graphical vector addition 

E.3  Scalar product 

The scalar product (or inner product) of two vectors is so called because the result of the 

multiplication is a scalar. This is in Cartesian coordinates 

𝑎⃗ · 𝑏⃗⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
) · (

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧                                  (E. 04) 

or 

𝑎⃗ · 𝑏⃗⃗ = |𝑎⃗| · |𝑏⃗⃗| · cos 𝜑                                                      (E. 05) 

with 𝜑 as the angle between 𝑎⃗ and 𝑏⃗⃗. This operation is often used in physics when energy 

is to be calculated and the angle between the force and the direction of movement does not 

match. Force and direction are vectors, the resulting work is a scalar quantity. The meaning 

becomes clear when a mass in the Earth's gravitational field and an attacking force is con-

sidered. If the mass is moved upwards by the force (𝜑 = 0; cos𝜑 = 1), energy is needed 

and the potential energy increases; if the force acts at 𝜑 = 90°, the mass remains at the 

same height and the energy does not change. 

E.4  Cross product 

The cross product (also known as the vector product or outer product) of the vectors 𝑎⃗ and 

𝑏⃗⃗ in three-dimensional space is a certain vector that is perpendicular to the plane spanned 

by them. The length is equal to the area of the parallelogram, i.e. 

𝑎⃗ ⨯ 𝑏⃗⃗ = |𝑎⃗| · |𝑏⃗⃗| · |sin𝜑|                                                    (E. 06) 

In the three-dimensional Cartesian coordinate system, the cross product is calculated as 

follows 

𝑎⃗ 

𝑎⃗ + 𝑏⃗⃗ 

𝑏⃗⃗ 
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𝑎⃗ ⨯ 𝑏⃗⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
) ⨯ (

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = (

𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦
𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧
𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥

)                                   (E. 07) 

Examples of the application of the cross product are the Lorentz force or the torque. For 

example, the following relationship applies to the magnetic part of the Lorentz force 

𝐹⃗𝐵 = 𝑞𝑣⃗ ⨯ 𝐵⃗⃗                                                                 (E. 08) 

with 𝑞 as the charge and 𝑣⃗ as its velocity and 𝐵⃗⃗ as the magnetic field. The orientation of the 

resulting Lorentz force is perpendicular to both the velocity and the magnetic field (3-finger 

rule). 

E.5  Fields and Nabla operator 

In physics, a field is defined as the spatial distribution of a physical quantity. In the simplest 

case, there is a scalar field, as is possible for temperature distributions or potentials. If a 

physical vector is dependent on the position of the location, it is referred to as a vector field. 

It can be visualized by field lines, whereby the tangent to the field line indicates the direc-

tion of the vector. The magnitude of the vector is represented by the density of the field 

lines. Electric and magnetic fields are examples of this. These fields are characterized by the 

fact that temporal changes in particular play a role, which must be represented by differen-

tiation. The use of the Nabla operator is helpful here. 

The Nabla operator ▽⃗⃗⃗⃗ is a vectorial differential operator. This means that it can be writ-

ten in vector form and, when applied to a function, performs a differential operation that 

represents a 3-dimensional derivative. With its help, the quantities gradient, divergence, 

and rotation, which are still to be described, can be easily represented. It is defined for the 

3-dimensional Cartesian coordinates 𝑥, 𝑦, 𝑧 as 

▽⃗⃗⃗⃗  =  

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

                                                                (E. 09) 

E.6  Gradient 

A field based on a scalar function 𝑓 assigns an exact value to each point in the definition 

space. Examples of scalar fields in three-dimensional space are the distribution of temper-

atures, density, or potentials. Applying the Nabla operator to 𝑓 results in a vector field called 

the gradient (grad). The gradient points in the direction of the strongest ascent at each point 

in space and its magnitude indicates the increase in this direction. The representation is as 

follows: 
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grad 𝑓 = ▽⃗⃗⃗⃗· 𝑓  =  

(

 
 
 
 

𝜕𝑓𝑥
𝜕𝑥
𝜕𝑓𝑦

𝜕𝑦
𝜕𝑓𝑧
𝜕𝑧 )

 
 
 
 

                                                     (E. 10) 

If the scalar field is a potential, the negative gradient of the field indicates the associated 

force field. This is clear in the case of the gravitational field: Two of the coordinates are 

equal to zero and a body falls in the direction in which the change in its potential reaches 

the maximum. 

E.7  Divergence 

When applying the Nabla operator to a vector field 𝑓, the scalar product ▽⃗⃗⃗⃗· 𝑓 results in a 

scalar field that indicates whether field lines appear or disappear at each point in space. 

Thus, at the location of a positive charge, the divergence of the electric field is greater than 

zero, as field lines arise at this point. Points with positive divergence are called sources, 

points with negative divergence are called sinks. The calculation results in 

div 𝑓 =▽⃗⃗⃗⃗· 𝑓 =  =  
𝜕𝑓𝑥
𝜕𝑥
+
𝜕𝑓𝑦

𝜕𝑦
+
𝜕𝑓𝑧
𝜕𝑧
                                            (E. 11) 

E.8  Rotation 

If we form ▽⃗⃗⃗⃗⨯ 𝑓, we obtain a vector function called rotation (rot), which characterizes the 

closed loop of the vector field 𝑓. If we consider, for example, the magnetic field of a current-

carrying wire, the field lines run in a circle around this wire and are closed. The calculation 

is carried out as follows: 

rot 𝑓 = ▽⃗⃗⃗⃗⨯ 𝑓 =  

(

 
 
 
 

𝜕

𝜕𝑦
𝑓𝑧 −

𝜕

𝜕𝑧
𝑓𝑦

𝜕

𝜕𝑧
𝑓𝑥 −

𝜕

𝜕𝑥
𝑓𝑧

𝜕

𝜕𝑥
𝑓𝑦 −

𝜕

𝜕𝑦
𝑓𝑥)

 
 
 
 

                                               (E. 12) 
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