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Preface

Motivation

“Ladies and Gentlemen, as you certainly know, two fundamental theories in physics exist
on which the foundations of our science are built. These are the Theories of General Rela-
tivity and Quantum Mechanics. Today we know that at least one of these theories cannot
be true, because they exclude each other. As a representative of quantum mechanics my
statement is that because of many positive and coherent experiments we are sure, that we
are on the right side. So, let’s get started.”

This was the statement of the professor right at the start of the lecture in quantum me-
chanics during the summer session in 2014 at the University of Bonn (Theoretical Physics
[1I). I never experienced a situation in a lecture, that there was absolute silence. Here it was
the case.

The statement of the “competitors” teaching General Relativity during summer 2015
were quite different. Responding to a question from a student concerning this matter it was
stated, that at present there are ongoing works to improve the theory to resolve the ap-
pearing contradictions.

This situation encouraged me to find my own view concerning this debate. Because of
my status as a “senior student” (born 1953) with a lot of freedom compared to others and
no obligations to pass examinations it was possible for me to spend some time to study
these problems. My main interest went to the Theory of Special Relativity, which is the basis
for all further considerations, and I found some interesting results inside this theory which
will be presented in the following.

Short summary

Detailed investigations on the Theory of Special Relativity (SRT) show that the phenome-
non of “invariance of phase velocity of light” is of great importance. However, although it is
well-known since a long time this concept was not used in a comprehensive way for inter-
pretation up to now. When this phenomenon is applied to classical experiments, where
usually interactions between light beams coming and going to mirrors are investigated, the
comparison between resulting frequencies makes no sense. In this elaboration relevant ex-
periments are interpreted in a new way and interesting results were found. For the



Michelson-Morley experiment only small corrections are required, the Kennedy-Thorn-
dike-experiment, however, showed a much higher significance of the results than expected
before.

Further on considerations about the exchange of signals between moving observers and
examinations concerning momentum and energy are made. Using again the invariance of
phase velocity it can be shown in any case, that the assumption of the existence of a system
at absolute rest as a frame is just a special case inside the infinite possibilities of SRT and
not, as sometimes argued, contradictions to experimental findings appear. The existence of
the isotropic cosmic background radiation, known since some decades, is a strong indica-
tion for the existence of a system at absolute rest. However, although effort was made by
many scientists, up to now no unambiguously clear experimental evidence was found in-
side the classical frame, which could possibly help to decide whether it really exists or not.

This could change, when in addition quantum mechanical tunneling experiments are in-
corporated. Theoretical considerations show that superluminal transport of information,
e.g. by transmission of a simple pulse, is in accordance with a state of absolute rest but is
violating the more general concept of SRT. A proposal was made for the set-up of an exper-
iment that could help to decide, which of the different theories is valid. Furthermore, two
new experiments are discussed; the most important could finally provide direct experi-
mental evidence about the existence of the “relativity of simultaneously”, which is an es-
sential part of the Lorentz equations.

Beside the considerations concerning theory and experiments, for readers with interest
in history of science a short overview was added to show in a general way, how, from an-
cient times to Galileo and finally Einstein, the development of SRT took place.

Warning Notice

Please be careful, this presentation contains mathematics! Fortunately, it is a small dose;
an advanced course at school will be sufficient to understand the fundamental principles,
after the first semester in physics everything will go easy. Should it be impossible to under-
stand one of the details, it is not necessary for the understanding of the following chapters
and the related part can be skipped. In particular the use of the tensor calculus, which is
often utilized, was avoided, because it is not necessary to understand the principle theoret-
ical foundations outlined here. It was decided instead to include specific examples with
connected calculations to support the general understanding of important details.

Any external references are marked, and a publication list is added.

Although all considerations were carried out with due care it can be possible, that parts
of this presentation include mistakes. In such a case and of cause when a discussion is re-
quested, I would be glad to get feedback.

Alfter, April 2019 Gerhard W. Borst



Preface to the 3@ Revision

As a result of the discussions in the two years since the book was first published, it has
become clear that the results should be summarized even more concisely and clearly. Alt-
hough the basic message has not changed, the main results have therefore been restated
here in line with the wording on the website.

Results of the Investigations

The main result of this investigation is that the phase velocity of light and not speed of light
must be applied to classical experiments, where light beams going and coming are observed
in moving systems. The comparisons usually made by determining interference patterns
are remaining incomplete without further considerations. Re-evaluation according to the
concept presented here for the Michelson-Morley and Kennedy-Thorndike experiments
lead to different results. This change in the point of view has a substantial effect on other
main subjects, as it is the case for the Theory of Special Relativity (SRT).

For the formulation of SRT, Einstein chose an approach whose foundations are the "prin-
ciple of relativity" and the "constancy of the speed of light" and which does not contain any
physical formula in its origin. From this "top-down" concept the Lorentz Transformation,
and the relationship for the relativistic increase of the kinetic energy, later also called rela-
tivistic mass increase, can be derived.

It is surprising that until today there is no uniform formulation of the two central prin-
ciples. Every author of a publication about SRT chooses his own approach for this. The rep-
resentations can be divided basically into "objective observation criterion” and "axiom".
First, objective criterion means for the principle of relativity:

1. The execution of any physical experiment leads to the same result in all inertial systems.

This approach was also chosen by Einstein. The representation as "axiom" contains the
statement, "All inertial systems are equal". In newer publications rather (but not exclu-
sively) the axiomatic concept is used. With exact interpretation, however, this already con-
tains the statement that a system of absolute rest cannot exist, for which there is no exper-
imental proof until today (but also no counterproof). To keep this open, in the following the
classical concept for this basic principle is chosen.

If as second criterion the velocity of light is considered, the same is valid here as already
shown before; here also the statements "no differences can be determined" and "the veloc-
ity of light is always the same" for different inertial frames are in use. As an essential result
of the investigations carried out here it shows, however, that with the observation of oscil-
lations of one light source from any arbitrarily inertial system moved to each other the
phase velocity of light is the only reasonable possibility to achieve contradiction-free re-
sults. If instead the velocity of light is used - as it is still usual today - different interpreta-
tions concerning the number of oscillations from this source arise for the differently moved
observers and connected with this also the view on interference patterns.

The proposal for a contradiction-free and unambiguous formulation of the second prin-
ciple of the SRT reads thus:



2. The phase velocity of light is invariant in all inertial systems and its speed is equal to the
value of the velocity of light measurable in every inertial frame.

However, the investigations presented here have also shown that a “bottom-up” ap-
proach with an Extended Lorentz-Theory is also possible. Using this concept, the necessary
basic physical laws are defined, and the relativity principle can then be derived from them.
This approach reads as follows:

1. From the unlimited number of existing inertial systems, one is selected as base system
and marked with index 0.

2. In this basic system, measurements of the speed of light show the same value c in all
directions.

3. The properties of all other inertial systems are defined by their relative velocity v to the
base system, and the following relations are valid for time ¢, displacement x and mass m

v
a) t:V(to— C—zxo), x = y(xo — vty)

b) m =ym,

with: y =
12
-z

In this representation, special relativity and the extended Lorentz approach are mathe-
matically completely equivalent. However, the Theory of Special Relativity excludes with
usual interpretation the existence of a system of absolute rest, which can be integrated in
the extended Lorentz approach by simple choice of the basic system without further as-
sumptions or restrictions. The since some decades known completely uniform cosmic back-
ground radiation has already led many times to considerations to reconcile this with the
existence of an absolutely resting space and SRT. So far this was not successful and always
led to contradictions with experimental findings. It is of great advantage that the approach
shown here allows a completely problem-free integration. However, since up to now no
experimental proof has succeeded with conventional approaches, a decision cannot be
made at present.

This could change if quantum mechanical tunneling experiments are included. Theoret-
ical considerations show that faster-than-light transmissions of signals, e.g. by sending a
simple pulse, are compatible with the extended Lorentz theory but not with SRT. An exper-
iment is proposed, which allows an unambiguous decision concerning the different ap-
proaches. Furthermore, two other experiments are presented for discussion, of which the
most important is the direct proof of the "relativity of simultaneity", which is an integral
part of the Lorentz equations.
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1. Introduction

In this investigation first the basic principles of the theory of Special Relativity will be pre-
sented in detail. In further steps the consequences derived out of the theory and later the
existing limits will be discussed. A major contribution for the understanding of the discus-
sions arising during the presentation of the theory is taking a close view on the historical
development. To realize this, three important parts of physical science were chosen (clas-
sical mechanics, light and its radiation, electromagnetism) and connected with this, im-
portant persons are presented, who had major influence on the developments. The pre-
sented selection out of numerous researchers is most probably partly unfair but must be
limited for obvious reasons because of the almost unlimited number.

1.1 General historical preconditions

After the fall of the Roman Empire as a result of the barbarian migration a general loss of
transferred knowledge of Greece and Roman origin was observed in Europe. Many old
scripts were saved only, because they were translated and interpreted by Arabian scientists
who were at that time part of scientific communities with generally much higher standards
compared to those in Europe. The situation did not change until the end of the millennial
when a warm epoch began, which had a high impact on the development of the society.
Until the year 1300 the population tripled, land was reclaimed on a large scale and many
new cities were founded.

For the “dawn of mankind” and the connected explosion of knowledge many different
reasons are considered to be important (for further studies the very interesting book “The
Morning of the World” [1] by Bernd Roeck is strongly recommended). First in the cities with
sufficient supply of food and other necessary things for daily life a group was established
which we would today call “middle class” and was formed by craftsmen and merchants.
This structure can be defined as “horizontal”, because it was not dominated by aristocratic
authorities and was therefore able to develop in a free manner [1]. Furthermore, during the
12th century, the first universities were founded (starting in Bologna, followed by Paris and
Oxford) and with the appearance of the professor at these universities the class of the in-
tellectual was founded. The skills of the men appointed for this purpose (women were ex-
cluded from this profession and also from studying) certainly did not meet our expectations
of the quality of a professor today in most cases, but the procedures of discussion and
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application of logic originating from the Greek/Roman tradition were generally used. In
general, it can be stated, that in Europe starting from the foundation of the first universities
until the end of the17th century science and the structures for teaching were quite uniform.

Academic studies included — according to the ancient ideal — the seven liberal arts of
classic antiquity comprising the Trivium (grammar, dialectic, and rhetoric, finishing with
nomination as “bakkalaureus”) and further the Quadrivium (arithmetic, geometry, music
and astronomy [including astrology], nomination as magister). In a further step the higher
faculties (theological, juridical, and medical) could award the degree of a doctor. The lan-
guage used was generally Latin, which was of great advantage in the linguistic fragmented
environment of that time. Knowledge was generally acquired through the study of the Holy
Bible and using scripts of ancient origin mainly from Greek philosophers; experimental
work as it is established today was generally not common.

Beside the already presented general issues further advantageous developments oc-
curred towards the end of the 13th century. Important inventions were made, which had a
great impact on the progress of science and technology. The most important included quite
different subjects like the production of paper and gunpowder (both based on ideas im-
ported from Asia), also the invention of the mechanical clock and of spectacles (and con-
nected with this the knowledge to produce glass of sufficient quality). During the following
little ice age starting with the beginning of the 14th century and lasting for over 500 years
which caused hunger and distress, developments were possible which improved science in
an important and positive way.

Paper showed a clear advantage compared to the parchment used before which was pro-
duced out of animal skin, and it was possible to produce it at lower costs and with a better
quality and higher quantity. Combined with the letterpress printing invented by Gutenberg
and the developing postal services an information exchange was possible not imaginable
before. In addition, the use of gunpowder had a great influence on the development of met-
allurgy and metal machining necessary to produce firearms and a first nucleus of a sector
later called “heavy industry” appeared.

It is often said that letterpress printing and the use of gun powder are the major facts for
the explanation of the developments happening at that time. The progress of science, how-
ever, is also connected with the permanent improvement of precision mechanics which led
e.g., to the production of clocks with increasing accuracy which are for obvious reasons nec-
essary for quantitative measurements of physical parameters. This long-term development
was also witnessed for the production and processing of lenses. In contrast to this at the
beginning of the 17th century the knowledge about the inventions of telescope and micro-
scope spread over Europe in a very short time and had a great influence on natural science.
Further the first introduction of property rights (copyright, patents) was also responsible
for important promotion effects.

With the beginning of the 17th century first scientists questioned the opinion, that
knowledge could only be acquired by studying old scripts but that it was also possible to
expand it by own considerations and observations. Francis Bacon (1561-1626) was the first
to propose an empiric approach for the development of science. He was sure that
knowledge of mankind is cumulative (his considerations finally led to the expression:
“knowledge is power”). Initiated by René Descartes (1596-1650) mathematical procedures
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1.2 Classical mechanics

were identified as an important instrument to derive scientific progress. He was the first to
use equations which are quite similar to the form we know today. He used, however, a sym-
bol similar to ,a“ (derived from the Latin word ,aequalis“), the equality sign “=" was used
for the first time by the Welsh mathematician Robert Recorde (1510-1558) It did not
spread over Europe before 1700 but finally became the standard for the formulation in sci-
entific publications. Together with the “invention” of the figure zero at the end of the 13th
century, which slowly found its way into mathematics, these were no necessary require-
ments but led to enormous accelerations in the progress of natural science.

The sociologist Robert K. Merton (1910-2003) made further interesting statements con-
cerning the developments of that time [2]. First, he expressed the opinion that changes and
progress in natural science were caused by an accumulation of observations, improved ex-
perimental techniques and also the development of additional methodic approaches; this
concept is apparently corresponding to the thesis of Roeck [1]. In further considerations he
is arguing that the revolution in natural science during the 17th and 18th century was
mainly promoted by Protestantism, in particular by English puritans and German pietists.
This was not changing before the French Revolution happened and the disempowerment
of the Catholic Church was enforced by Napoleon after the conquest of almost complete
Europe. This thesis is not without dispute and is for sure partly unfair against many im-
portant scientists of that time. It is symptomatic, however, that publications of Descartes
and Galilei (after 1633) banned by the Catholic Church could only be printed by the pub-
lishing house Elsevier because it was situated in the protestant town of Leiden and was
therefore not under the jurisdiction of the Catholic Church.

1.2 Classical mechanics

One of the most important founders of modern natural science is Galileo Galilei (1564-
1642).From 1609 on he improved the technique of the telescope which was invented a year
before by Hans Lipperhey (1570-1619) by own production of better lenses and the use of
enhancements in the construction. He was the first to monitor the sky in a systematic way
and discovered already in 1610 the moons of Jupiter, which could not be seen before with
the naked eye. It was of great influence on the view of the world that beside earth now an-
other planet possessed moons. He also discovered that the Milky Way is formed as a cluster
of many stars and is not a shiny band as it was believed to be before and that planets are
not point-shaped but show the form of a disk during observation. He calculated the height
of the mountains on the moon by the visible shadows and estimated the value to 8000m
[3]. Further he performed experiments concerning the free fall of objects. It is sometimes
claimed that these were conducted at the leaning tower of Pisa, but this is most probably
not true, he presumably used spheres made of different matter and measured their accel-
eration rolling down a ramp.

It shall be mentioned that Lipperhey was not able to have his invention patented, be-
cause in the following months other competitors on their part claimed it as theirs. Obvi-
ously, the time was ripe for the invention of the telescope and further for the microscope
shortly before and soon a broad distribution of these important instruments took place.
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However, the most important finding of Galilei concerning the following discussion was
the first definition of the principle of relativity. The easiest way to understand this is to have
a look on his book

Dialogo di Galileo Galilei sopra i due Massimi Sistemi del Mondo Tolemaico e
Copernicano (Dialogue of Galileo Galilei about the most important systems of the world,
the Ptolemaic and the Copernican), first edition 1632.

In the following the “case Galileo Galilei” shall be discussed briefly. The book was not
written in Latin but in Italian language and was supposed to attract a wide educated audi-
ence. It was not structured like a typical scientific publication at that time but is arranged
as a conversation between three persons.

The names of these persons were Salviati, Salgredo and Simplicio. While Salvati and
Salgredo were the names of old friends of Galilei deceased long ago [4a] and had access to
wide range of knowledge, Simplicio is acting as the simple-minded. It can be clearly seen,
that Salvati, and partly also Simplicio, is taking the role of Galilei while Salgredo is an ordi-
nary but well-educated person [4b]. Salvati is also explaining the relativity principle already
mentioned before. Fig. 1.1 shows in an English translation by Thomas Salusbury the rele-
vant passage [5]. It dates to the year 1661 and was one of many translations in different
languages written shortly after the first publication by Galilei. It is a prosaic form at its best
and surely can be understood without using a single equation.

The scientific conclusions of the book are today generally outdated. For the understand-
ing of the thinking and the state of knowledge at that time a later translation by Erich
Strauss shall be recommended, were a comprehensive introduction and interpretations of
the intentions and actions of the involved persons are added [4].

The form of a dialogue was chosen because the acting persons could argue in an open
way and so it was possible to discuss positions not obeying the official doctrine. Although
the publications of Copernicus about the heliocentric world system were banned by the
Catholic Church it was allowed to use his calculations for the planetary motion, which were
much easier and more precise compared to the equations utilized before, when in a sepa-
rate statement it was claimed that these were only founded on a hypothetic basis and the
Ptolemaic world system with earth in the center was really valid [4]. Galilei believed that
he had obeyed this rule when he passed this obligation to Simplicio. As well-known this
went wrong in a disastrous way.

Although his book first got the imprimatur by the inquisition, which means that he was
officially allowed to print it, Galilei was charged with blasphemy. Main reason for this was
most probably the animosity with the Jesuits; this originated because Galilei was in a fierce
controversy with a member of this order named Christoph Schreiner (1573-1650) concern-
ing the first observation of sunspots.

After Pope Urban VIII withdrew his grace (allegedly because his vanity was offended by
statements made by Galilei) he was eventually put to court. Galilei had to retract his state-
ments and was sentenced to life-long dungeon imprisonment. Shortly later this was
changed to house detention, and so he was not allowed to leave his premises until the end
of his life even not for medical consultations he asked for later. In addition, after his death
a dignified funeral was refused.

4



1.2 Classical mechanics

Shut your self up with some friend in the
grand Cabbin between the decks of some
large Ship, and there procure gnats, flies,
and such other small winged creatures get
also a great tub (or other vessel) full of
water, and within 1t put certain fishes: let
also a certain bottle be hung up, which drop
by drop letteth forth its water into another
bottle placed underneath, having a narrow
neck and, the Ship lying still, observe
diligently how those small winged animals
flv with like velocity towards all parts of
the Cabin: how the fishes swim
indifferently towards all sides; and how the
distilling drops all fall into the bottle placed
underneath. And casting any thing towards
vour friend, you need not throw it with
more force one way then another, provided
the distances be equal and leaping, as the
saving 1s, with vour feet closed. you will
reach as far one way as another. Having
observed all these particulars, though no
man doubteth that so long as the vessel
stands still, they ought to succeed in this
manner; make the Ship to move with what
velocity vou please: for (so long as the
motion is uniforme, and not fluctuating this
way and that way) vou shall not discern any
the least alteration in all the forenamed
effects: nor can vou gather by any of them
whether the Ship doth move or stand still.
In leaping yvou shall reach as far upon the
floor, as before; nor for that the Ship
moveth shall you make a greater leap
towards the poop than towards the prow:
howbeit in the time that you staid in the
Air, the floor under your feet shall have run
the contrary way to that of vour jump: and
throwing any thing to your companion vou
shall not need to cast it with more strength
that it may reach him, if he shall be towards
the prow. and vou towards the poop. then 1f
you stood in a contrary situation; the drops
shall all distill as before into the inferiour
bottle and not so much as one shall fall
towards the poop. albeit whil'st the drop 1s

in the Air, the Ship shall have run many
feet; the Fishes in their water shall not
swim with more trouble towards the fore-
part, than towards the hinder part of the tub;
but shall with equal velocity make to the
bait placed on anv side of the tub: and
lastly, the flies and gnats shall continue
their flight indifferently towards all parts:
nor shall they ever happen to be driven
together towards the side of the Cabbin
next the prow, as if they were wearied with
following the swift course of the Ship, from
which through their suspension in the Air,
theyv had been long separated: and if
burning a few graines of incense you make
a little smoke, you shall see it ascend on
high. and there in manner of a cloud
suspend it self, and move indifferently. not
inclining more to one side than another: and
of this correspondence of effects the cause
1s for that the Ships motion is common to
all the things contained in it, and to the Air
also: I mean if those things be shut up in
the Cabbin but in case those things were
above deck in the open Air, and not obliged
to follow the course of the Ship, differences
more or lesse notable would be observed in
some of the fore-named effects. and there 1s
no doubt but that the smoke would stay
behind as much as the Air it self; the flies
also, and the gnats being hindered by the
Air would not be able to follow the motion
of the Ship, if they were separated at any
distance from it. But keeping neer thereto,
because the Ship it self as being an
unfractuous Fabrick, carrieth along with it
part of its neerest Air, they would follow
the said Ship without any pains or
difficulty. And for the like reason we see
sometimes 1n r1iding post, that the
troublesome flies and hornets do follow the
horses flying sometimes to one, sometimes
to another part of the body, but in the
falling drops the difference would be very
small: and in the salts. and projections of
grave bodies altogether imperceptible.

Fig. 1.1

First formulation of the principle of relativity by Galileo Galilei

Translation by Thomas Salusbury [5] dating back to 1661.




1. Introduction

Although the verdict did not include an explicit publication-ban his main work finalized
later concerning the foundation of kinematics and the science of strength of materials could
not be published in Italy but was presented by the publishing house Elsevier in Leiden.

[s not easy to explain the principle of relativity presented by Galilei using “gnats, flies
and other small winged creatures” for a presentation based on equations. To maintain the
basis of a moving ship, in the following the situation shall be discussed, that this is passing
a harbor mole were at the same time a flag is rising with constant velocity and is finally
reaching the top at time t,. For an observer at the mole the movement of the flag appears
to be vertical (coordinates x = 0, y and time t with variable values) whereas in view from
the ship, which is moving with the velocity v, the flag relative to the coordinates of the ship
(connected to the coordinates x’, y', t') is falling behind by the factor v - t, (see Fig. 1.2)

-V,

System at rest System moving in x-direction

Fig. 1.2: Varying perceptions of the same event observed from different
reference systems

It is thus possible to carry out coordinate transformations using the following calculations:

!

X'=x—-vt, y=y, 2=z t' =t (1.01)

If on the other hand a flag is rising on the ship the reverse effect will occur and in view
of the observer at the mole the flag is moving in x-direction

x=x"+vt, y=y', z=2z" t=1t (1.02)

The description requires only a simple conversion of Eq. (1.01). This equation system is
called the “Galilei-Transformation” of classical mechanics. It is important that only a varia-
tion in the direction of the movement occurs, all other spatial directions are not affected
and in addition time is constant for all systems.

This interpretation was taken as a priori valid for centuries because it is conforming to
daily experience of human life, and thus was not questioned for a long time. It will be pre-
sented later that according to today’s knowledge the validity is only (approximately)
granted when the velocity of the system (in this case the speed of the ship in x-direction) is
far lower than the speed of light.



1.2 Classical mechanics

Although an important foundation was created by Galilei the main work to complete
classical mechanics was done by another great scientist. In the year 1687 Isaac Newton
(1643-1727) published his book

Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural
Philosophy)

which is certainly one of the most important books in modern science. It contains the axi-
oms later named after Newton and also many comprehensive calculations and arguments.
For the presentation the form of a continuous text was used, and it is hard to understand
from today’s point of view, not only because it is written in Latin, but also because no equa-
tions using the equality sign were used (see Fig. 1.3). The publication is available as original
and in several modern transcriptions; a remarkably interesting example is the original book
used by Newton with his handwritten remarks which is provided by Cambridge University

and is available online.

AXIOMATA,

SIVE

LEGES MOTUS.

LEX L

omme perfeverare i flatu [uo quiefcends wel movends smi-
ormiter i direflum, wift quatenus a wiribus mmpreffis cogitur
Slatum illum mutare.

Roje@ilia perfeverant in motibus fuis, nifi quatenus a refi-

ftentia aeris retardantur, & vi gravitatis impelluntur deorfum.

rochus, cujus partes coherendo perperuo retrahunt fefe a mo-

tibus re&ilineis, non ceffat rotari, mfi quatenus ab acre retardatur,

Majora autem Planetarum & Cometarum corpora motus fuos &

i;ogrcﬂ‘i’yos_& circulares in fpatiis minus refiftentibus faltos con-
t diutius,

LEX IL

Mutationem motus proportionalem effe i motrici impreffe, & fieri
Jecundum lmeam reffam qua vis illa mprimitur.

Si vis aliqua morum quemvis generety dupla duplum, tripla tri-
plum generabi, five fimul & femel, five gradatim & fucceflive im-
prefa fuerit.  Et hic motus (quoniam in candem femper plagam
cum vi generatrice determinatur) fi corpus antea movebatur, mo-
tui cjus vel confpiranti additur, vel contrario fubducitur, vel obli-
quo oblique adjicitur, & cum ¢o fecundum utrinfque determina-
tionem componitur.

PROPOSITIO X. PROBLEMA. V.

Gyretur corpus in Elipfi: vequiritur lex vis centripete tendentis ad
centrum Ellipfeos.

Sunto C 4, C B femiaxes Eliipfeos; GP, D K diametri conju-
gatzs PF, Qr perpendicula ad diametros; Qv ordinatim appli-
cara ad diamezrum
G Ps & ficompleatur
pacallelogrammum
@PR,ﬂil(uCOﬂi-
cis) PG ad v guad.
ut PC guad. 2d CD
guad. & (ob fimilia
triangula Qur, PCF)
LB quad. clt ad %f
guad.ut PC guad.
P F quad. & conjun-
&hsratiombus, PvG
ad Qs . ut PC
e TP et

quad. id oty vG ad

g#m?de.

Fy ..
13 PEXPFY. seribe @ R proP v, (per Lerama x11) BOXCA
pro CD x P F, nec non, puniis P & Q coeuntibus, 1 PC

v G, & duisextremis & mediis in fe mutuo, fiet &‘%‘—2—1

3 C4
zquale —%’-‘L—’ « Eft ergo (per Coral. § Prop. v1.) vis cenpri-
peta reciproce ut 2 2C tc'{ ? id eft (ob darums BC g xC Ayg)
reciproce ut 57,5 hoe et diredte ut diftantia PC. R E. .

In PG ab altera parte {1‘:" ‘ma’n teil

n ab aleera pundi ¢ intelligatur 7w equalis ipfi
tv; deindecape w7 quxfic ad vG ut et ‘DC’;uJ. ad PC lqn,tpl.
Et quoniam cx Conicis eft Qugwad. ad PvG, ut DC guad, ad
PCguad: et v gwad. xquale Pv xu V. Undequadratum chor-

Fig. 1.3:
Left; First and second axiom
Right:

the equality sign “=

Extract of Newton’s Philosophiae Naturalis Principia Mathematica

Typical text with diagram and calculation without using

In this book for the first time the fundamental laws of classical mechanics were defined

which we today call Newton’s Axioms. In the following they will be described in detail. Do-
ing this a modern wording is used and in addition the connected equations will be
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presented using vectors. The definition of physical parameters as vectors, i.e. the combina-
tion of magnitude and direction was first used by the German teacher Herrmann Giinter
Graffmann (1809-1877) and was therefore not established in the 17th century. Although
Newton could not know this kind of presentation, it is today’s standard and therefore it
shall be utilized here.

1. The Principle of Inertia

An object with constant mass either remains in a state at rest or continues to move
at a constant velocity, unless acted upon by force.

v = const. if z 17"1- =0 (1.03)
i

This determination needs a high degree of abstraction because all motions, that can
be observed in daily life, are more or less superimposed by effects like friction or
gravitation.

2. The Basic Principle of Dynamics

The rate of change of momentum is directly proportional to a force applied. For con-
stant mass systems, force is mass multiplied by acceleration.

F=md (1.04)

3. The Principle of Reaction

When one body exerts a force on a second body, the second body simultaneously
exerts a force equal in magnitude and opposite in direction on the first body.

Fi; = =Fy (1.05)
or generally ,action is equal to reaction®.

There is a further basic principle that can be derived out of the publication, but this was
not assessed as an axiom by Newton. It is also particularly important and therefore today
often referred to as Newton’s 4th axiom.

4. The Principle of Superposition

If several forces interact, they add up like vectors.
Fros = ) F; (1.06)
i

These 4 axioms form the foundation of classical mechanics, where all processes can be
referred to.

[t is worth mentioning that the imprimatur for the Philosophiae was granted by Samuel
Pepys (1633-1703). Newton belonged to his large circle of friends. Different to countries
controlled by the Catholic Church, where representatives of the inquisition were responsi-
ble for the approval of publications, in England this was his duty as the president of the
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1.3 Light and radiation

Royal Society. Pepys is well known until today for his secret dairies written between 1660
and 1669, which were found shortly after his death and then published. They contain inter-
esting reports e.g. about the Plague 1665 and the great fire in London 1666. Further on the
drastic comments on his fellow citizens and the notes about his many extramarital relations
are to be mentioned which he described in any detail. He is one of the most important au-
thors of that time and his books are still published today.

Beside his publications Newton also created the first reflecting telescope, which was
much valued by the scientific community. Further on he was co-founder of the infinitesimal
calculus. This led to a bitter dispute with Gottfried Wilhelm Leibniz (1646-1716) about the
first priority of the discovery. He brought him to the court of the Royal Society — whose
president he was at that time — accusing him of plagiarism and not surprisingly Leibniz lost
the struggle. Newton vaunted himself later that he had broken his heart. Today Newton and
Leibniz are considered the independent co-founders of this part of mathematics.

However, beside his epoch-making discoveries Newton’s main passion belonged to al-
chemy, on which he concentrated a broad part of his research work. A major part of the
books belonging to his heritage, now preserved by the Kings College in London, is dealing
with themes connected to alchemy. Further, he served as Warden (1696-1700) and Master
(1700-1727) of the Royal Mint in London. So, he finally was not able to produce gold or
silver, but this appointment brought him into a position to rule money.

Due to his special character Newton carried out his job at the Royal Mint in a very serious
way. One of the main problems of this institution at that time was the coining of counterfeit
money. The silver coins minted by the Royal Crown were fined down and the produced
swarf was remelted and coined into false money. He persecuted the offenders in a rigorous
way and brought them to court, what at that time generally meant that they were sentenced
to death. This and many other additional occurrences are presented in the very unorthodox
book of F. Freistetter (Newton, the way an asshole reinvented the world, in German lan-

guage [83]).

1.3 Light and radiation

Beside classical mechanics further important foundations for the following considerations
are the nature of light and the basic physical principles of radiation. Early history shows,
dependent on the particular cultural background, that different myths exist to describe the
origin of light and corresponding to it the ability for man to see. In Greek mythology goddess
Aphrodite created the eyesight out of the four elements earth, water, wind and fire; the
main understanding of this divine gift was, that light was leaving the eyes, and, in a reaction,
different objects became visible.

About 300 BC the important Greek Philosopher Euclid started examinations concerning
the behavior of light and found out, that light beams travel in straight paths and in a further
approach he also discovered the laws of reflection. In addition, he concluded that it is not
reasonable to adhere to the opinion that light leaves the eye because in such a case no dif-
ferences between day and night would be possible. Although these observations paved the
way for further discoveries and improvements of the theory, it took about 2000 years to
take the next steps.
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Newton followed the idea, that light is consisting of small corpuscles with different sizes
and properties. He carried out experiments with mirrors, lenses, and prisms to verify the
laws of reflection and to discover the general nature of light. He was partly successful, but
his theory using corpuscles was not able to explain some of the experimental results; espe-
cially the nature of interferences caused conflicts to his approach which could not be solved.

In the year 1690 the Dutchmen Christiaan Huygens (1629-1695) developed the first
complete wave-theory of light. With this comprehensive theoretical approach, it was possi-
ble for the first time to explain the phenomena of reflection and refraction of light without
discrepancies. Beside his pioneering work concerning the wave-theory he was also very
successful as astronomer; he was the first to discover Titan, the moon of Saturn, and he
identified the rings of Saturn. For this purpose, he used an improved telescope, which he
had constructed and built co-working with his brother Constantijn. He also developed
mathematical basics concerning the figure  using arithmetic series, further to the applica-
tion of logarithms and he is co-founder of the calculus of probabilities.

The wave-theory of light was discussed highly controversial for a long time, especially
because the theory using corpuscles was the idea of the great Isaac Newton. One of the main
arguments of supporters of Newton’s theory was that light is completely shielded by barri-
ers and no wave can be seen behind it, like e.g. visible on a water surface when a wave is
passing an obstacle. It was not known at that time that the wavelengths of light are very
small (approx. 400-700 nanometers). It was not before the double-slit experiment was per-
formed by Thomas Young (1773-1829) at the beginning of the 19th century, which sup-
ported the contention that light is composed of waves, that the discussion ended. Young
also solved the problem to explain the effect of polarization, because he interpreted light as
a transversal wave. According to our today’s vocabulary this means, that the vectors of the
electric and magnetic field are perpendicular to each other and also to the propagation di-
rection (see Fig. 1.4). This contrasts with the behavior of a sound wave which is propagating
longitudinal; this means that the transporting medium e.g. air or water is oscillating in mov-
ing direction and thus no polarization is possible. Linear polarization of light is observed
when many superimposing waves show the same orientation.

In the year 1676 Ole Christian Rgmer (1644-1710) was the first to provide evidence that
the velocity of light is limited. He observed the eclipse of the Jupiter-moon lo, which occurs
during perigee (shortest distance to earth) earlier than during apogee (farthest distance).
This result was in contradiction to the established understanding of many others, from Ar-
istotle to Descartes, who were convinced that the speed of light was unlimited, so it was
only reluctantly accepted. The results found by Rgmer, who just measured the time delay,
were converted by Huygens 1678 using calculations to a velocity of approx. 212000km/s,
which is approximately 70% of the correct value. Evaluated in comparison to the available
resources at that time the result was already remarkable exact.

According to the understanding of that time it was presumed that light needs a transpor-
tation medium for propagation. This idea was transferred from the knowledge about the
conditions valid for the transport of sound, where atoms resp. molecules are forced to os-
cillate. The center of the oscillation is always constant, which means that atoms or mole-
cules in an observation of the average position are not moving but that just energy is trans-
ported by the waves.
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Fig. 1.4: Propagation of an electromagnetic wave with the components of the
electric and magnetic field (E and M)

First knowledge concerning this was collected by Otto von Guericke (1602-1686). In the
year 1649 he invented the vacuum pump and used it for many experiments. The most spec-
tacular was surely the demonstration of the action of force caused by air pressure. He pro-
duced two half spheres made of copper (diam. approx. 42 cm) and during the Reichstag
1657 held in Regensburg he combined these with a sealing and used his pumps for evacua-
tion. In presence of Kaiser Ferdinand IlJ, it was shown that eight harnessed horses at each
side were not able to tear the combination apart. This experiment was so impressing to the
audience, that Archbishop Johann Philip von Schonborn bought and passed it to his Jesuit
College at Wiirzburg. Beside this spectacular experiments Guericke also performed basic
investigations and was able to show that a vacuum is not conducting sound, but that light
is passing.

The medium that, according to the knowledge of that time, was needed to transport light
was called “luminiferous ether” or just “ether”. The word is originating from the Greek
myths and is in its genuine sense describing the (blue) sky. In contrast to the four earthly
elements (these are earth, wind, water, and fire which are interestingly complementary to
the conditions of aggregation solid, liquid, gaseous and ionized), ether was the 5th element,
which stood in relation to heaven and therefore in contrast to the others was inalterable
[4d].

During the passing centuries, many theories were developed to describe the nature of
ether. As its main characteristics it was expected to permeate anything but not to produce
any resistance to objects, because in this case it would influence physical laws. It was the
general view that light is transported by ether in the same way as sound by air. However,
there were two observations from experiments which prevented a distinct determination
because they are in fundamental contradiction:

1. The effect of stellar aberration first detected in the year 1725 by James Bradley (1693-
1762).

11
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2. The effect observed in moving transparent media (e.g. glass or water) of dragging light
in the direction of motion. This effect is dependent on the refraction index of the me-
dia.

Point 1:

Stellar aberration is a definition used in astronomy to describe a small apparent shifting of
the position of stars, when an observer is moving in transverse direction. Earth is travelling
around the sun with a speed of about 30km/s; this means that after half a year a measuring
effect of 60km/s compared to the position of an unmoved sky will appear. This is causing a
misalignment for the incoming light, which was first detected by Bradley with precision
measurements using a zenith telescope. This type of telescope is designed to point straight
up to or near to the zenith. Bradley installed it in his house along the chimney and spent
most of his observation time upon a bench underneath the instrument.

The major precondition for the occurring of an aberration effect is that the speed of light
is limited. Bradley was able to measure that the speed of light is 10210-times higher than
the velocity of the earth orbiting the sun. He achieved a remarkable precision of 2% com-
pared to the exact value we know today. Furthermore, he concluded that ether could not be
affected by mass like that of earth. If earth would drag ether with it, then no aberration
effect could be detected.

This effect must not be mixed up with the measurement of the parallax, i.e. the deviation
of the angle of a star relatively close to earth depending on the position of earth to the sun
during the year. Such a measurement was first successfully completed by Friedrich Wilhelm
Bessel (1784-1846) in the year 1838 during observation the star 61 Cygni. Out of the meas-
ured angle he calculated a distance of 10.28 lightyears to the sun (today’s value is 11.4
lightyears). The parallax effect is approx. 2 orders of magnitude smaller than that of aber-
ration.

Distance determinations are an essential part of cosmology today. However, the meas-
urement of the parallax is possible with earthbound telescopes only up to distances of about
100 light-years. In 1912 Henrietta S. Leavitt (1868-1921) found out by extensive investiga-
tions on stars of the Magellanic Clouds that the absolute value of the maximum brightness
of periodically changing stars is directly related to their period. Since there are enough var-
iable stars in the near-earth region, a first calibration was possible, and the extent of our
galaxy could be determined (100,000 light years) and consequently the distances to the
Large and Small Magellanic Cloud (163,000 and 200,000 Lj. respectively) and later by Ed-
win Hubble (1889-1953) to the Andromeda Galaxy (2.5 million Lj.).

Point 2:

In the year 1810 Francois Arago (1786-1853) made an experiment where he used a prism
for aberration measurements. The expected alteration effect, however, could not be ob-
served. Already in 1818, a theory was presented by Augustin Jean Fresnel (1788-1827),
that light is partly dragged by the medium in moving direction and that the appearing effect
is dependent on the refraction index of the media.

12
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In the year 1851 Hyppolyte Fizeau (1819-1896) performed an experiment where he
measured the speed of light in running water. He found the result that the speed of light is
increasing when the examined beam has an orientation in moving direction of the water
and decreasing when the direction is opposite. He also verified the equations first postu-
lated by Fresnel. This result changed the view on ether and the characteristic of a dragging
effect by matter was added.

Because of the fundamental importance of the presented experiments these will be dis-
cussed in detail. Aberration is presented in chapter 2.1.2 and the dragging effect in moving
transparent media in chapter 4.2.

Towards the end of the 19th century due to the inconsistent experimental results many
different ether-theories were discussed, who should be able to explain the complex situa-
tion. Even Einstein, in his most probably first publication as a youth discussed an approach
to the problem. Looking at the situation at that time it can be summarized, that no consen-
sus on the nature of ether could be achieved, but that nobody seriously denied the existence.

1.4 Electromagnetism

Phenomena connected to electrostatic effects were already known to Greek philosophers
in ancient times. When amber (Greek: electron) is rubbed with a fur or cloth it will show
visible effects like e.g. the emission of sparks or attraction of dust and other small particles.
Also, magnetism is well known since a long time; in this case the observed phenomena were
generally connected to the availability of magnetic iron ore named magnetite. The origin of
the word is deriving from the Greek region called Magnesia, where these stones were found
already in ancient times. A practical use was solely for application as a compass, which was
known in China already in pre-Christian times and in Europe from the beginning of the 13th
century on.

This did not change before the electrostatic generator was invented. Otto v. Guericke
made experiments using a rotating Sulphur sphere and tried to find evidence for the exist-
ence of cosmic forces. The experimental set-up is referred to as the first electrostatic gen-
erator; although Guericke found attracting and repelling force, he had most probably no
idea about the background of his experiment. Later constructions by successors using glass
and leather were able to create quite high voltages. A further progress was made when the
“Leiden Jar” was developed. This is the early form of a capacitor and from now on it was
possible to generate and to store charges. Although now first experiments were possible
and different electrical phenomena became known the invention was mostly used for spec-
tacular presentations to an interested audience. It was e.g. immensely popular to pass elec-
tric shocks to a crowd of people who were taking each other by the hand.

However, during the 18th century also some new scientific perceptions were derived,
e.g. the frog leg experiment by Luigi Galvani (1737-1798), where he found that a leg of a
dead frog is kicking as if alive when it is touched with an electrostatic generator. Further
the experiments of Benjamin Franklin (1706-1790) proving that lightning is a form of elec-
tricity shall be mentioned. However, because of the limited experimental capabilities these
approaches were exceptions, and it is not reasonable to talk about a comprehensive scien-
tific approach concerning this matter.
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A turning point was reached when in the year 1799 Alessandro Volta (1745-1827) con-
structed the first stable electric power supply in form of a battery, which was later called
“Volta’s pile”. For the pile he used elements made of copper and zinc, which were separated
by pieces of leather or paper soaked with sulfuric acid and so electrochemical cells were
built. The pile was consisting of several cells and so it was possible to produce more than
100 Volt (a physical unit later named after him). It is for sure one of the most important
inventions of all time and the public paid high tribute to him. He also drew admiration from
Napoleon Bonaparte for his invention and in 1810 he was made a count.

This invention laid the basis for many new experiments and subsequently to further im-
portant discoveries. Namely Faraday, Ampere, Heavyside and Lorentz are to be mentioned,
who examined the properties of electric charge, electrical current and the relation to mag-
netism. André-Marie Ampere (1775-1836) was the first to introduce the concept of a field
and discovered an electromagnetic relationship, which was of great importance for scien-
tific progress.

Further knowledge was established by theoretical considerations of James Clerk Max-
well (1831-1879) who was able to show, that the existence of electric and magnetic effects
is connected. He also used for the first time the expression of electromagnetic fields. Max-
well demonstrated that electric and magnetic fields travel through space as waves moving
at the speed of light. He proposed that light is an undulation in the same medium that is the
cause of electric and magnetic phenomena; this medium was supposed to be the “luminif-
erous ether”. A further important result of his investigation was that the relations he devel-
oped, which later were called “Maxwell-Equations”, are not conform to the Galilei-Trans-
formation and so this was in contradiction to classical theories.

The experimental work of Heinrich Hertz (1857-1894) later confirmed that the shining
of light can in fact be interpreted as propagation of electromagnetic waves. From 1889 until
his death, he was professor for physics at the University of Bonn. To this very day the ex-
periments built by him are working and presented during the lectures of experimental
physics. They provide an impressing view at the technical possibilities of that time.

Towards the end of the 19th century knowledge concerning electromagnetic effects had
improved significantly. The gathered knowledge both on theoretical and experimental ba-
sis made clear for anybody that ether for the transport of electromagnetic waves must exist.
This view was generally also expanded to gravitation.

1.5 The Michelson-Morley Experiment and first interpretation

Albert A. Michelson (1852-1931) was one of the most important physicists at the end of the
19th century. In the year 1869 he joined the US Naval Academy and graduated in 1873.
After 2 years at sea, he became instructor in physics and chemistry at the naval academy
until 1879. Then he was posted to the Nautical Almanac Office in Washington and in the
following year he obtained leave of absence to continue his studies in Europe (Berlin, Hei-
delberg, and Paris). In the year 1877 he married the daughter of a wealthy stockbroker and
so he achieved financial independency. He was extremely interested in physical experi-
ments, especially in measurements of the speed of light; his special knowledge as a naval
officer was very helpful, because during his duty one of his tasks was the measurement of
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distances by optical means. In the year 1881 he resigned from the navy and started his sci-
entific career. In 1907 he was the first American to receive the Nobel Prize in physics.

The first experiment by Michelson to provide evidence of “luminiferous ether” per-
formed 1881 at the Helmholtz’ laboratory in Berlin was not successful, because the vibra-
tions of the city traffic made it impossible. It was repeated at the observatory in Potsdam
and there he found a zero result [6]. Due to experimental shortcomings in the execution the
result was first generally rejected by most scientists. Together with Eduard W. Morley
(1838-1923) the apparatus was improved, and the experiment was repeated in Cleveland
in 1887 [7]. It was now detected and verified without doubt, that the measurement of the
speed of light led to the same results in every direction, irrespective of the movement of the
measuring device in comparison to the supposed ether. Because of the paramount im-
portance of the experiment the set-up of the device and the interpretation of the results will
be discussed in detail (see chapter 9.1).

During the following years, the experiment was widely discussed and addressed in many
publications, of which the most important shall be mentioned shortly here. George F. Fitz-
Gerald proposed already in 1889 the idea, that the length of material bodies is contracting
at velocities close to the speed of light [8]. He expected this contraction to be dependent on
the square of the ratio of their velocities. The same issue was also predicted independently
by Hendrik A. Lorentz (1853-1928) three years later [9]. Because of further contradictions
Lorentz and also Henri Poincaré (1854-1912) introduced in the year 1900 the concept of
“local time” [10]. This means, that in view of an observer at rest the clocks of other moved
observers show different times during a synchronization process depending on their dis-
tance. It was now possible to perform calculations between systems with different veloci-
ties. The basic equations were converted into their modern appearance by H. Poincaré, who
also created the name “Lorentz-Transformation [11]. It was shown that contraction of
space and dilatation of time is covered by the same factor (Poincaré named it k, Einstein 8
today usually the Symbol y is used).

The transformation equations are

. v
t=y(t- C—Zx) (1.07)
x'=y(x —vt) (1.08)
with
1
y=—— (1.09)
v
-z

In these equations x and t are the coordinates of a reference system and x’ and t’ the
coordinates of another system moving constantly relative to this, the coordinates in y- and
z-direction are not changing. These relations today are normally called Lorentz-Transfor-
mation (LT) or “Lorentz-boost”. Although the term “boost” implies the existence of an ac-
celerated system this is not the case. In contradiction to this the equations describe
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relations between systems, which are constantly moving relative to each other and are not
subject to acceleration or rotation. Furthermore, these equations show similar characteris-
tics compared to the Maxwell equations which are valid for the interpretation of electro-
magnetic fields.

A detailed derivation of the equations will be presented later. It must be mentioned fur-
ther, that at velocities v < ¢ the factor y is approaching 1 and the equations are merging
with the Galilei-Transformation in Eq. (1.01).

1.6 Einstein’s Theory of Special Relativity

In the year 1905 Albert Einstein published his famous paper “On the electrodynamics of
moving bodies” and presented a main contribution to the theory of relativity (later called
“Special Relativity” or SRT). For an exact representation it is necessary first to introduce the
concept of an inertial system. Inertial systems are defined by the fact that they are moving
in arbitrary speed to each other but are not accelerated or show a rotational motion.
Fundamentals of SRT are the principle of relativity and the principle of constancy of the
speed of light. In the original version Einstein has chosen the following formulation [12]:

“Principle of Relativity: The laws by which the states of physical systems undergo change
are not affected, whether these changes of state be referred to the one or the other of
two systems in uniform translatory motion relative to each other.

Principle of constancy of the speed of light: Every light ray moves in the "resting" coor-
dinate system with a certain speed V, independent of whether this light ray is emitted by
aresting or a moving body. Here is

lightpath

velocity = —
y time period

where "time period" is to be understood in the sense of the definition of § 1.”

The interpretation is not easy, also because Einstein speaks here of a "resting" system.
But the meaning, especially of the 2nd paragraph, is clear, when it is considered that the
procedure chosen in the further text, especially the application of the synchronization pro-
cedure (today: Einstein synchronization, see chapters 3.4 and 12.2). Because of the com-
plexity, details will be discussed later in this paper.

Important here is the radical break with the previous approach to the establishment of
a physical theory. While Lorentz and Poincaré interpreted the available experimental re-
sults, derived the transformation equations from them and then found the principle of rel-
ativity, Einstein put this first and was able to derive the equations in a relatively simple way.
Generally speaking, these are the principles bottom-up (Lorentz, Poincaré) and top-down
(Einstein).

Lorentz in 1892 first assumed that there must be an absolutely resting fundamental sys-
tem [9]; then in 1910 he was of the opinion that it would never be possible to distinguish
between the two approaches [13]. Independently, however, he welcomed Einstein's formu-
lation of relativity and became its advocate [14,15], especially because of the "boldness" of
the approach [14].
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1.6 Einstein’s Theory of Special Relativity

At the time of development, it was not foreseeable that a metrological verification of the
theory would ever be possible. In the following decades, however, new experiments were
added, the most important of which are those of Kennedy-Thorndike [16] and Ives-Stilwell
[17,18], which will be discussed in detail later. In addition, the measurement accuracies
were improved more and more; modern measurements with very high precision showed
among other things the validity of the time dilation formulated by Lorentz impressively
[19,20,21]. On the other hand, however, the Theory of Special Relativity in its general form
cannot be proved in principle. Every positive experiment strengthens the theory, but a sin-
gle unambiguous counterexample would lead to the fact that it must be considered as dis-
proved.

In the first part of his publication, Einstein derived the transformation equations from
the principles already mentioned. However, since these had already been discovered by
Lorentz before, they are generally called "Lorentz equations” today. Einstein's publication
does not contain any literature references and thus a parallel development to Lorentz can
be concluded. Moreover, it is clearly the merit of Einstein to have combined the photoelec-
tric effect with these relations and thus to have been able to break completely with the ether
concept.

In further considerations of the principle of relativity, Einstein also predicted already in
1905 the effect that the kinetic energy of a moving mass at higher velocities according to
the formula

Exin = moc?*(y = 1) (1.10)

must increase [22]. This effect has been experimentally confirmed and is now commonly
referred to as relativistic mass increase. It is important to see here that the designations are
different. Lorentz chose x, t for the reference system, while Einstein used m,. In Einstein's
probably best-known formula

E = mc? (1.11)

the total mass m includes the part of the kinetic energy defined in Eq. (1.10). Also, the mass
increases with higher velocity by the factor y. Both representations are used in parallel until
today.

Lorentz-equations Relativistic mass increase
guation =y ZX
x'=y(x—vt) {E = mc? = ymyc?}
Reference system x, t my
Moving system x', t' m

These relations together form the basis for the Theory of Special Relativity.

For the description of the principles postulated by Einstein, today often called Einstein
axioms, there is no uniform definition, and it is chosen differently in every publication. In
some cases, the description for both axioms are descriptive ("no differences can be found
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1. Introduction

in measurements"), in others the properties are put in the foreground ("the speed of light
is the same in all inertial frames", "all inertial frames are equivalent"). Although these ex-
pressions are identical at first sight, there are important differences which have to be dis-
cussed in more detail in the following. The already mentioned relativistic increase of mass
is not mentioned in the axioms, but without this effect the statement concerning the princi-
ple of relativity would not be possible.

However, the principle of relativity formulated by Einstein also requires a precise inter-

pretation. First, this can be divided into the following detailed statements:

a) Ifidentical experiments are carried out by different observers in reference systems
moving uniformly relative to each other, the results will be the same.

b) An observer can describe results of any experiment in another inertial system that
shows a constant relative movement using only the Lorentz transformation equa-
tions and the relativistic increase of mass. In particular, the observation of the time
sequence of events is the same in all cases.

c) All systems moving uniformly relative to each other are equivalent and there is no
absolute "system at rest".

The statement a) will now be defined as “principle of identity”, b) as “principle of equiv-
alent observations” and c) as “principle of complete equivalence of all inertial systems”.
While points a) and b) are backed up by multiple test results, this must be considered in a
differentiated manner for point c). Although there is a wide consensus about the validity of
the SRT within the physical research community, there are still many theoretical and ex-
perimental attempts to refute individual points. This concerns in particular measurements
concerning minor violations of the Lorentz equations, which have been predicted by theo-
retical considerations concerning a general, unified theory of all laws occurring in nature.
Furthermore, a possibility to integrate a state of absolute rest is still searched for.

Finally, some interesting historical questions should be addressed. Einstein became in-
volved with physical topics at an early age. At the age of 16, he wrote a letter to his uncle in
which he outlined possible experiments to prove the existence of ether [99]. In 1901,
around 6 years later, he already had more far-reaching ideas and wrote about himself and
his future wife Mileva Mari¢, whom he met while studying physics and mathematics at the
ETH in Zurich: " How happy and proud will [ be, when we both together have brought our
work on the theory of relativity victoriously to an end". She was the only woman in this field
of natural science, which was clearly dominated by men at the time. However, her contri-
bution to the development of the theory is unclear, and it is also doubted whether the ether
theory had already been overcome at this time [85]. In the epilogue to his work, Einstein
expressively thanked his friend and fellow M. Besso that he was faithfully standing at his
side during the work and that he owes him valuable suggestions; his wife was not men-
tioned at all [12].

Although there is no clear evidence, it seems very plausible that Einstein had the exten-
sive support of his wife in 1905, the year in which he submitted his dissertation and wrote
another 4 publications in addition to his work at the patent office. In 2005, Mileva Mari¢
was officially honored as a co-founder of the theory of relativity by the university ETH Zur-
ich [84]. However, there are a large number of publications on this topic and also dissenting
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1.7 Current discussions

opinions (e.g., [85]). In 2003, television stations in the USA broadcast the documentary
“Einstein's wife”. During and after the broadcast, viewers were asked online for their opin-
ion and 75% of viewers were convinced that his wife had indeed collaborated with him.
However, “history is not a matter for democratic voting” [85]. Due to the lack of sources, it
must be stated today that we simply do not know the details.

This also applies to information about her first child. Mileva Mari¢ gave birth to a girl in
1902, before her wedding (which took place in 1903). For this purpose, she returned alone
to her parents in Novi Sad (today Serbia, then Austrian Monarchy); it is not clear whether
the child died there or was given up for adoption. Even though Einstein was a public figure
as the most famous scientist of his time, there are mysteries about this early period that will
probably never be disclosed.

1.7 Current discussions

Already at the beginning of the second half of the last century it became clear that the back-
ground radiation of the Big Bang, which was discovered at that time, runs completely iso-
tropic and constant in all space directions. This has made it possible to measure a velocity
relative to this background radiation. Recent measurements with extreme accuracy have
shown that our sun moves with 369.1 + 0.9 km/s relative to it [23]. It should be noted here
that the sun is orbiting the galactic center at a speed of approx. 220 km/s, and that the ve-
locity is directed almost opposite to it. This means, that our galaxy is moving with a speed
of approximately 600 km/s relative to the detected background radiation [19].

In particular because of these observations there have been considerations to bring spe-
cial relativity in accordance with a state of absolute rest (i.e. “relativity without relativity”
[24]). None of these theories were able to show results without severe discrepancies to ex-
perimental findings. Details are summarized in chapter 12.1.

Moreover, a problem has recently arisen from the measurements of velocities faster than
that of light. Experiments carried out by different research groups for several years already
show that such velocities can be measured in connection with tunnelling experiments.
However, there are great differences in the interpretation of these results. While some re-
searchers are convinced that despite of observed superluminal velocities no information
can be transmitted with this speed, others expect this to be the case. If the latter is true, this
is basically not compatible with the theory of special relativity. The effects will be discussed
in detail.

Further theoretical considerations disclose a severe problem, which is a fascinating part
of today’s discussion within physics: It is broad agreement that the fundamental physical
theories of our time, the theory of (general) relativity and quantum mechanics are in con-
tradiction [20]. The problems which occur are presented in a very comprehensive way by
T. Miiller [25].

Generally, it can be stated, that after more than 110 years since the first presentation of
Special Relativity many questions are still open. It is the aim of this presentation to develop
proposals for a modification.
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1. Introduction

1.8 Contents of this presentation

Today, the Theory of Special Relativity (SRT) represents a fundamental standard within
physics. There is an almost unmanageable number of books, literature, and lecture notes
on this subject. This paper is intended as a supplement to other books on this subject, in
particular the excellent work of Max Born (1882 -1970), a contemporary and friend of Ein-
stein [26]. The book was first published in 1920 and is still reprinted today with some nec-
essary additions. In addition to the theoretical part, which is deliberately kept simple for
training purposes, the developments in physics that took place in the 19th century are also
very accurately reproduced here. This also applies to the important subject of electromag-
netism, which is only briefly touched upon here.

Usually, papers on special relativity follow the scheme that first the results of classical
experiments are presented and based on them the theory is formulated. In the present case,
however, the theory shall be chosen as axiomatic framework and then the consequences
resulting from it shall be discussed. As will be shown, this systematic approach also cap-
tures effects that otherwise are not in focus but are of great importance. The resulting cal-
culations partly require the use of numerical methods. Their execution is described in detail
in an appendix (A to D).

The central approach of the presented investigations is the following: First, all investi-
gated phenomena are presented from the point of view of an observer at rest. Based on this,
it will be evaluated how the same facts arise for a moving observer; for this, exclusively the
formalism of the Lorentz transformation and the relativistic mass increase will be used. It
will be shown for a large number of investigated relations that the same results are ob-
tained for both observers and that no counter example exists.

In the following, first an exact representation of the connections within special relativity
is given. This begins with investigations to the signal exchange between two observers
moved relatively to each other. Afterwards the Lorentz transformation is derived from the
basics of Special Relativity (equivalence of all inertial systems and constancy of the speed
of light).

In addition, the important item of the synchronization of events is considered in more
detail. This is done first on the basis of synchronization by means of signal exchange, later
also by exchange of clocks. Subsequently, the relations between several moving observers
are the subject of considerations. In addition, the relations of signal exchange in moving
transparent media are also investigated. In all examples it can be stated that the validity of
the equations developed by Lorentz is guaranteed without restrictions.

The synchronization with slow clock transport presented in detail in chapter 5 contains
some new approaches for the unambiguous proof of a zero result.

In chapters 6 and 7 considerations of relativistic influences on mass, momentum, force,
and energy are made. Further the situation of observers exchanging signals with others
during acceleration and afterwards will be investigated. For this purpose, the conditions
during elastic relativistic collisions are investigated, and the relationship for a relativistic
rocket equation is derived from this. It is also shown here in all cases that there are no dif-
ferences in the considerations for an observer assumed to be at rest or to be moving.
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1.8 Contents of this presentation

Further investigations on the conditions during the exchange of light signals with con-
stant frequency show new aspects for the interpretation of classical experiments (chapter
8). It will be shown that at the transition between systems with a movement relative to each
other not the speed of light, but the phase velocity of light is the relevant parameter. As a
consequence, classical experiments like the Michelson-Morley experiment and also the
Kennedy-Thorndike experiment have to be re-evaluated, although their basic statements
remain the same.

Furthermore, the case is discussed, when superluminal velocities occur, which are ob-
served in connection with tunnelling experiments. If it is possible to transfer information
in this case faster than light, contradictions will occur between identity and equivalence
principle.

A proposal is developed, how these contradictions can be eliminated. In contrast to the
basic idea developed by Einstein, a top-down concept with given principles, a different ap-
proach is chosen. Instead, the Lorentz equations are used as a basis and, in addition, the
concept of relativistic mass increase with increasing relative velocities derived by Einstein
from the principle of relativity. Their combination into an "Extended Lorentz Theory" al-
lows to describe all phenomena occurring in nature in the same way as the Theory of Spe-
cial Relativity. Absolute precondition is that information is transmitted at the speed of light.
If a transport should ever be possible with superluminal velocity, then SRT is proofed to be
false, for the Extended Lorentz Theory then the opportunity would arise to determine the
position of a system of absolute rest.

Finally, on basis of these considerations, different experiments will be proposed. With
their help, clear statements on the validity of the proposed theory could be made.
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2. Relations between two moving observers

It was already mentioned before in the introduction of this presentation, that in the follow-
ing the Theory of Special Relativity (SRT) will be placed first in an axiomatic way to discuss
general physical relationships. Using this basis, different combinations for the exchange of
signals between two observers will be examined first. This will start with point-shaped ob-
servers before they will be looked at as containing an extended space. Subsequently the
relations of angles between moving observers during the exchange of signals will be inves-
tigated.

The consequences derived will be discussed and compared with observations and calcu-
lations presented in the literature. It will be shown that the results do not contain any con-
tradictions. Furthermore, additional considerations concerning the calculations of angles
will be derived. These are based on geometric calculations and lead first to the expected
result that a defined contraction of space must exist. It will also be shown that the contrac-
tion must be considered as symmetric in moving direction and opposite to it. This will be-
come important later for the examination of alternative theories, which will be discussed in
chapter 11.1.

Following the historical development, the participating observers performing experi-
ments will first be specified as “at rest” and “moved”. In further considerations it will be-
come clear, that these definitions in general can be replaced by “relatively moving against
each other”. This approach is not used very often today, but sometimes it still can be found
in new literature [21].

2.1 Exchange of signhals between point-shaped observers

Although the first considerations and deductions presented here will be trivial at first sight,
these simple approaches are already providing clear evidence of the limits of classical me-
chanics. To avoid discrepancies, it is even necessary for simple constellations, like these are
valid for the exchange of signals between two point-shaped observers, to implement the
calculations of the Lorentz-Transformation.

In the following this will be shown for some simple examples before more complex con-
siderations will be discussed in detail.
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2.1 Exchange of signals between point-shaped observers

2.1.1 Movement decreasing or increasing the distance

When two observers A and B decrease or increase their distance without acceleration, the
transmission of light signals periodically emitted is of general interest. Following the clas-
sical theory according to Newton it is apparent, that the moved observer will detect a larger
interval compared to the observer at rest, although the period of emission is the same for
both (see Fig. 2.1).

Case a) Receiver moved v =0,5¢c

W
N
P | GO | @0 | @0

t=3 >
t=4 >
Case b) Sender moved v = 0,5¢
R
t=15 e

=3 | [k

Fig. 2.1:  Differences in the intervals of detected light signals by an observer at rest
and a moving observer according to classical theory.
Observers have contact at t = 0,
Signal interval At = 1 TU (time unit),
Example for v = 0,5c¢

In this example with v = 0,5 ¢ the moving observer would detect a signal every 2 time
units (TU), whereas the observer at rest would find a difference of 1,5 TU. According to
these considerations both observers would be able to calculate their velocity by the meas-
urement of the signals from the partner. This is in clear contradiction to the experimental
observation, that the results of trials like these are always independent of the state of mo-
tion.

In Fig. 2.2 the possibilities for the state of motion between a moved observer and an ob-
server at rest are put together. Furthermore, in Tab 2.1 the fundamental relations are pre-
sented.
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2. Relations between two moving observers

a2 c) o)
Aty
Aty Atp
Ato ] Ati Ato
A B A B A B
AtA AtA A 0 \
b) d) | Aty f)
—At Aty
| Sbp At,
t | At Aty
X A B A B A B
Fig. 2.2 Space-time diagrams for possibilities of light signal exchange
1
AtB = Ato _ z AtB = AtOH—z AtB — Ato
c c
a) C) e)
1+ 1-2
AtA = Ato _ z AtA = Atol—z AtA = Ato
c c
v v
Aty = At (1+ E) Aty = At (1 - E) Aty = Aty
b) d) f)
1+ 1-2
AtA = Ato B Z AtA = Ato 1 Z AtA = Ato
c c
Tab. 2.1 Time intervals for the signal exchanges presented in Fig. 2.2

In the following the conditions for an exchange of light signals from A to B and vice versa
according to Fig. 2.1 shall be presented in a simple space-time-diagram (see Fig 2.3). To
realize this, the variations a) and b) from Fig. 2.2 will be combined.
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2.1 Exchange of signals between point-shaped observers

A B A B
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- 27 B, 27 B, /
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a) b)
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Fig. 2.3: Space-time-diagram for a signal exchange between observers A

(at rest) and B (increasing the distance), Example for v = 0,5¢
a) conventional (acc. to Galilei/Newton)
b) relativistic (acc. to Lorentz)

In case a) the conventional situation (acc. to Galilei/Newton) is presented. Both observ-
ers are emitting their signals at time t = 1TU and these are detected at A; resp. B; by the
partner. This diagram is valid e.g. for the exchange of acoustic waves, when A is at rest
against a medium (i. e. air or water). But it was already mentioned before that this could
not be detected by any experiments conducted using light signals.

Already at the end of the 19th century a solution for this (inside classical mechanics acc.
to Newton existing) problem was presented by H. A. Lorentz. To realize this, it is necessary
to assume, that at higher velocities an effect of time dilatation will be present. This means
that time is running slower for the moved observer. This effect is integrated in part b) of
the diagram. For observer B the time is running slower and therefore B is sending his signal
later; this will arrive at the partner at A}. Because of the time dilatation the additional effect
occurs that B is subjectively detecting the signal sent from A earlier. This effect is presented
in the diagram by the transition from B, to B;.

The exact parameter of the time dilatation can be calculated in an easy way according to
Fig. 2.2, cases a) and b). For the transition from a system at rest to a moved observer for At
the relation is valid

AtAB == Ato v (201)
T c
In opposite direction it is
v
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2. Relations between two moving observers

To match At,p and Atg, it is necessary to expand the equations (2.01) and (2.02) by the
parameter y (where At,p will be smaller and Atg, will be larger) and the equations develop

to
L1 _a+y (2.03)
—_ ey —_— -')/ .
_v c
Y 1 c
with
1
y = —— (2.04)
1Y
Tz

The parameter y calculated here is the same as the Lorentz-Factor of Eq. (1.03).

It is therefore not possible for observers A and B to decide, whether they are moving or
at rest. This implies that observer B also has the impression, that the time is running slow
for A compared to his perception.

The example presented here for observers who increase their distance can also easily
transformed to the view of observers which are approaching each other (see. Fig. 2.4, larger
scale compared to Fig. 2.3).

Fig. 2.4: Space-time-diagram for a signal exchange between observers A
(at rest) and B (approaching), Example for v = 0,5¢
a) Conventional (acc. to Newton)
b) Relativistic (acc. to Lorentz)

For the transition from a system at rest to a moving observer the time At is according
to case c) and d) presented in Fig. 2.2

AtAB = Ato (205)

v
te
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2.1 Exchange of signals between point-shaped observers

and in opposite direction
%
AtBA ES Ato (1 - E) (2.06)

The equations (2.05) and (2.06) must again be expanded by the parameter y (At,z smaller
and Atp,4 larger) and it follows

1
1+

= (- 2)y (2.07)

<Ilr
als

with the same result for y as shown in Eq. (2.04).

It shall be stated again that the time dilatation of the moving observer is necessary to
avoid discrepancies. Without this effect it would always be possible to distinguish a moving
observer from an observer at rest by simple experiments.

2.1.2 Movement in arbitrary directions

It was established so far, that it is not possible for two observers increasing their distance

or approaching each other to decide by measurements regarding the exchange of light sig-

nals whether they are moving or at rest. When the velocity vectors of the observers are not

parallel, and they are passing by with the minimum distance a the situation changes, and

more effort is necessary to verify that the observations of all participants are equivalent.
The following examination set-up shall be chosen:

1. Both observers will send out signals, the (subjective) interval is At.

2. For an incoming signal the angle referring to the direction of the sending observer is
determined.

3. If the incoming signal is exact transverse to the moving direction of the sender a re-
sponse signal with a special designation will be sent.

4. The signals are coded in a defined way to realize a final evaluation at the end of the
trial. After the exchange of all data it is possible to find out, at what time the signals
were sent which were detected as coming in exactly from the transverse direction.

First a moving observer B is considered, which is passing the observer at rest (A) in a
minimum distance a with the speed v. In this case A will detect the signals sent from B in a
(subjective) interval yAt. Compared to this observer B has a completely different view.
Caused by the aberration effect B will measure the angle of the signal according to the equa-
tion

v v

6 = arcsin ( E) = arctan (y . Z) (2.10)

as coming in from the transverse direction (see Fig. 2.5). Here v = 0,5c is chosen and the
measured angle is § = 30°. Further discussions concerning the measurements of angles dif-

ferent to the transverse direction require additional geometric considerations which are
presented in detail in chapter 2.3.
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2. Relations between two moving observers

Access instrument

\ Exit instrument

l ¥ Light signal

Fig. 2.5: Aberration effect: Measurement of angle § caused by the movement of the re-
ceiver of a signal.

In the following it will be discussed, which values will be measured for the interval At
and other relevant time measurements according to the situation presented in Fig. 2.6 for
the moving observer and a system at rest.

v =0,5¢c
a
tl = ;
tz - tl
3=y
Fig. 2.6: Exchange of signals between A and B, example for v = 0,5¢, § = 30°

Details for signal Atg: see Fig. 2.7; Total running time: Fig 2.8

a) Measurement of signal interval

As already shown the intervals between the signals emitted by the moving observer B will
be measured by observer A at rest as At, = yAt. This is caused by the effect of time dilata-
tion valid for B.
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2.1 Exchange of signals between point-shaped observers

The value Atz measured by B can be calculated using an approximation calculation ac-
cording to the scheme presented in Fig. 2.7. At the beginning a signal is sent by A and this is
received at point B, the next signal is following after time At,. When it arrives at point B,
then the observer has already moved on to point B; and the additional time for the extended
way must be added. If it is presumed that At, < t; then it is possible for the calculation to
shift the signals sent by A parallel in direction of B; without changing the value of §. When
the signal arrives at point B; then an additional movement to B, took place and the calcu-
lation must be repeated accordingly.

t Bo
v =0,5¢c
0 5
Detail Step 1
U- Ato
C - AtBl
B,
Step 1 v
) Atg, = At EsinS

/] v Vo

/ AtBZ == AtBl ESln(S == Ato (E Slné‘)
[~ v v 3

AtB3 == AtBZ _Sln6 == Ato (—SlTl@)

c c
v
Fig. 2.7: Scheme for calculation of signal interval Aty (for At, < t;). Presentation of the
first 3 steps.
The single values can be summarized
Atg = Aty + Z At;_; —sind = At, Z (— 51n6) (2.11)
i=1 ¢ =

In this case a geometrical series of the form

n
S, = Z g (2.12)
i=0
is derived, where S, is the limit value and
v
q= EsinS (2.13)
With n - o and g < 1 it follows
1
Sep = —— 2.14
— (214)
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2. Relations between two moving observers

Because B is subjectively realizing that the signal is arriving from the transverse direc-
tion Eq. (2.10) is valid

v
sind = z (2.15)
Hence
1 2
Seo = Z=7Y (2.16)
1=z

The combination with (2.11) reveals

Atg = y? - At (2.17)

The calculation shows that the moving observer B will measure (subjective) a value of
yAt, because he is subject to time dilatation himself. Thus, it is verified that observers A and
B are measuring the same values for the intervals of incoming signals.

b) Measuring of total running time of signals

The running time of a signal emitted by A and identified by B as transverse to his moving
direction is yt; (see Fig. 2.6).

v =0,5¢

Fig. 2.8: Signal path B — A — B and definition of distances travelled.

Because B is sending the signal back the same way the total running time is 2yt;. For B
the first value is t; (see Fig. 2.6), the way back t, must be calculated. To do this some im-
portant definitions are necessary (see Fig. 2.8).

The distance d (corresponding to the time t,) is derived by

2 (Y LV N e
a+(ca+cd) d (2.18)
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2.2 Exchange of signals inside moving bodies

Completing the square shows

12
v? v2 1--=

5 v 5 v v

c <1+—2) c (1+—2) 1+—2

C C C

Considering only positive values, it is achieved after simplification

v? vt v? v?
a=d _—172+ C_4'+ 1+? 1_C_2 (220)
C2<1+C—2)

v
v? 1-=
=d| - +1|=d £ (2.21)
v2 v2
c? (1 + C_Z) 1+ oz
and
2
142
d=a 1";2 (2.22)
-z
For calculation of the total distance the value of a is added
2 2 2
1+% 1+5+1-%
d+a=a 1672+1 =a £ = € | = 2ay? (2.23)
1-— 1-—
c c

The calculations lead to a total time of 2y?t; and therefore to a difference of factor y
between observers A and B which is compensating the time dilatation for the moving ob-
server B. It is shown again that identical subjective measurements are valid.

2.2 Exchange of signals inside moving bodies

The considerations taken so far illustrate the fundamental relations during experiments
concerning an exchange of signals between observers at different speed. Doing this, the
conditions are, however, not fully described without discrepancies. If for example an ob-
server at rest could directly monitor measurements of the speed of light between two mov-
ing observers, he would find differences between his results compared to the results of the
other observers without further modification. This would cause a violation of the fact, that
measurement of the speed of light show the same results in any inertial system. It has to be
mentioned that here differences for the results in moving direction and in other arbitrary
directions occur; in the following these cases will be treated separately.

In the following only the exchange of light pulses will be part of the calculations. The
discussion of light as a wave and the special characteristics connected with this feature re-
quire special considerations and will be presented in chapter 8.
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2. Relations between two moving observers

2.2.1 Exchange of signals in moving direction

For the presentation of this situation the time for the exchange of signals between observ-
ers A and B shall be investigated.
While the time in a system at rest for going and coming is

tAB + tBA = 2t0 (230)

it is different for moving objects for observations from a system at rest (see Eq. 2.01 and

2.05)
1

1
tAB+ tBAztO—U-I_tO

(2:31)
1-2 1+2
with ’ ’
v v
(1+2)+(-9)|_ 22, (232)

R NI

It was already mentioned before that the time for moved observers is enlarged by the
parameter y. During the above-mentioned calculation, the spatial extension is reaching,
however, the factor y2. To overcome this contradiction, it is necessary to reduce in addition
the distance between the two observers by the factor y. This reduction is generally named
“space contraction”.

When the effects of time dilatation and space contraction are considered together all dis-
crepancies disappear. It is worth mentioning, that the times for travelling the distances be-
tween A — B and B — A are different in view of a system at rest, but that the summation of
the times (when time dilatation is considered) is leading to the same result compared to a
system at rest.

These correlations are not only valid for the observer at rest. The moved observer also
will find during the evaluation of own measurements concerning the distances in the sys-
tem at rest that these are contracted by the factor y. Time dilatation and space contraction
are thus depending on each other to create a physical frame without discrepancies.

A simple example shall demonstrate the results. A case shall be monitored where observ-
ers A and B are placed in a system with a constant distance a. At time 0 observer A is sending
out a signal to B which is immediately reflected to A. When A and B are viewed as at rest,
the distances of going and coming and the connected times for the transport of the signal
are equal in both directions. If both observers are moving constantly in relation to a differ-
ent inertial system, however, the situation is completely different. This shall be demon-
strated in a space-time-diagram (Fig. 2.9). For simplification of the presentation the values
are normalized. This means that a = 1, in addition the time t is converted to ct and is — as
valid for the space values x — standardized to a value of 1. (The use of ct instead of t is fre-
quently used; in this case the dimensions of x and ct are identical and it is easily possible to
take direct readings out of the diagram).

Calculations analog Eq. (2.32) lead to
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2.2 Exchange of signals inside moving bodies

a 4 a 2yva (2.33)
xT = x1 xz = v v = .
_Z L4 c
r(1-2) r(1+3)
a a 2ya

v(1-3) e(t+g) ©

Inserting these values into the Lorentz-Equations Eq. (1.07) and (1.08) the results x' = 0
and t' = 2 a/c will appear which are the expected findings for observers at rest. At this
stage of the discussion it is not clear, how the Lorentz-Equations can be derived; in chapter
3.3 different methods will be presented in which way this is possible.

1 !
—hn = v
r(1+3)
©
[ 1
] = -
r(1-9)
v =0,5¢c
T
3
Fig. 2.9: Exchange of signals between observers A and B (marked using red arrows) in a

moving system. Example for v = 0,5c¢

2.2.2 Exchange of signals during passing of two observers

When a more complex approach for the observations is considered, like it is the case for
measurements between identical laboratories, which are passing in a close distance and
exchanging light signals between front and back end, also no deviations will occur. An ex-
ample shall be discussed in detail.

The experimental set-up is the following:

1. Two identical laboratories with observers A, B, Cand A’, B/, C' shall be prepared. The
orientation is presented in Fig. 2.10. The positions of C and C’ are situated exactly in
the middle of the laboratories.

33



2. Relations between two moving observers

2. The laboratory with A’, B’, C' is moved relative to A, B, C according to the presenta-
tion in the diagram.

3. The moved laboratory is passing the observers at rest in a minimum distance to keep
aberration effects as small as possible.

4. Assoon as the observers of both systems pass each other signals to C resp. C' will be
sent. C resp. C’ are reflecting the signals to the sender and are recording the relevant
periods.

At first observers A’ and A are passing. For small velocities (compared with the speed of
light) the passing of B’ and A plus also A" and B will happen simultaneously. When relativ-
istic velocities are used, however, this will not be the case. Here the moved system will show
a contraction in moving direction and the contacts between the observers will happen at
different times. At the end B’ and B will pass. In total there are 4 different situations for
contacts, which are presented in Fig. 2.11 in a space-time-diagram.

After the end of the experiment the corresponding time records between all observers
shall be compared. For the selected example with the velocity v = 0,5 c the coordinates for
C and C' are presented in table 2.2. In addition to the values from the experiment the calcu-
lated results determined by the Lorentz-Transformation are also presented in this table.
The space and time coordinates will be discussed in the following to allow an exact com-
parison between the different situations.

B’ C A

" A'-A ¢ ® v = 0,5¢c
2 b4 ;
L=
o A C
o
5 B-A *9 —
o X ®
L=
c
o
g C—
@ '
(7] -

A-B ¢ * ::

B-B : z »

- ‘ *
a a a
Moving direction >
Fig.:2.10: Laboratory with observers A and B to transmit signals and C to receive. An iden-

tical laboratory with observers A’, B’ and C’ is passing with the velocity v = 0,5 c.
During all contacts of A and B with A" and B’ a signal is transmitted and received
by C and C'.
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2.2 Exchange of signals inside moving bodies

Fig. 2.11: Time sequence of received signals in the middle of two identical laboratories;
signals are transmitted when passing.
Left: Moving laboratory
Right: Laboratory at rest

. [0,5; 0,5] [0,5;2,232] [0,5; 2,5] [0,5; 4,232]

C [-0,289;0,289]  [0,866;2,598]  [0,711;2,289]  [1,866;4,598]

c’ [-0,5; 0,5] [-0,5; 2,5] [-0,5; 2,232] [-0,5; 4,232]

Tab. 2.2: Coordinates for space [bracket left] and time [bracket right] for the
experiment according to Fig. 2.11.
Line 1: Values for the observer at rest
Line 2: Observation by the observer at rest regarding the moving system
Line 3: Calculated values for the moved observer according to the
Lorentz-Transformation
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2. Relations between two moving observers

Coordinates of space

It is clear at first sight that the coordinates of space in the first line must be constant. The
chosen parameters lead to a value of 0.5.

For the moved system, the parameters vary depending on the geometrical relations ac-
cording to line 2. The values of the coordinates of space derived by calculations using the
Lorentz-Transformations are equal to those of the system at rest with the only difference
that the algebraic sign is negative. This means, that the observers at rest and in the moved
system are measuring the same values.

Coordinates of time

The coordinates of time show a similar effect. In this case the situation is different, however,
because for C and C’ the values of A/B’ and B’ /A are exchanged. It is obvious, that the prin-
ciple of relativity requires, that C resp. C' must receive the signal of “their” observer A resp.
A’ first. It is important, that for the observer at rest the change in the values of time is nec-
essary to show a proper sequence of contacts between A" and B’ to C'. So, this short sum-
mary provides clear evidence that no differences between measurements of all observers
taking part will appear.

2.2.3 Exchange of signals in arbitrary directions

In the following the situation shall be discussed, that a signal is transmitted and reflected
transverse to the moving direction (i. e. y-direction). The time dilatation occurring for the
moving observer, which travels the distance of d = vT when the signal reaches the reflec-
tor, is exactly compensated by the longer path of the signal D' = ¢T (Fig. 2.12). This means
that it is not possible for the moving observer to find a difference compared to the situation
at rest and so again no violation of the principle of relativity can be found.

D
D'=yD =cT f \ ?” e gy

Fig. 2.12: Signal exchange transverse to the moving direction

In contradiction to the effects of a longitudinal signal exchange this means, that in the
view of an observer at rest in transverse direction there is a change in the transmission
angle because of aberration. The value can be calculated as presented in Fig. 2.12 using the
tangent value (see also Eq. (2.11) with a = 90° — §).
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2.3 Exchange of signals and correlation of angles

Whereas the situation concerning the exchange of signals in direction of a moving ob-
server was discussed first, the behavior in transverse direction is described here. No dis-
crepancies to the expected circumstances for the observer in motion appear and the prin-
ciple of relativity is respected in any case.

To start with the next step discussing the observations during signal exchange in any
arbitrary spatial direction it is necessary first, to start with basic considerations concerning
the dependencies between the angles of incoming and outgoing signal due to aberration for
moved observers in view of a reference system at rest. This will be presented in the follow-
ing; afterwards, using these derivations, it will be shown that no differences appear be-
tween the subjective measurements in a system at rest and for a moved observer. This issue
will be discussed in chapter 2.4 and the validity will be proven by calculations of an example
using a spere where light signals start from the center and return after reflection.

2.3 Exchange of signals and correlation of angles

In the following it shall be investigated, which correlations appear when emitted and re-
ceived signals have different directions compared to a moving body. This effect is com-
monly referred to as aberration (see Fig. 2.5).

As already discussed in detail, the relativistic approach to calculations of a moved ob-
server requires the consideration of the effect, that the body will be contracted in moving
direction. Up to now this effect was only treated as a summation of going and coming of the
signal and first nothing is known about the splitting into the single trips. Out of the principle
of relativity it can be deduced, however, that this contraction must be symmetric to the
middle axis of the moved body according to Fig. 2.13. It makes no difference in which direc-
tion the movement will take place.

at rest moved
Fig. 2.13 Contraction of a moved body
In this case the distance e’ in the moved system is equal to e — g or e/y.
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2. Relations between two moving observers

2.3.1 Reception in a moving body

In the following the values for the reception in a moving body will be investigated. First it
is necessary to define the exact conditions for the analysis. The following set-up shall be
used:

A sphere with the radius a contains holes in the circumference in adequate quantity
where adjusted light beams can enter (i. e. at point P;, see Fig. 2.14). When such a beam is
touching the center (P,), then the observer can define the corresponding angle using geo-
metric evaluations. Any of these holes relates to an angle of a’ resp. B’ because of the geo-
metrical definitions of the exact position and the radius a.

If the observer receiving the signal is moving, then an observer at rest will find different
angles for the incoming signal and his measurements will be « resp. . In his view the signal
will travel a distance d inside the system. For the calculations it has to be considered that,
as already stated before, the sphere will be deformed in moving direction (see Fig. 2.13).
In this case for the incoming signals the geometric dependencies are defined according to
Fig. 2.14. The incoming direction from behind (part a) leads to the following dependencies

d>=f*+(e+b— g)? (2.40)
and
f=d-sina f =a-sina’ (2.41)
Further
e =a-cosa (2.42)
b_d 2.43
o= (2.43)
¢ (2.44)
e—g=— -
g 14
The first calculation yields
sina
a=d -— (2.45)
sina

Eq. (2.40) is developing to

) G v cosa’ - sina\’
d°= (- sina)*+|(d—+d——— (2.46)
c Y - sina
- 2
v sina
1 —sina = cos?a = (— + —,) (2.47)
c y-tana
sina
tana' = (2.48)

y(i cosa—%)

where because of geometrical considerations only positive values for cosa are valid. If the
signal is approaching from the front (Fig. 2.14b) the relations are

d*>=f*+(e—b— g)* (2.49)
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2.3 Exchange of signals and correlation of angles

After the same calculation as presented before this leads to

sinf

y (cosﬂ + %)

tanf’ =

(2.50)

v=0>5¢c =—>

v=05¢c =—>

-
- —

b)

Fig. 2.14: Definition of parameters to determine the angle of incoming beams

for a moved observer (examples for v = 0,5¢ and a', B’ = 45°)
a) Signal approaching from behind, b) Signal approaching from the front

Before reviewing the results, the opposite situation with an outgoing light beam shall be
discussed first.
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2. Relations between two moving observers

2.3.2 Outgoing signals of moving bodies

For outgoing signals similar correlations apply. The relevant parameters are presented in
Fig. 2.15. In this case the signal will be emitted from the center (P;) and is passing a hole in
the circumference of the sphere (P,). In this case the space contraction of the moving body
has also to be considered.

UV =05¢c w—>
a)
V=05 —>
b)
Fig. 2.15: Definition of parameters to determine the angle of outgoing beams

for a moving observer (examples for v = 0,5¢ and a’, B’ = 45°)
a) Signal emitted in moving direction, b) Signal emitted backwards
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2.3 Exchange of signals and correlation of angles

For outgoing signals in moving direction (Fig. 2.15a) the results are exactly the same
compared to incoming signals approaching from behind, which are covered by the equa-
tions presented from Eq. (2.40) to Eq. (2.48). For outgoing signals emitted backwards (Fig.
2.15b) the opposite combination occurs, and the result is Eq. (2.50) corresponding to the
signal approaching from the front end.

2.3.3 Results of calculations of angles

At first it shall be demonstrated for the example discussed in chapter 2.1.2, that the results
for a moved observer and a system at rest are exactly the same. To realize this, the propa-
gation of the signals and the connected angles will be investigated. In view of the observer
at rest (marked as “A”) the process will start sending the signal 1 to observer B, following
this, the signal 2 will be detected and returned, at the end the reflection of signal 1 is arriv-
ing. The angles of outgoing signals are marked with &, whereas incoming signals carry the
letter 4.

Fig. 2.16: Signal propagation according to situation in chapter. 2.1 with
corresponding angles, example for v = 0,5c¢

Due to the chosen conditions the following situation is defined:

e The angles for incoming signals &, and §; are 90°.
e The values for incoming signal §; and outgoing signal &, are equal.
e The outgoing signal &, can be calculated using Eq. (2.23) as

2

a 1-
&, = arcsin (E) = arcsin 16]2 = 36,87° (2.51)
1+ oz

Calculations for the chosen speed of v = 0,5¢ show the following results:
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2. Relations between two moving observers

Initial value Calculation m

) sine
61 = 9(° tané‘l = L

y(cosq ke %) £1=00
O, sind,
= 9(° UNEy = =i ' — 60°
6, =90 y(c0562 +_1§) & =60
‘ singy ’
&, = 36.87° tand, = ———— 8y = 60°
4 (cossz = ?)
¢ ' Sin61
= 60° ang; = —————— ! =
6, =60 y(cosdl +¥) £, = 36.87
Tab. 2.3: Calculation of angles for the situation corresponding to Fig. 2.16

It is shown here that A and B find the same values for outgoing (60°; 36.87°) and incoming
signals (90°; 60°). It is thus demonstrated that the principle of relativity is also valid for
measurements of angles and that the spatial contraction must be symmetric to the middle
axis of the moved body in moving direction and vice versa.

2.3.4 Literature review and evaluation

The following simple derivation of the aberration formula for relativistic velocities was pre-
sented by D. Giulini [19]. Here the emission of a light pulse from an observer with the coor-
dinates x, and y, in a system at rest resp. x, and y; for a system moving with the velocity
v is investigated in relation to their relative point of origin. In this case § and &' are the
angles to the x-axis. At the time t = t, = t|, the systems meet in their respective points of
origin. In this case the component u,, in the system at rest can be calculated using

U, = —C-cosd (2.60)
and in the moving system
u, = —c - cosé’ (2.61)
Integrated in the equation of relativistic addition of velocities
, Uy + v (2.62)
Uy = ——— .
R > v
c
the calculation yields
v
cosé — z
€056’ = ———— (2.63)
1- rh cosd

Further comprehensive derivations of the calculations are leading to the same results
(e. g. presented by R. K. Pathria [27]). Other investigations, however, show additional deri-
vations, e. g. [28,89a]
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2.3 Exchange of signals and correlation of angles

o

02 1,
sind (1 — —2) sind
sind’ = = (2.64)
y(l—%-cosc?) 1—%-c056

A particularly useful formula is derived using the general valid formula for the tangent

[19,28] yielding
. (0) _ sin@ 265
M\2) T 1+ coso (2.65)

Inserting equations Eq. (2.63) and Eq. (2.64) the transformation leads to

, <6’> sind (2.66)
an|—| = )
2 y (1 + %) (1 + cosd)

tan (%) = (Z ; Z) ’a tan (g) (2.67)

Using this equation, it is possible to determine in an easy way the value of § depending
on §'. In the following, some selected results for all equations are calculated and compared.
It must be considered that inverse functions (arc) for values between 0 and 180° are not
exactly defined in cases where a sinus is present. The reason is, that in contrast to the co-
sine, which is monotonously decreasing in this interval, the sine wave shows a maximum at
90° and therefore the inverse function contains two possible solutions. This is the reason
why for angles > 90° the standard result must be converted as presented in tables 2.4 and
2.5. (The tangent is monotonously increasing between 0 and 90°, which is sufficient acc. to
Eq. (2.67), because when taking § /2 as argument the necessary interval is halved).

v
, sina , cosa — E
1: a' =arctan | ——~ 2: a = arccos
y (cosa - E) 1- - cosa
. 1

, . sina , ct+v /2 a
3: a' =arcsin 5 4: a' =2-arctan ( ) tan (—)

y(l——-cosa) c—-v 2

0,523593 EY 0.869038 JEERE  0,869038 JECRE 0,869038 JEERE 0,869038 EERE
0,785398 LS 1.244669 BIEEEER 1,244669 JIEERER  1,244660 JIEEER  1,244669 JEEE,

1,0a719s .  1,570796 1,570796 JIERNY 1,570796 IER
1,57079¢ L 2,094395 JFELY 2,094395 JERINE

2,004395 JEEE 2,498092 JFLERE 143,13| 2,498092 FTER
2,356194 JEES 2,672117 JFEERG 153,10] 2,672117 JFEERL
2,617991 RS 2,834625 JEIRH 162,41| 2,834625 JFFEH

3,141593 BT 3,141593 JEE0: 3,141593

Tab. 2.4: Values for a’ depending on a according to equations 1to 4, v = 0,5¢
Results presented as radian and in degrees [°] (marked grey).

Values with frame: 180°+ angle (Eqg. 1) and 180°- angle (Eqg. 3)
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v
) sinf cosp + =
5: B’ =arctan | —— 6: B’ =arccos| ——
y (cosﬁ + —) 1+2. cosf
c c
. 1
_ sin c—wvy\/2
7: B' = arcsin > i 8: B'=2-arctan I( ) tan (E)l
y(1+E-cosﬁ) ctv 2

0 523599-
0,78539s JIEE
1,0a7198 S

1,5707% IIES

2,094395 120

3,141583 130

0,306968
0,465475

0,643501 JEEH
1 047198-

2,356194 LS -1 24466
2,617994 JEEL -0,869038

17,5
26,90

0,306968
0,469475

1,57079%6
1,896924
2,272555
3,141593

0,643501 [ E
1,047198 ENE

17,5 :
a0

0,306968
0,469475

00

108,65

130,2
180

17,5 :

0,643501 EEY
1,047198 JIER

0,306968 17,5
0,469475 JFIED
0,643501 JE
1,047198 00
1,570796 00
1,896924 JEUENG

2 272555-

3,141593 EER

Values for ' depending on 8 according to equations 5to 8, v = 0,5¢
Results presented as radian and in degrees [°] (marked grey).

Values with frame: 180°+ angle (Eg. 5) and 180°- angle (Eq. 7)

Tab. 2.5;

The considerations of equations 1 to 8 discussed so far were solely directed on the radi-
ation angle for a light pulse, which could be measured by an observer at rest and was sub-
sequently calculated for a moving system. In this case the angles measured in moving di-
rection cover per definition the designation a (for the system at rest) and a’ (moving)
whereas 8 and B’ are situated in opposite direction.

[t was already demonstrated in chapter 2.3.2 that the investigation of the case, where the
positions are changed and the moving observer is calculating values for the observer at rest,
the angles evaluated by the moving observer will reveal exactly the opposite results. This
means that measurements in moving direction following angle a will show the formal result
of angle B’ and that it will also be the same case for § and «'.

The evaluation presented so far is only valid for the equation 1. The same result will ap-
pear, however, when equation 4 is converted in a suitable way to show the value of a.
Whereas calculations for incoming signals are discussed quite often in the literature, only
few solutions for outgoing signals can be found. R. Gohring [47] used the equations for out-
going signals and made a transformation to a’; this showed that the results were in accord-
ance with the results described in the following. In the presentation by W. Rindler [28] it is
defined, that the values for the velocity c shall be replaced by —c and then the relevant cal-
culations will appear. When this is done for all presented variants then it can be shown that
this statement is valid for all calculations investigated here.

The results can be summarized as follows:
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2.4 Exchange of signals in any arbitrary spatial direction

sina’

1. a=arctan | —/——
y (cosa’ + E)

2: a = arccos

v
cosa’ + =

v
1+E-cosa’

sina’

y (1 + % . cosa’)

3: a=arcsin

4. a=2-arctan

(G0 " an

2)

The same conversion is possible for the opposite case:

7: [ =arcsin

8 p=2-arctan

;U
sinf’ cosp’ —¢
5: B = arctan —ﬁv 6: B = arccos v—c
y(cosﬁ’—z) 1—;-005[3’
sinf’

(£25) "en(3)

Finally, it can be stated, that all presented equations are suitable for the calculation of
relativistic aberration of moving observers connected to systems at rest and vice versa. The
results of the aberration angles are the same for all involved participants and thus the prin-
ciple of relativity is not violated. Precondition is that the effect of spatial contraction is sym-
metric to the middle axis of the moved body in moving direction and opposite to it.

For practical use equations 2 or 4 resp. 6 or 8 shall be preferred because they show no
sinus in the formula and so no interpretation of the result is necessary for values > 90°. The
real advantage of the geometric derivation presented here (this means equations 1 and 5)
will become apparent later, when subluminal velocities of moving bodies instead of light
signals will be discussed. In this case equation 1 (or 5) can be modified using a simple re-
placement of ¢ by the velocity v of the second moving object, which is not possible for the
other calculations. This will be especially important for discussions of questions concerning
the momentum, which will be a major topic in chapter 7.

y (1 — % . cos[)”)

2.4 Exchange of signals in any arbitrary spatial direction

After discussion of the basic relations concerning the path of a signal in any arbitrary spatial
direction, it is now possible to verify that for a signal in a moved system (here with the
shape of a sphere with a standard-radius of a = 1) from the center to the outer shell and
back, subjectively the same time will be measured compared to the system at rest. The fol-
lowing conditions shall be defined:

An angle a' (related to the moving direction) shall be chosen for the moved system, from
which the light signal will be emitted to the outer shell. Then the following values are cal-
culated:

1. The related angle a; viewed by the observer at rest,
2. The length d, to the outer shell,
3. The angle a, for the way back referring to the same angle a’,
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2. Relations between two moving observers

4. The length d, from the shell to the center,
5. The calculation of d; = d; + d,. The value of dr must be exactly 2ay to verify that
the measurements in both systems (moving and at rest) are subjectively identical.

For the calculation, the equations (2.67) and (2.45) shall be used and the following relations
appear:

r 1 N\ ] 1 !
c— v\ /2 a sina
. -9. — 3: d, =
2: a,=2-arctan _(c n v) tan ( > ) 1 sinay
e+ a'\| sina’
4: a, =2-arctan ( ) tan | —= 5 d;=—
c—v 2 sina,

In table 2.6 calculations for an example v = 0,5c are presented. For the values a’— 0°
and 180° with respect to a; and a, a division of 0 by 0 would appear and it would be nec-
essary to extrapolate, for simplification only values between 1° to 179° were selected. The
values directly in moving direction and opposite to it (0° and 180°) were already deter-
mined before in chapter 2.1.

For all calculated values of d the result of 2y (in this case v = 0.5¢ = 2y = 2,309401..)
appear. This means that in view of the observer at rest the distance travelled by the light
pulse and the time needed is exactly longer by this value. All values show impressively that
no deviations between the subjective measurements of the moved observer and a system
atrest will appear. The time in the moving system is running slower by the calculated factor
and the principle of relativity, as in all cases discussed before, will not be violated.

--“---

0,017453 0,010077 0,577360 1,731963 0,030228 1,731963 0,577438  2,309401
15 0,261799 0,151727 8,693343 1,712378 0,448391 25,69090 0,597023  2,309401
30 0,523599 0,306968 17,58795 1,654701 0,869038 49,79218 0,654701  2,309401
45 0,785398 0,469475 26,89895 1,562949 1,244669 71,31426 0,746452  2,309401
60 1,047198 0,643501 36,86990 1,443376 1,570796 90 0,866025  2,309401
75 1,308997 0,834062 47,78826 1,304130 1,851500 106,0831 1,005271 2,309401
90 1,570796 1,047198 60 1,154701  2,094395 120 1,154701  2,309401
105 1,832596 1,290093 73,91689 1,005271 2,307530 132,2117 1,304130 2,309401
120 2,094395 1,570796 90 0,866025 2,498092 143,1301 1,443376  2,309401
135  2,356194 1,896924 108,6857 0,746452 2,672117 153,1010 1,562949 2,309401
150  2,617994 2,272555 130,2078 0,654701 2,834625 162,4120 1,654701 2,309401
165  2,879793 2,693202 154,3091 0,597023 2,989865 171,3067 1,712378  2,309401
179  3,124139 3,111364 178,2680 0,577438 3,131516 179,4226 1,731963  2,309401

Tab. 2.6: Calculation of values d; = d; + d, according to equations 2to 5, v = 0.5¢
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3. Lorentz-Transformation and
synchronization

The calculations concerning coordinates of space and time presented so far are not suffi-
cient for the complete understanding of the relativistic transformation procedure. Already
in the year 1900 the essential additional principle of “local time” and the consequences con-
nected with it were investigated by H. Poincaré [10]. Later A. Einstein implemented the
general statement, that the local time of moving observers must always be connected by
synchronization processes [12].

Inside Special Relativity the synchronization of incidents between moved observers is of
paramount importance. It is part of any comprehensive lecture concerning Special Relativ-
ity, further a multitude of publications exists of which only a small part can be discussed
here.

Generally, the issue can be divided in two categories:

1. The synchronization of incidents by exchanging signals,

2. The synchronization of incidents by the exchange of clocks.

The results do not correspond to the intuitive human understanding of simultaneity and
are therefore not easy to understand. This is due to the fact that an exchange of signals be-
tween two observers always occurs at the speed of light, and this must be included in the
considerations. In the following the connections with the synchronization of events by us-
ing signal exchange are considered first, the synchronization by means of the exchange of
clocks is treated in chapter 5.

3.1 Local time and synchronization using the exchange of signals

An experimental set-up shall be discussed, where a laboratory with length a is considered
as at rest and is passed by a small body with the velocity v (Fig. 3.1). On both ends named
A and E of the laboratory a clock is fixed. At the first contact of the moved body at A (case
a) the clock is set to the value

t = : 3.01
=-- (3.01)
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3. Lorentz-Transformation and synchronization

When the moving body has contact at point E (case b) the clock at point A shows the
value of zero. Using this procedure, the synchronization of both observers is realized. At the
point zero both emitters at A and E shall send simultaneously a signal that will arrive at
time

t= 2 (3.02)
= i
at their partners (case c).
B—
a t=—-—
Al 1 E
b | t=0 G
A [ 1E
> <«
i & 3
c t=-
c Al 1E
«— —
Fig. 3.1: Experimental set-up for the synchronization of an observer at rest

using clocks at the ends A and E

According to the principle of relativity all participants of the experiment must find the same
results, when instead of the laboratory the moving body in Fig 3.1 is considered as at rest.
When these conditions are recorded a completely different diagram will appear. In Fig. 3.2
the space-time-diagram covering the new issue with the changing of the point of view is
presented.

First the clock at A is passing the body at rest (presented as point A,). Now the waiting
time is starting; for the observer at rest the time dilatation must be considered. The clock
in the position E is passing the body at rest at E; (the presentation is respecting the fact,
that the moving laboratory is shortened by the factor y because of its movement). At that
point a signal is send to A which will be received there at time A,. After the end of the wait-
ing time A will send at time A, also a signal to E which will be received there at time E;.

It is clearly visible, that from the point of view of the observer at rest the times for the
moved laboratory at A and E are not identical to his observations. In this case the time zero
is depending on the distance to the observer at rest and follows a line which is marked as
x" in the diagram.

Generally, this is one of the most important features of Special Relativity. This effect is
commonly called “Relativity of Simultaneity”.
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3.1 Local time and synchronization using the exchange of signals

Fig. 3.2 Experimental set-up for the synchronization of a moving observer
using clocks at the ends A and E.

The synchronization difference Atg can be determined easily using

a ya ya v ya
Atszm—T:T(l-F—)—T (303)
yav

Ats = C_Z (304)

The angle between the x’- and the x-axis is calculated from the synchronization differ-
ence divided by ya

c-Atg v
tana = ==

v (3.05)

and is thus identical with the angle between the ct’- and ct-axes.
The diagram developed here has interesting features, which will be discussed in the fol-
lowing.
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3. Lorentz-Transformation and synchronization

3.2 Minkowski-diagram

The diagram presented above was introduced into Special Relativity by Hermann Minkow-
ski (1864-1909) who, among many important scientific contributions, developed this
presentation later named after him [15c].

Minkowski diagrams show several peculiarities. First of all, usually not the representa-
tion of t but of ct over x is chosen. This gives both axes the same dimension (length) and
direct derivations can be made from them. After normalization, the appearance shown in
Fig. 3.3 is obtained. In this form, the diagram shows a mirror symmetry with respect to the
45° axis passing through the origin.

[t is possible to determine directly from these diagrams the coordinates which result for
the stationary (x, ct) and for the moving observer (x’, ct') for the same circumstances. In
the diagram Fig. 3.4 the point P, . with the coordinates x = 3 and ct = 2 is shown as an
example. This is the value, at which a moving observer from the view of the stationary sys-
tem is at a distance of 3 length units (LU) after 2 time units (TU) referred to the origin.
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- - / [
- / e
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/ =
/, //
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~
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“ - / Xp
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-~ / /
14 -~ / ;2
- / / \ /
/ YA
- ctp /
a /// 1 /
/ / Xp
a // //
T T T | T
0 1 2 3
X —>
Fig. 3.3: Minkowski diagram: Example with point x = 3 and ct = 2.

Graphical determination of the coordinates in the moving system (x', ct’)".

The x', ct’ — coordinate system is not rectangular but has angles a to the system x, ct.
Therefore the coordinates are also read under this angle. Parallels to the x" and ct’ axis are
formed. The values for x; and ctp can then be read from the intersections with the axes
ct’ = 0 and x" = 0 respectively as shown.
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3.3 Lorentz-Transformation

It will be shown in the next chapter that a purely graphical/geometric derivation leads
in consequence to the Lorentz transformation equations. This is absolutely necessary, be-
cause otherwise there would be contradictions within the theory.

3.3 Lorentz-Transformation

For the derivation of the Lorentz transformation there is a multiplicity of approaches, which
can be mentioned here only exemplarily. According to the classification introduced by M.
Born [26] and still used today [47], there is basically the graphical and the algebraic ap-
proach. While the graphical derivation is rarely used [e.g. 26a], there is a multitude of vari-
ants for the algebraic approach. These range from the classical representation [12,29] to
the "fastest" derivation [30], conventional approaches [31,32] and to the use of the tensor
calculus [27,28,33]. Moreover, parts of the graphical and algebraic derivation can also be
combined [19]. Since the Lorentz transformation is one of the most important elements of
Special Relativity, its derivation will be shown here with selected examples for both basic
approaches.

In principle, the present relations must be linear. If there were e.g. quadratic terms, then
derivations after space or time would depend on the space or the time itself. All physical
laws, which contain derivations after place or time (e.g. velocity, accelerations) would then
depend on the zero point of the corresponding space or time scale in case of non-linear
relations. In such a case, however, this could be the subject of direct measurements and
thus contradicts the general idea of the homogeneity of space and time. A further point is
that the relations to be determined in the limit case of small velocities must pass over into
the Galilei transformation of the classical mechanics.

In the following, first a graphical (and geometric) derivation of the Lorentz transfor-
mation from the Minkowski diagram is presented. In contrast to the approach of M. Born
[26a], which works with proportion relations and the Pythagorean theorem, angular func-
tions and geometrical approaches are used here and a particularly clear representation ap-
pears. Subsequently, a selected algebraic approach is presented.

At this stage, an important point shall be briefly discussed. According to the principle of
the constancy of the speed of light in all inertial systems, measurements of the speed of light
will lead to the same result for the reference system ("resting") and for an observer moving
relative to it (chapter 1.6). This is subjectively correct. However, the derivations discussed
in the following are based exclusively on the speed of light of the reference system and thus
describe the observations made from this, from which finally the Lorentz transformations
are resulting.

3.3.1 Derivation of the Lorentz-Transformation using the Minkowski diagram

As was already explained, the representation of the Minkowski diagram can be derived ex-
clusively using time dilation, space contraction and synchronization difference. Beyond that
only the assumption of the isotropy of time and space as well as the constancy of the speed
of light (in the system at rest) is necessary. In the following it will be shown that at the
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3. Lorentz-Transformation and synchronization

transition between the represented systems of this diagram, relations corresponding to the
Lorentz transformation must inevitably result.

When an arbitrary point P, ., is considered in this diagram (Fig. 3.4), the coordinates can
be calculated with the help of the values marked in yellow.

Fig. 3.4: Minkowski diagram with coordinate determination of point Py .. in the moving
system. Quantities relevant for the calculation are colored yellow.

First, parallels to the x" and ct’ axes are formed and their intersections with the ct/x-
coordinate system are determined. The resulting values ctp, and xp, can be converted into
xp and ctp. For this purpose, an intermediate calculation is required in the range around 1.
For this purpose, a circle is drawn in Fig. 3.4, the contents of which are shown in higher
resolution in Fig. 3.5.

In this diagram Fig. 3.5 all values are normalized to 1. In the case shown, no change of
location occurs within the moving laboratory, i.e. the movement takes place on the ct’-axis.
Then, as already shown in chapter 2, the dependence d = y - ct; applies for the case ct = 1.
[t follows

(3.10)

and from this

e=d— (3.11)
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3.3 Lorentz-Transformation

Because of f = d — e, it follows after substituting eq. (3.11)

v? v? d ct,
f=d-d—=d|(l-5|=5=— (3.12)

c2

Fig. 3.5: Detail from Fig. 3.4, determination of f corresponding to ctpo from Fig. 3.4.

For the x'-axis, the same relationship applies for symmetry reasons. It follows first for
the value ctp:

ctp =Y - ctpg (3.13)

From the geometrical conditions in Fig. 3.4, we get

ctp =y (ctp — Actp) (3.14)
Because of
Actp v
tana = =— (3.15)
Xp c
then finally appears
th=v (to - Cv—zx,,) (3.16)
For x; we obtain in the same way
Xp =7V Xpg (3.17)
xp =Y (xp — Axp) (3.18)
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3. Lorentz-Transformation and synchronization

Axp v

tana = — = — (3.19)
ctp ¢

xp =y (xp — v tp) (3.20)

The calculation results in the following values

Xp=3 Xp = 2,309
ctp =2 ctp = 0,577

The equations (3.16) and (3.20) correspond exactly to the relations of the Lorentz trans-
formation as they were already presented in Eq. (1.01) and (1.02). Thus it is shown that
these equations can be derived from a Minkowski diagram by establishing simple geomet-
rical correlations.

3.3.2 Algebraic concept for the derivation of the Lorentz-Transformation

To complete the considerations concerning the Lorentz-Transformation in addition a “clas-
sic” approach, which means a typical derivation of the equations used in the literature, shall
be discussed. To show this concept in detail the presentation of H. ]. Liidde and T. Riihl [34]
was chosen, because it has a basic approach and does not need assumptions during the der-
ivation, which show later that they are reasonable. A similar derivation was also used by A.
Einstein in the year 1905, although his only comment was “after easy calculation” without
showing any details [12b].

Using this concept, two systems shall be looked at which are moving against each other.
It is generally required that these are inertial systems, which means acceleration and rota-
tion is not permitted. The position of any point in these systems is characterized by three
coordinates for the space and one for the time. For the system S these are x,y,z,t and S’
with x’,y,'z’,t’. It is assumed, that the systems move against each other with a speed of v
concerning the x- coordinate and that in y- and z- direction no motion exists.

First the situation is discussed that the point of origin (where space and time are defined
as zero) of both systems get in contact at the time

t=t'=0 (3.40)
In this case the correlations between the coordinates are, because of the required linearity
x'=Ax+Bt, y' =y, z'=z t' =Cx+Dt (3.41)

This means that t is no longer invariant concerning space and furthermore x is not in-
variant concerning time. Thus, for an arbitrary sphere with a light emitter in the center the
following equations will apply:
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3.3 Lorentz-Transformation

S: xZ _I_yz + ZZ — C2t2 (342)
S/: le +y12 + Z’Z — Czt’Z (3.43)
Hence

For the solution of the equations first the system-velocities are considered. In view of
system S’ the velocity of S is

x
V==
t

(3.45)

When the situation is discussed that both systems have contact in the point of origin Eq.
(3.41) develops to

0 = Avt + Bt (3.46)
or
B =—Av (3.47)
The use of Eq. (3.44) leads to
(Ax + Bt)? — c?(Cx + Dt)? = x? — c?t? (3.48)
and
x2(A? — ¢?D? — 1) + 2xt(AB — c2CD) + t?(B* — ¢?D? 4+ ¢?) =0 (3.49)

Because the relations (3.48) and (3.49) are valid for arbitrary values of space and time
the following equations apply:

A2 — 22 —1=0 (3.50)
AB — ¢2CD = 0 (3.51)
B?—c?D?>+c¢*=0 (3.52)

The solution of this system with 4 equations and 4 unknown factors [Eq. (3.47) and also
Eq. (3.50) - (3.52)] leads to the following relations

t=vy(t- :_zx) (3.53)
x'=vy(x —vt) (3.54)

The y- and z- coordinates remain unchanged.

The results of the derivation presented here are in full agreement with the Lorentz-
Transformation already discussed before several times. The requirements concerning time
dilatation, space contraction and local time (with asynchronous characteristics) can be de-
rived out of subsequent calculations. This contrasts with the calculations presented before,
where the equations were derived using a graphic approach; in this case time dilation and
length contraction were preconditions and not the results of calculations.
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3. Lorentz-Transformation and synchronization

Finally the question remains, what significance the result has for the interpretation of
the conditions. In chapter 2.2 it was already presented in detail that it is impossible for an
observer at rest or in a moving system using the exchange of signals to decide about the
state of movement. This is caused by the simultaneously appearing effects of dilatation of
time and contraction of space.

However, it is by no means the case that an observer at rest is determining a different
speed of light in the moving system; in his view the speed of light of his system will be valid
for all investigations instead. The fact that the moving observer will find the same results
in comparison to the system at rest is exclusively caused by differences in the synchroniza-
tion procedures between the two systems. This question will be taken up again in chapter
11.

3.4 Einstein-synchronization

The synchronization procedure later named after Albert Einstein was first mentioned in his
pioneering publication in the year 1905 [12]. To illustrate this point further, an extract of
the original work is presented in Fig. 3.5, which was part of the derivation of the Lorentz-
Transformation. The following equation is of special interest

1
E(TO + Tz) =1 (360)

Einstein used Greek letters for the time in a moving system, for which today generally t’
is taken (further he used the letter V, not c for the speed of light); today the equation is
generally presented in a different form like

1
E(t(’) +t3) = t; (3.61)

[t is a special characteristic of this equation, that the synchronization is solely depending
on the exchange of signals between the participants.

The synchronization procedure following this specification can generally be character-
ized as follows:

Clock U(0) is situated in the coordinate origin of an arbitrary inertial system. An
identical clock U(x) is located at a different point with the distance x. When U(0) is
showing time ¢, a light signal is emitted from here to point x and from there imme-
diately reflected to the coordinate origin. At arrival U(0) is showing time t,. U(x) is
synchronized with U(0) when U(x) at the time of reflection is showing time ¢, fol-
lowing the relation:

1
Equation Eq. (3.62) is identical to Eq (3.60) resp. (3.61). This is independent from the

situation, whether the clocks are at rest or shall be moved (which means the use of t or t’
is possible).
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3.4 Einstein-synchronization

To any system of values x,y,z t, which completely defines the place and time of an
event in a stationary system, a system of values ¢,7,,7, determining that event relatively
to the system k belongs to it, and the task is now to find a system of equations connecting
these variables.

First it is clear that the equations must be linear on account of the properties of homo-
geneity which we attribute to space and time.

If we set x' = x —vt, it is clear that a point at rest in the system k must belong to a
system of values x',y, z, independent of time. We first determine 7 as a function of x',y, z,
and t. To do this we have to express in equations that 7 is nothing else than the summation
of the reading of clocks at rest in system k, which have been synchronized according to the
rules givenin § 1.

From the origin of system k let a ray be emitted at time 7, along the X-axis to x’, and
at time 7, be reflected to the origin of the coordinates, arriving there at time 7,, then we will
find

1
E(TO +1)=1

or, by inserting the arguments of the function = and applying the principle of the constancy
of the speed of light in the stationary system:

e00,0,0 + 000{t+ <. x’}
73 Eaaiebt A Cibtacd W VP g

= ,0,0,t+ x
_Txlli V—x

Hence, if x' is chosen infinitesimally small

1( 1 1 )61’ at 1 ot

Vv T vix)ac T Tv—vae

or
ot v 0T

_— =
dx'  V2—v2ot

It shall be noted that it is possible to choose any other point of origin for the coordi-
nates of the ray, and the equation just obtained is therefore valid for all values of x', y, z.

Fig. 3.5: Extract from original publication of Albert Einstein [12a], translated

The definition used in these equations is not giving information, whether synchroniza-

tion is still valid at a later point in time or not. In principle the following situations are pos-
sible:

a) U(x) remains stationary in relation to U(0),
b) U(x) is passing U(0) in short distance to be synchronized and then moving away,

c) U(x)is passing U(0) in a long distance without direct contact.

It is immediately clear for situation a) that the factor y is always identical for both clocks

and so the synchronization can be repeated without difference at any time. Situations b)
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3. Lorentz-Transformation and synchronization

and c) were dealt with in chapters 2.1.1 resp. 2.1.2. In both cases it was shown, that inde-
pendent from the distance of objects no differences of their observations are detectable.
The only precondition is, that the Lorentz-Transformation is taken as a basis.

Exact interpretation of the situation makes clear, that when using hypothetical superlu-
minal velocities sending information to an observer, differences would appear. However,
according to the assumptions made, this is not possible and so synchronization differences
cannot occur. As already discussed, the appearing situation is called “Relativity of Simulta-
neity”.

Current concepts for derivation of the Lorentz-Equations generally avoid using the form
Einstein selected in the year 1905. In a normal case a presentation using equations Eq.
(3.42) and Eq. (3.43) is taken (which was used as a basis for calculation in chapter 3.3.2)

S: x*4+y?+2z%=c%t? (3.42)
St x?+y'?+ 2% =c?t"”? (3.43)

The equation system can be interpreted in a way, that the transition from Eq. (3.42) to
Eqg. (3.43) is in accordance with Einstein synchronization and this relation is implicitly in-
cluded. Einstein himself in his book about the theory of relativity written as a “simple ver-
sion” [29], first edited in the year 1916, also used a similar approach. Obviously, he also
shared the opinion that this would be easier to understand.

The Einstein-synchronization, connected with Eq. (3.62), is a definition, not an observa-
tion. The Einstein synchronization is of paramount importance for the Theory of Special
Relativity and is widely discussed until today [19,20,35]. After the presentation of addi-
tional important aspects, it will be discussed again in more detail in this investigation (chap-
ter 11.2).
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observers

The relations discussed so far can easily be extended from two to several observers. Doing
this, first the addition of velocities must be derived, because the relativistic case shows not
the simple summation which could be expected according to the laws of the Galilei-Trans-
formation. Further special relations exist in connection with velocities lower than the speed
of light, which are observed e.g. concerning light in transparent media or connected with
the transport of sound in solid bodies. These relations are also valid during acceleration of
observers because material objects cannot be considered as absolute rigid.

In addition the case is discussed, when the transport of a signal inside a moving body is
not only taking place in the direction of the movement but also transverse to it.

4.1 Relativistic addition of velocities

The theorem for the addition of velocities in the relativistic case was derived by A. Einstein
already in the year 1905 [12]. It is assumed that in a system S’, which is moving with the
speed v in direction of the x-axis in relation to the reference system S, an observer is moving
according to the relations

x' = wit’ (4.01)
y' = wyt' (4.02)
Z' =0 (4.03)

where wy and w;, are the components of the velocity in x’ resp. y’-direction. The aim is to
find a relation referring to the reference system S. The coordinate system is selected in a
way that all points are situated in the x — y plane and so the coordinate z’ can remain un-
considered.

Thus, the Lorentz equations read

x' =y(x —vt) (4.04)
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4. Additional considerations for moving observers
y' =y (4.05)
v
t' =y (t - —x) (4.06)

Behavior in x-direction

When Eq. (4.04) and Eq. (4.06) are inserted in Eq. (4.01) this yields

, v
y(x—vt) =wy -y (t - ﬁx) (4.07)
with
wy + v
X = W -t (408)
1+ sz

Behavior in y-direction

For the determination equations Eq. (4.02), (4.06) and (4.08) are successively inserted in
Eq. (4.05)

4 4 v
y=y =wyy (t — ﬁx) (4.09)
N A LA (4.10)
y yy CZ 1 + vW;; .
2
following
vwy  vw, V2
It g e
y =wyy ] -t (4.11)
1+ sz
2
y = —ow’ W;,t (4.12)
1+ sz

Because of the linearity of the relations the velocities can be derived out of Eq. (4.08) and
(4.12) in a simple way as

dx wy + v
— Wx —_— —_—
dt 1+

T (4.13)

c?

d )
2w, =y (4.14)

In a final step the angles of the velocity-components in relation to the x-axis are inserted
which yields
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4.1 Relativistic addition of velocities

Wy =W:CoSQ (4.15)

wy, =w-sina (4.16)

Up = ’Wﬁ + wg (4.17)

and by using

these are added as vectors

2 > 2
P
wcosa+v c2 .
+ wsina (4.18)
VW Cosa VW Cosa

For the total velocity vy in system S and after transformation and using the general relation
cos’a + sin*a =1 (4.19)

the final solution is

—
Jv2+wz+2vwcosa— (M)
Up = 4.20
T VW cosa (4:20)

If the velocities v and w are situated unidirectional, which means angle « = 0, then Eq.
(4.20) is simplified to

v+w

vp = (4.21)

- vw
1+C—2

When this situation concerning emitted signals and their reception is presented in a
space-time diagram then the configuration in Fig. 4.1 is achieved. On the left side of this
chart the situation is presented, that the emitter in the middle is belonging to a system at
rest. The receivers of the signals, which are in addition reflecting the incoming signals im-
mediately, are increasing their distance with equal speed (in this case: v = w = 0,5¢). On
the right-hand side, it is illustrated how the same situation develops from the view of an
observer which was considered as in motion before (in this case: B). One of the observers
is increasing the distance with the same speed of v = 0,5¢, the third shows a speed of v =
0,8c according to equation (4.21). A reverse situation develops when observer C is consid-
ered as at rest.

To illustrate the exact circumstances, the situation for times t = 1 TU and t = 2 TU are
marked with different shades in the space-time diagram (Fig. 4.1). In this presentation it is
clearly visible, that irrespective of the velocity of an observer always the same results will
be achieved.
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Fig. 4.1: Space-time diagram for observers at rest and in motion

4.2 Experiments with transparent media in motion

In the following a further alternative of the case discussed in chapter 2.2.2 will be looked
at. Instead of a light pulse a second observer shall be shifted inside the body in moving di-
rection and opposite to it. In conjunction with the exchange of light pulses the following
combinations are possible:

A: Light pulse going and coming,

B: Observer in motion (in moving direction), light pulse comes back,

C: Light pulse going, observer in motion (opposite to moving direction),
D: Observer in motion (in moving direction and opposite).

In Fig. 4.2 possible combinations for the velocity of bodies in motion with v = 0,5 ¢ are
presented. As already shown, the velocities in the relativistic range are calculated according
to Eq. (4.21). In this case of a system velocity of v; = 0,5 ¢ and an additional velocity of a
body in motion of also v, = 0,5 ¢ was assumed and the resultis v; = 0,8 c.

The figure shows clearly that the cases B and C, i.e. the combination of light pulse and
body in motion, are leading to the same results.
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Fig. 4.2: Exchange of signals and bodies in motion in a moved system

A: Light pulse going and coming,

B: Body in motion (in moving direction), light pulse comes back,

C: Light pulse going, body in motion (opposite to moving direction),
D: Body in motion (in moving direction and opposite).

An experimental proof of these cases with bodies in motion is, however, only possible
with extreme restrictions because of the high velocities needed. An experimental assess-
ment is yet possible by an examination using optical tools. The speed of light c,, in media is
defined as

Ch =

- 430
- (4.30)
with n as refractive index. It was already in the year 1812 that Augustin Jean Fresnel (1788-
1827) developed the hypothesis, that the speed of light in moved media can be calculated
by using a dragging coefficient (which was later named after him). According to this the
speed of light in a moving system for an observer at rest is
c 1
cr :£+U(1—ﬁ> (431)

This theory was verified in the year 1851 by Hippolyte Fizeau (1819-1896) with an ex-
periment where he measured the speed of light in water which was flowing with different
velocities. After the full development of the Lorentz-equations it was possible to show, that
the addition of velocities of moved media and the light propagation c,, inside can be calcu-
lated using the addition of relativistic speed [36].
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For calculation Eq. (4.21) is used

o= 1T V2 (4.32)
Teu
c
and with v; = ¢, this yield
c
gtz P tney, 433
vT_1_|_ﬁ_ nec + v, (4.33)
nc
A Taylor expansion for v, is leading to
=S4 1 1)”5(1 1)+”23(1 1) Fo. (434
= n T n2) nc n2)  n2c? n2 e (434

This equation is, concerning terms of first order, equal to the relation given in equation Eq
(4.31).

A calculation using the Lorentz-Transformation for the situation according to Fig 4.2
show the results presented in Tab. 4.1. In Fig 4.3 the results are presented in a diagram. As
expected after the end of the experiment all values are located on the ct’- line. Furthermore,
it is evident that the transformation equations confirm the expected relations and that no
contradictions can be observed.

ct

Fig. 4.3: Minkowski-diagram for cases A, B, C and D according to Fig. 4.2.
Left: moved (v = 0,5 ¢), right: at rest (v = 0)
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4.3 Triggering of engines after synchronization

“ [0; 0] [0;0] [1,73;1,73] [1;1] [1,15:2,31]  [0;2]

n [0:0] [0:0] [231:289]  [1:2] (173:346]  [0:3]

[0: 0] [0:0] [173;1,73]  [1:1] [173:346]  [0:3]

B 00 [0;:0] [231;289]  [1;2] (231:4,62]  [0:4]

Tab. 4.1: Calculated values for the situations presented in Fig. 4.2

The validity of this equation was verified in a multitude of experiments, first by H. Fizeau
using flowing water and later e.g. by R. V. Jones using rotating transparent discs [37,38]. It
is therefore an important part of physics and belongs both to the foundations of optics and
relativistic considerations.

4.3 Triggering of engines after synchronization

It was already discussed in detail and demonstrated based on several examples that after
mere kinematic considerations during the exchange of signals in laboratory systems after
an “Einstein-Synchronization” no discrepancies will occur. A similar situation exists, when
signals are used not only for synchronization of clocks but to trigger engines which influ-
ence the movement of the laboratory. The following situation shall be discussed:

1. From the middle of a laboratory signals are sent at the same time in different
directions A and B.

2. When a signal is detected at A or B an engine will be started instantly in trans-
verse direction compared to the direction of the incoming signal. The accelera-
tion at A and B follow the same orientation.

3. Tests are executed in a situation at rest and in motion.

First, it is clear that A and B will start their engines at the same time when the laboratory
is in a situation at rest (Fig. 4.4, right-hand side). This is not the case for a moved system,
however. While the observer in motion after a previous synchronization realizes that the
engines will start at the same time, an observer at rest will monitor that, because of the
longer running time of the signal from the middle to A" compared to B’, the engine at B” will
start first. Because of the acceleration transverse to the moving direction according to this
consideration a momentum is generated, and the laboratory should start to turn.

In the literature cases like this are discussed quite often. A similar approach was exam-
ined by M. Born and during considerations of electrodynamics the assumption was made
that an observer (here: the laboratory) with an unlimited rigidity would create discrepan-
cies [39]. An unlimited rigidity (sometimes also called “Born’s rigidity”) cannot be valid,
however, because all real material objects show a limited and not an infinite speed of sound
which would be necessary for unlimited rigidity. The situation was discussed at length by
A. Sommerfeld [15d].
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Fig. 4.4: Laboratory with signals to trigger an engine in transverse direction

(v = 0,5 ¢). Left: System in motion; Right: System at rest

If the situation is considered in a way that the propagation of a signal is using the speed
of sound (or any other limited velocity up to the speed of light), the relativistic addition of
velocities lead to the same case that was discussed in chapter 4.2. The propagation of the
movements in transverse direction caused by the different engines will arrive at the same
time in the middle of the laboratory and thus no momentum will be generated.

4.4 Exchange of signals between observers with spatial geometry

Up to now the exchange of signals between observers with an elongation in only one direc-
tion was discussed. To extend this for objects with spatial geometry, an experimental set-
up like in chapter 2.2.2 is chosen with the difference, however, that for the laboratories ob-
jects with equilateral triangles were selected.

The signals are therefore not emitted longitudinal, but with an angle of 60° to this direc-
tion (see Fig. 4.5). When the observers in both systems pass each other at A, B, resp. A" and
B’ a signal is sent to C resp. C". Both C and C’ are reflecting the signals back to the sender
and the measured times are monitored. For an observer at rest the situation of a system in
motion is defined as presented in Fig. 4.6. First, the base of the equilateral triangle with
length a is shortened by the factor y in moving direction, which is resulting in the effect that
4 cases for contacts between the corners of the triangles will occur. These situations are
shown in the left-hand side of Fig. 4.6. Whereas inside the moving system the distance from
A’ to C' (cases 1 and 3) and B’ to C' (cases 2 and 4) is subjectively viewed as shown (in the
diagram presented with dotted lines), for the system at rest the way of the signal is follow-
ing d as defined in the right-hand side of the diagram.

66



4.4 Exchange of signals between observers with spatial geometry
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Fig. 4.5: Experimental set-up of experiments for observers with spatial geometry
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Fig. 4.6: Situation for contact and geometrical dependencies.

The geometrical dependency for distance d for cases 1 and 3 is defined by the Pythago-
rean theorem

(b —e)? + h? = d? (4.40)

and with the relation
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4. Additional considerations for moving observers

b_v 4.41
d - c ( . )
This leads to
(dv a>2+3 2 = g2 4.42
c 2y P (4.42)
resulting in
dijz = —ay 5=+ 1) (4.43)
/ 2c ™

If a signal is sent from B’ to C’ (cases 2 and 4) a slightly different approach is valid with

(b +e)? + h? = d? (4.44)
and

dy ), = ay (Zv—c +1) (4.45)

Only results with positive algebraic sign are permitted, so

N g =y(1- 2%) (4.46)
B - C: g =y(1+ 2%) (4.47)

If the value for time is standardized to 1 then

taAr 5 =Y (1 - %) (4.48)
ty o=y (1+ Z—UC) (4.49)

When the values for the returning signals are evaluated, it is instantly clear because of
symmetry reasons

v

te'sp’ =lare =Y (1 - 2_C) (4.50)
v

tosar =lgise =Y (1 + 2_C) (4.51)

For a full calculation, the elapsing time between the contacts must be determined. When
the time for contact A — A’ (case 1) is set to zero, then the following periods can be calcu-

lated using
c

1-> 2: t = — 4.52
case case 12 =00 ( )
c
casel— case3: ti3 = > (4.53)
1 4 t i + ¢ 4.54
- : =—+— .
case case e =0T ( )

With a suitable combination of these equations, it is possible to discuss the results of all
situations of the experiment.
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Fig. 4.7:
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- 1,75 3,08
2,75 4,08
n 1,25 1,25
t, 2,25 2,25
t, 3,25 4,58
2 2
3 4,33
4 5,33

Sequence of signals for the 4 possible contacts in the system.
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4. Additional considerations for moving observers

In Fig. 4.7 the diagram for the experiment with a velocity of v = 0,8 c is presented. This
high speed was chosen to provide an acceptable visual effect in the diagram, but this does
not mean, however, that there are any restrictions in the universality of this relation.

For the 4 different contact situations the values for the total travelling time of signals
sent from A’ resp. B’ to C’ and after reflection to their emitting points are added in the dia-
gram. Furthermore, the equivalent measurements for the system presented by A, B, C are
presented. To keep the evaluation simple the travelling time of a signal is standardized in a
way that the distance a is set to 1. To make sure that the measurements can be compared
with each other, the travelling times are adjoined by the times which elapsed since the send-
ing of the first signal according to relations Eq. (4.52) to (4.54). The contact of A’ and A is
representing the initial zero-value followed by B’ /A, then A’ /B and at last by B’ and B with
t =2

According to the Theory of Special Relativity the “principle of identity” and after using
the Lorentz Transformation the “principle of equivalence” must be valid. First it can be
stated that the time for travelling the distance A— C— A and B— C— B is taking the total
time t = 2, whereas for the distances A’ C'—~ A" and B'— C'— B’ the time t = 2.333 = 2y
is needed. This is exactly according to the anticipation valid for the situation of a moving
observer.

When the time periods are considered, which are measured by C and C’ between the
signals, then the same effect can be monitored, which was already discussed in chapter
2.2.2. This means, that the values of C and C’ for the contacts of A/B’ and B’ /A are changing.
It is obvious, that the principle of relativity requires, that C resp. C' must receive the signal
of the observer in their system A resp. A’ first. This is important to realize a proper sequence
of contacts.

Generally, it was shown that all combinations sending signals in any arbitrary spatial
direction are respecting the principle of relativity.

5.1 Signal exchange during rotation (Sagnac-effect)

In contrast to translational movements, there are measurable effects between outgoing and
returning light beams in rotating systems. This does not contradict the principle of relativ-
ity, as by definition these are not inertial systems. The first successful experiments on this
were carried out by Georges Sagnac (1860-1926) in 1913 [100].

The schematic experimental setup is shown in Fig. 4.8. Part a) shows that monochro-
matic light is emitted from a light source, which is partially reflected by a semi-transparent
mirror and split into 2 opposing directions. After complete circulation and recombining, an
interferometer is used to detect small transit time differences between the light beams. The
apparatus is first calibrated at rest and then measurements are taken while the system is
rotating. All elements of the experimental setup, i.e. light source, mirrors, and detector are
also rotated. As shown in Fig. 4.8 b), the light beams emitted in the direction of rotation
travel a longer distance than those moving in the opposite direction and this difference can
be measured.
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Mirror - Mirror
f——
) Half-silvered - o
Lightsource Mirror . —
—— e S P
-— (?Mirmr

a) b)

Detector

Fig. 4.8: Setup of a Sagnac interferometer. a) Rotatable test arrangement
b) Changing the measuring length of the first segment by rotation
Type | (in direction of rotation): Lengthening; type Il (counter-rotating): Shortening

The designations shown in Fig. 4.9 can be used to calculate the values. The following rela-
tionship applies to the length of the arc segment s from A to B

s=r-w- (ty+ Aty) (4.60)

where r is the radius and w is the angular frequency. In addition, ¢, is the time required by
the light beam in the stationary system between 2 mirrors and At is the additional time
required for a rotational movement. The following also applies in general

a = cty, e = cAt, b=a+e a=1V2

Fig. 4.9: Formula symbols used for the calculations

If At < t, is assumed, the following relationships apply as a good approximation
s=d=r-w-t, (4.61)

e c-At 462
d r-w-t, (4.62)

sina = sin(45°) =

= =
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4. Additional considerations for moving observers

and thus
pty = T _ 00 463
There are 4 segments, so the time delay for one cycle is
a’w
At+ - 2C_2 (464)

The shortening of the time for the light beam on the opposite path has the same value, so

the final result is
2

a‘w
Aty = At, + At_ = 47 (4.65)

With a length a of 1m and 10 revolutions per second, this results in At, = 4,4 - 1071°s cor-

responding to a wavelength in visible light that allows interference measurements.

G. Sagnac was convinced that he had measured an ether effect with his (similarly con-
structed) apparatus; however, Max v. Laue had already demonstrated in 1911 that such an
experiment was compatible with the principle of relativity [101].

In 1925, A. A. Michelson and H. G. Gale carried out an experiment with dimensions of 613
m in length and 339 m in width [102,103]. This made it possible to measure the rotation of
the earth with a relative accuracy of 2%.

Lightsource
-—' —
i

Detector

Fig. 4.10: Construction of a Sagnac interferometer with an optical fiber

In addition to the structure with beam reflection by mirrors, coiled fiber optic cables can
also be used as shown in Fig. 4.10. These are widely used today in areas such as aerospace,
navigation, ships, and robotics. They are less susceptible to mechanical wear than mechan-
ical gyrocompasses as they contain no moving parts. Another trend in their development is
the miniaturization of optical gyroscopes. With the advent of micro-electro-mechanical sys-
tems (MEMS), it has become possible to produce smaller and more cost-efficient gyro-
scopes that can be used for a variety of applications, from smartphones to drones.
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5. Clock transport

It is well known, that according to Special Relativity during an exchange of signals between
two observers only a mutual consideration of the time needed in both directions is possible.
Nevertheless, in the past effort was made to measure the one-way speed of light inside a
system in motion. One of these attempts to perform a separate measurement was the ex-
amination of the effect that occurs, when clocks are moved at slow speed inside a moving
observer. In this case a system in motion is defined, where two clocks after an Einstein Syn-
chronization are lined up and one is following the other. To execute the experiment the
clocks are moved in this system in a way, that after the end of the trial they have changed
their positions. When the experiment is carried out at low speed the synchronization should
maintain its original values and after a further synchronization process a difference should
appear.

Since some time it is clear, however, that the effects measured by both clocks is changing
exactly corresponding to their position inside the system and therefore leading to a null
result (see i.e. [19,40]). This important verification and the necessary calculations are pre-
sented here, first simply by means of an example and afterwards in a general way. Further
in this chapter the well-known twin paradox will be discussed, and it will appear as a special
case of the clock transport.

5.1 Clock transport in direction of motion

To define an appropriate experimental set-up it is assumed, that in a laboratory 3 observers
A, B and C are lined up equidistant.

A €«<— B —™ C(C

First the case is considered that the observers are at rest. To start the experiment ob-
server B is sending out synchronized clocks with the same speed to A and C. After the arriv-
ing of the clocks at A and C it is found that these - depending on the speed they were moved
- are running slow compared to the clocks at rest because of time dilatation. Further A and
C after exchanging of experiment data conclude that the moved clocks arrived at the same
time at their positions.
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5. Clock transport

It is now considered that the laboratory is accelerated and afterwards moving with a
constant speed. The existing clocks shall then be synchronized. If an effect that could be
measured inside the system would occur, it must be possible to find it out in one (or both)
of the ways presented in the following:

1. Observers A and C find differences in the arriving time of the clocks sent out by ob-
server B in comparison to the results of the experiments in a system at rest.

2. The moved clocks show differences when they arrive at A and C compared to the
situation of a system at rest.

It shall be presented in the following, that inside a system at rest compared to a system
in motion the same results will be achieved. This simplified statement can be extended to
the proposition that it is valid also for any arbitrary inertial system, which means it is a
system not accelerated and without rotation. The statement is therefore valid universally.

5.1.1 Qualitative Considerations

Fig. 5.1 shows the situation, that in a laboratory at rest (left) and in motion (right) at the
time zero a light signal is emitted from position B in direction to the back end (A) and the
front end (C). These signals are reaching A and C at the positions ¢; and a, as shown in the
diagram. In this presentation further the situation with moving clocks starting from point
B is added.

v=20 v = 0,5¢c
+—
o
ay -
e
a, - :
A
— T
-1 0 1 A ; 4
%
Fig. 5.1: Space-time-diagram for clock transport

Dotted lines: Signal exchange
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5.1 Clock transport in direction of motion

First the laboratory at rest shall be looked at (left-hand side of the diagram). When the
clocks are starting at time zero with a velocity of 1/2¢ they are reaching the positions c, as
well as a, after 2 time-units, when the speed is 1/4c then 4 time-units are necessary for the
positions ¢, and a, etc. All possible times for receiving the signals can be realized depending
on the velocities of the moved clocks.

When a moving system is considered, however, for an observer at rest some differences
in the situation would occur (right-hand side of the diagram), i.e. differences in the times to
reach c, and a,, further the distance 1 is changing to 1/y etc. These changes are described
by the Lorentz-Transformation.

In the following the situation for an observer in motion shall be discussed. This is pre-
sented in Fig. 5.1 by means of marked zones (blue: in moving direction, red: opposite direc-
tion). The following relation applies for the system at rest

1
v = (0,5 + §) - C (5.01)
and for the observers in motion
05+0,3 0,714 (5.02)
v = — cc = 0, c .
T 1405-0,3
05-03 0,2 (5.03)
V. = — ¢ = 0,2¢c .
B 1-05-0,3

To simplify the calculations the following definitions shall be introduced: The values for
time, space and speed of light c are scaled to 1, the results of the velocities are therefore
defined as fractions of c.

The arrival time and the factor y is

tesy = 4,041 Vess = 1,429

(5.04)
tyz— = 2,887 Yaz— = 1,021
The passed (subjective) time for the observers is
t t,3—
system in motion: St _ 2B~ _ 2828 (5.05)
Ye3+ Ya3-
This result is consistent with the values of the system at rest, because
tez3 =lg3 =3 Ye3 = Va3 = 1,061 (5.06)
is valid and so the same result is obtained.
t t
system at rest: S =2 _ 2828 (5.07)
Ye3 Ya3

The presented deductions show that the subjectively measured time period for the tran-
sition to A and C of the moved observers is identical. Further the presentation makes clear,
that the time measured for the arrival of the simultaneously moved clocks by the observers

75



5. Clock transport

A and C in their synchronized system is also the same. This makes it impossible inside a
uniformly proceeding system, which is moving without acceleration or rotation, to take
measurements with clocks or any other devices and find conclusions out of the received
results about the velocity compared to other systems or to find deviations in the synchro-
nization.

5.1.2 General derivation

The presented issue will now be verified in a general form. First it is necessary to define the
following parameters:

System at System in
rest motion
- Vo Velocity of the system in motion
Av vy, U Travelling speed of the moved observers
- At,, Aty Synchronization difference to system at rest
to ty, t_ Arrival time of moved observers
to t',, t_ Subjective travelling time of moved observers
Ya Vs Vo Lorentz-factor of moved observers

These parameters are presented in a modified Minkowski-diagram (see Fig. 5.2). The
experimental set-up is the following:

From position B in the middle of a laboratory at rest, signals are sent to the positions at
both ends A and C and arrive here at the time t' (left side of the diagram, positions
marked with A" and C'). At the same time 2 synchronized clocks start moving from the
position B with an arbitrary velocity Av which is the same for both. They arrive at their
positions at time t'' (marked with A" and C""); directly afterwards signals are sent back
to position B. In the right part of the diagram the situation is presented for an observer
in motion. The differences in moving direction and opposite to it are in conformance with
the Lorentz equations.

In the following it is demonstrated that the observers taking part in this experiment are
not able to detect differences in the measurements of the elapsing time. In detail these are
the considerations:

1. The observers in motion cannot decide on basis of their measurements whether the
system is moving or not.

2. The observers at rest find during their measurements - independent of the velocity
of the moving system - the same time periods for the arriving of the moving observ-
ers.
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5.1 Clock transport in direction of motion

/ a
Xcy =t Vg +—
/C> * Yo

1 2 3 4
X —>
Fig. 5.2: Space-time-diagram for clock transport with defined parameters

Dotted lines: Signal exchange

The different issues are now dealt with separately.
5.1.3 Identical time schedules for the arriving of moved observers
The following issues shall be reviewed:

a) The synchronization differences in a moving system At, and At for the observers
A and Crelating to B

b) The time periods t_ and ¢, the observers in motion need to reach the positions A
and C

c) The difference between both values. When the result (multiplied by y,) is corre-
sponding to the values of the system at rest, then the measuring results are not dis-
tinguishable from each other.

a) Synchronization differences

To determine the synchronization differences, it is first necessary to identify the travelling
time a light signal needs starting from B to the positions A" resp. C". This is
a

—_— 5.08
cvo(1+-9) G0

Atp =

77



5. Clock transport

a
Atg oo = ———— (5.09)
cyo(l — ?0)
The value which is necessary to reach the starting point is subtracted
a
Atyrp = Atere = 2 Yo (5.10)
Thus, the synchronization leads to values
a a Yoav
Aty =~ 7Yo= (5.11)
cyo(1+— ¢ ¢
and
a a av
Atp =————— =y = Yo (5.12)

ro(l- ¢ ¢

b) Time for observers in motion

The time a moved observer needs to reach the positions A’ resp. C' in a system at rest is

a

t0=E

(5.13)

To determine this in a system in motion the values of x5, and x., (with t = t,) resp. xg_
and x._ (with t - t_) are set equal and this results in (see Fig. 5.2)

a
= — 5.14
T yo(vs — o) S

. (5.15)
T Yo(vo —v-) .

c) Consideration of differences

In the following the differences between At, and t_ resp. At. and t, are considered. In a
system at rest this is

a
Atyoar = Bleoer = 1= (5.16)

In a system in motion this changes to
a

At n = At "= — 5.17
A—A c—C Yo Av ( )
If
with
¢ ¢ 2 o+ Vom (5.19)
= — Yo tYo— .
Yoo = V=) cyo(1 + ? c’® 0y
¢ ¢ o+ Vom (5.21)
= — Yo tYo— .
Yo(V4+ — o) cyo(1— ? c'’ °Av

is valid, no differences can be detected inside a system.
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5.1 Clock transport in direction of motion

To simplify the calculation the equations shall be multiplied with c¢/a and the values of
the velocities are replaced by their quotient to the speed of light ¢

, Uy , V- , Vo A,_Av (5.22
v+—c v_—c vo—c v—c 22)
Eq. 5.19 is developing to
1 1 Yo
- — = —~ — Yot-— 5.23
- retuy T 629
and Eq. 5.21 changes to
! ! + Yo (5.24)
[ ~ ~ — Y AT .
Yoy —vg)  Yo(1— 1) ° v
Inserting the values
1
Yol = — (5.25)
then after simple transformation of Eq. 5.23
v 74
1+v)A—-v) =—v)j+-—+v.—— 2
(1+v)(1—vg) = —vj+ =5+ vl = (5.26)
can be derived. Further
, vy — AV 5 97
- vy - AV’ (.27)
and from Eq. 5.24
! ! ! v, ! v(,)
(1-v)A+vy) =—v, + A—p*, +vo =5 (5.28)
vy + AV 5 29
v+_1+v(’)-Av' (5.29)

is valid. These results correspond exactly to the definitions of v_. and v}. It is thus shown
that inside a system the observers A and C are not able to find differences in the arriving
time of a moved observer. The subjective time periods are completely independent whether
the system is moving or not.

5.1.4 Identical time periods at arrival for moving observers

The time period a moving observer needs to reach the positions A or C in a system at rest
is

to = v (5.30)
and in the moving system
S — 5.31)
T s — ) (
— a 5
t.= e =) (5.32)
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The time subjectively measured by the moving observer is here

a
ty = 5.33
0= (533)
¢, = a (5.34)
¥ Y+Yo(Vy — Vo) '
¢ = ¢ (5.35)
- V=Yoo —v-) .
If the subjectively measured time is identical then the relation applies
thy=t,=t"_ (5.36)
First this is discussed for the case t', = t',.. Thus
¢ -2 (5.37)
Y+Yo(vy — o)  valv '
must be valid. This leads to
vy — v
Y (V4 0) (5.38)

VYo Av

To simplify the calculation again the values of the velocities are replaced by their quo-
tient to the speed of light ¢

vy v , Vg , Av
17+=T 17_=T UO=T Av =T (539)

When in equation (5.38) the values of y are inserted, then

A -v)A - _ @i —vp)°

5.40
1—Av'"? Av'? (5-40)

and
(1 —vivy)?av'? = (v — v))? (5.41)

When v, is replaced by

vy +AY & 49
A v (5:42)

then

vy + AV’ 2 vy + AV 2

1——0 " =" ) Aav2= """ _ 5.43
( 1+ vy - AV v0> v <1 + v, - AV v0> (543)

If this equation is expanded completely, then 20 terms will occur which will add up to
zero. The same procedure can be applied to t; = t_. With

Ya (vo —vl)
= ~ 5.44
Y-Yo Av (>44)
and
B vy — AV’ 5 45
v__l—v(’)-Av' (5:45)

80



5.2 Twin paradox

the same result will be realized. Thus, it is shown that the subjective measurements of the
moving observers do not differ from the results achieved at rest.

It is now generally verified that inside a moving system no possibility exists to find devi-
ations caused by “slow clock transport” when using synchronized clocks in comparison to
a reference system at rest.

5.2 Twin paradox

One of the best-known examples connected with the theory of Special Relativity is the twin
paradox. This issue covers a long history in literature (see i.e. a comprehensive summary in
[41]). In general, a pair of twins is looked at, where one is at rest (remaining at earth) while
the other is leaving with a fast spaceship and comes back later. This twin will be aged less
compared to the one who remained on earth. The paradox occurs because according to Spe-
cial Relativity both twins should be considered as equal and therefore the travelling twin
after his return should find the remaining twin also in a condition aged less.

The solution to overcome the contradictions is possible because the twin in the space-
ship is changing the inertial system during his trip.

NN N
v=20 bz CZ
6 - v = 0,5C|
5 —
I v =0,8c
4 -
5]
3 -
B, a
1 -
Az
1 I | | I | I
1 2 1 1 2 3 &
. X —> . X —>
Fig. 5.3: Presentation of the twin paradox
Left: Observer A at rest, B in motion
Right : Observer A in motion, B at rest (at the beginning)
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In Fig. 5.3 this case is presented on the left side of the diagram. On the right side the
situation is presented, that the observers change their perspective and the one who was
first considered as at rest is moving and vice versa. To avoid influences during changing of
the direction, the experimental set-up is modified in a way that 3 observers take part (in
Fig. 5.3 marked with the colors green, red, and blue) and each of the observers is in posses-
sion of a precise clock [41]. At the positions A; and B, resp. A, and B, the clocks are syn-
chronized and at the end of the trial the results are evaluated. In this presentation the prob-
lem finally has the same status as the issue of a slow clock transport.

If the situations are comparable, then the subjective measuring results must be the same
for all observers taking part in the trial. This shall be demonstrated in the following. The
important issues are the total travelling time from the start to the end of the journey, and
the subjective time periods for the moving observers, which must be identical from the start
to the returning point and from that to the end. The total time for the observer at rest is
defined as t; as shown in the left part of the diagram. The other parameters are presented
in the following table.

System at System in
rest motion
tr tr Total time from start (A) to the end of journey (C)
ty ty Time for the first part of the journey (A— B)
ta t Time for the second part of the journey (B— C)
- vy Velocity for A;— B4, By—> C;, A,—> C,
- v, Velocity for B,— C,
- V1 Lorentz factor for vy
- Y2 Lorentz factor for v,
Remark:

The velocities are always taken as ratio to the speed of light, i.e.

U1 Uy
P =— b =— 5.50
(&1 - Uy - ( )
a) Total time
Left: The total time t; is defined as
tr =1 (5.51)
and for t7 is valid
to
tr = t1+t, = — (5.52)
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5.2 Twin paradox

where in this case because of symmetry reasons applies

_tr b
2 2y

(5.53)

Right: Because the subjective time periods t; shall be the same in both cases it must be valid
to

tl == 2—]/1 (554)

The time t, can be derived using relations concerning b, (see Fig. 5.3, right), because for
v; and v, applies

v{(tl + tz) == Uétz (555)
vty

t, = 5.56

2 Ué _ v]I- ( )

Further for v, because of the same velocities during the round trip for the relativistic
addition of velocities according to Eq. (4.21) applies

, 2v;
Uy = — (5.57)
1+v;
This leads to
to ity Lo < vy )
tr=ttt, =—+—F7——<=7—"|1+— - (5.58)
T 2y 2y (vz—v1) 2n V=1
After insertion of Eq. (5.57) in Eq. (5.58) follows with
1
V1= = (5.59)
_ b ) vy
tr==y1(1—v°)| 1+ . (5.60)
2 2v; p
Z "
1+v;
to 5 vi(1+vy?
tr==n(1-v)|(1+—= (5.61)
2 v v
tr =Y1ito (5.62)
Because of
T (5.63)
T Y1 .
it applies
tr =t (5.64)

The measurements of subjective times are thus the same.

83



5. Clock transport

b) Single times

First it is necessary to calculate time t,, which is subjectively elapsing for the observer in
motion between B, and C,.

According to Eq. (5.56) and (5.54) for the observer at rest applies

vt
t, = s—— (5.65)
2y1(vy, —v1)
This leads to
vit
t', 10 (5.66)

B 2y,71(vy — vyp)

When the subjective time periods for the left- and right-hand side of the diagram shall
be the same then

to vity (5.67)
2y1 2y2n1(v; — 1) '
This can be derived easily. First
__n 5.68
Y2 = Ué _ 17{ ( . )
and using Eq. (5.57)
14 v)°
Yy = — (5.69)
applies. Because of
1
Vo = — (5.70)
it applies
1—v)° 4v}?
—== [1- — (5.71)
I+v (1+v;
2
1-v% = J(1 +v}%)" - 4v}? (5.72)
1-v% = J1 — v+ vt (5.73)

which is obviously the same. It is thus shown that the subjective measured times for the total
distance and for the single parts of the trip are identical. The “paradox” is therefore not show-
ing discrepancies.

5.3 Clock transport in arbitrary directions

When the clock transport in arbitrary spatial directions is considered the relation Eq. (4.20)
must be used for relativistic addition of velocities.
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5.3 Clock transport in arbitrary directions

. 2
\/vlz + v2 + 2v,v,c08a — (w)
v = (4.20)
1+ vlvzczosa
c
A simple example with @ = 90° shows
vy = \/v{z + v)% — vfv? (5.80)

This equation can be interpreted as a variant of the relation presented in Fig. 5.3 with the
difference that all observers are moving with an additional speed of v,. In this case the time
dilatation during the trip from A; — B, is increasing in view of an observer at rest from y;
to y; - ¥»- This means that the following relation

Yr = ViV2 (5.81)
must apply. This yield
1
Vr = —— (5.82)
1 1
(5.83)

VT=GZ v — o) JA- v —vp)

which is obviously identical with Eq. (5.81). So, it is verified for this case also, that a linear
combination of different motions will not lead to a possibility to measure differences of the
elapsing time.

Summarizing the calculations, it was verified here, that no possibility exists to carry out
measurements inside a system moving with constant speed and decide about its state of
motion. All the discussed variants of the exchange of signals and the “slow clock transport”
lead to a null result. Of course, this cannot be a surprise, because according to Special Rela-
tivity this is predicted.

85



6. Relations for mass, momentum, force,
and energy

In this chapter results connected with the relativistic mass increase will be presented. First
the well-known effect on the kinetic energy will be discussed, followed by some new inves-
tigations. These are the “spring paradox”, the relativistic consideration of the elastic colli-
sion (important for the examination of collisions of elementary particles), the exchange of
signals during and after acceleration and the concept of a relativistic rocket equation. Be-
cause some of the delineations show no approach to an analytical solution, numerical eval-
uation concepts combined with examples for calculations are added in separate files for
these cases.

None of the examinations show any contradictions to the Lorentz Transformation or the
basic principles of relativity.

6.1 Relativistic mass increase and energy

During the historical development of the investigations concerning relativistic mass, it was
first realized that there are differences between a “longitudinal” and “transversal” mass in-
crease for high velocities. These terms were introduced by H. A. Lorentz [13,42], because
during the acceleration of electrons differences were measured depending on their move-
ment. According to experiments the transversal mass m; and the longitudinal mass m;
showed the following values:

m, = ——— (6.01)

= (6.02)
(1-2%)"

During these experiments the mass was measured in a way, that the acting force was
divided by the acceleration using Newton's law

m = (6.03)

a
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6.1 Relativistic mass increase and energy

The transverse acceleration is leading to a constant circular motion, while a longitudinal
acceleration is increasing the velocity of the object and therefore both the longitudinal and
transverse mass of the body is raised.

According today’s standard of knowledge the equation (6.01) is presenting the correct
increase of mass during acceleration, whereas Eq. (6.02) is derived, when instead of Eq.
(6.03) the complete notation of Newton’s formula for the force is used

F_dp_d(mv)_dm N dv 6.04
“ae T de ae T ™Mae (6.0
If Eq. (6.01) is combined with Eq. (6.04) then
d m my dv
F=— v+ — (6.05)
de 12 p2 dt
1- =z /1 -
With
dm dm dv 6.06
dt ~ dv dt (6.06)
the equation develops to
1 my vydv my dv
B R
2 L ( CZ) a’ " o2 dt
\(0-5)") e
-2
e mg v:\dv Mo\t T2 )dv m, dv (607)
- o2\ 2 | \c?) dt o2 dt a3 dt '
(1-%) (-2 (-&)
c c c

and thus, the value in Eq. (6.02) for the longitudinal mass is the result. So, the equations for
the different masses are identical and therefore since the mid of the 20th century the sepa-
ration was cancelled and today normally the general term “relativistic mass” according to
Eq. (6.01) is used.

It is apparent that equation Eq. (6.07) can be directly transformed to

Mo
F= e (6.08)

This means that for a constant force acting from the system at rest, the acceleration oc-
curring in the moving system (also measured from the system at rest) differs by a factor y 3.
This law was derived by H. A. Lorentz for an electric field acting on an electron from the
outside. When considering accelerations caused by effects within a moving system (such as
valid for a rocket engine), the same laws apply. As shown in chapter 6.4, the factor ¥ 3 results
also if the relativistic velocity addition is chosen as the only criterion for derivation.
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6. Relations for mass, momentum, force, and energy

In the following the kinetic energy of a body in motion shall be discussed. To realize this,
the relativistic (longitudinal) mass according to (6.07) is considered, because this is the
complete equation that describes an increase of the velocity. The force which is necessary
to accelerate a mass is therefore defined as

(6.09)

The necessary acceleration energy is

vz zZ mg-a vz m, dv
Wl,zzf F-ds=f —3-ds=f ———ds (6.10)
V1 U1 v

2 /2 ) 2 3/2 dt
(1-%) (1-%)
Because of
_ds 6.11
v= R (6.11)
it applies
2] mO
Wi, =j —3/17 dv (6.12)
V1 v2 2
(1-%)
and finally
2 |V2
myc
Wl,Z S —— (613)
it v?
B C_2 V1
For v; = 0 and v, = v follows
1
W = Eyip = myc? - 1|=myc?(y—1) (6.14)
v
==
The Taylor expansion of the square root leads to
_1
A NP O S S A 1L o 6.15
c? T 2c¢%  2-4c¢* 2:4-65 (6.15)
and for v < c the classical formula for the kinetic energy is derived
m
Egin = 70172 (6.16)

The equation (6.14) was developed by A. Einstein already in the year 1905 [22]. It con-
tains implicit the first consideration of the equivalence of mass and energy and leads gen-
erally to

E = mc? (6.17)

This is most probably the best-known formula in modern physics.
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6.2 Spring paradox

6.2 Spring paradox

In the following the situation shall be discussed, in which way a simple spiral spring and a
mass attached to it will behave, when different experiments in a system at rest and in mo-
tion will be performed. To realize this at first 3 different experimental arrangements will
be examined and in a second step the correlations for the energy are investigated and finally
assessed.

6.2.1 Simple elongation of a spring

The simplest way to realize a static displacement of a spiral spring (this means without
oscillation) is straining using a weight. This procedure is not suitable for a discussion using
Special Relativity, however, because the value of the displacement is defined by the gravi-
tational constant and thus by the mass of the earth. It is therefore not possible to carry out
an undisputed examination. In this case a concept using General Relativity would be neces-
sary.

Because of this reason a different technique for the generation of a displacement is nec-
essary. For realization, the straining with a repulsive force is chosen, when caused by stead-
ily flowing gas a constant force will be applied to the spring. Thus, the spring constant k can
be derived by

F=k-s (6.20)

In this case F is the norm of the generated force and s of the displacement. When this
experimental set-up is transferred into motion and the elongation of the spring is in a posi-
tion transverse to the system at rest, the observers at rest and in motion must detect the
same displacement of the spring because the “principle of identity” is valid. For the observer
in motion the spring constant must be the same as in the case discussed before. The ob-
server at rest will, however, because of time dilatation and increasing of the relativistic
mass, realize the following differences:

1. The number of gas-molecules per time unit generating the repulsion force is reduced
by the factor y.

2. The mass of any single molecule of the gas is increased by the factor y.

3. The velocity of the gas molecules moving in transverse direction (in relation to the
observed direction of motion) is reduced by the factor y.

It must be added to point 3 that the total speed of a flowing gas molecule is exactly the
same compared to the situation for an experiment at rest. The reason for this is that the
way is increasing by the factor y but the angle of the gas flow is different by the factor a =
arctan v/c to the transverse direction. This is the same situation why a light beam is trav-
elling a longer way to a target in transverse direction in view of an observer at rest. The
transverse component of the velocity is not affected by this, however, and is therefore re-
duced by the factor y. These relations must be valid to make sure, that the moved observer
is realizing the same situation compared to an observer at rest. In summary the considera-
tions lead to the equation

k=vy-k (6.21)

89



6. Relations for mass, momentum, force, and energy

This means, that the spring constant in the system in motion is lower by the factor y
when it is monitored by the observer in a system at rest. This fact, which is surprising at
first sight, is necessary to make sure that no discrepancies with other experimental config-
urations appear. This will be shown in the following.

6.2.2 Rotation

Instead of using a repulsion force the displacement of a spring can also be generated by its
existing torsion characteristics. First in a system at rest the value for the peripheral velocity
depending on the dislocation of the spring and so the existing force is determined. When
this set-up is accelerated to a higher velocity and the experiment is repeated (using again
the orientation transverse to motion) the following value for the centrifugal force is calcu-
lated

(6.22)
Reason for the difference to the system at rest is the fact that the peripheral velocity v is

occurring in a quadratic form in this equation. The relation is valid because the speed is
slower in view of the observer at rest and the mass m is increasing in the discussed manner.

6.2.3 Harmonic oscillation

A similar situation is observed when the spring is performing an oscillation. In this case the
following differential equation is valid

¥4+ wid-x=0 (6.23)
with
5 k
wh = — (6.24)
and
T, = 2m =2 m 6.25
0 — (A)O = 4T k ( . )

where w is the angular frequency and T, the oscillation time. When this experimental set-
up is accelerated to a higher speed (again transverse to the direction of motion) the ampli-
tude will be reduced by the factor y. This leads to the following relation

(6.26)

In this case also a reduction of the spring constant is necessary to avoid discrepancies
with the principle of relativity.

6.2.4 Literature survey

In the literature no variants of these experiments are discussed (at least not known by the
author). There is, however, an additional interpretation of the experiment with a “broken
lever” (first discussed by G. N. Lewis and R. C. Tolman), which is a variant of the Trouton-
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6.2 Spring paradox

Noble Experiment, were a similar situation is discussed by P. S. Epstein [43]. Based on the
general approach by A. Sommerfeld [44] the following relations were developed

fx=F fy:f7y

where f, and f, are the components of the “Newtonian force”. This description explains the

(6.27)

relations developed for springs like the decrease of the force in transverse direction by an
observer at rest.

6.2.5 Considerations of energy

Due to these relations a further effect appears, however, which is leading to an apparent
contradiction. Considering the internal energy of the spring

N N
Epor = f F(s)ds = f k-sds (6.28)
0 0

it is obviously clear, that during straining the energy is depending on the force resp. on the
spring constant in a linear relationship. Assessing the examples discussed before this would
mean, that the mechanical energy of a spring is decreasing with higher velocities. This is
clearly a violation of the universal principle of conservation of energy. If a strained spring
is accelerated and then released an observer at rest would measure a lower energy com-
pared to the value which was necessary when loading the spring. Looking the other way
round the spring would have a higher internal energy after a deceleration.

To dissolve the apparent paradox first an additional examination of the total energy shall
be carried out. For this purpose, the total energy of a mass is observed which is moving with
a velocity v;. This situation is according to the equation established in chapter. 6.1

El = ylmocz (629)

Now the case is investigated, that the mass is moving in a direction transverse to this
(relative to the observer at rest), with a speed of v, measured by the observer in motion.
The observer at rest will find a reduced value of

VU,

vy =
V1

(6.30)

because of time dilatation. According to the relativistic addition of velocities (see chapter
4.1, Eq. (4.20) with ¢ = 90°) this will lead to

e T () - (22

The energy of this mass is

ET = )/TmOCZ (632)
The differences of these energies are
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6. Relations for mass, momentum, force, and energy

AE = yrmgc? — yymyc? (6.33)
with

myc? myc?
AE = - (6.34)

B -y

A Taylor expansion using v;, v, < c for this equation and the insertion of v according
to Eq (6.31) leads to the value

se |1 3{(@) G2 - ) )~ (036
|

S (N (BTCy LR SR

This is exactly the relation for the kinetic energy of a body in motion for nonrelativistic
condition and shows that the balance of energy is obeyed in this case. The discrepancies
concerning the energy of a spring are generated by the fact, that the force is a physical value
with a direction. In this case the strange situation occurs that force and acceleration having
different orientations. This issue was already discovered by P. S. Epstein in the year 1911
[43]. Although in this paper - according to the knowledge at that time - the mass was as-
signed the character of a tensor and the relationships discussed in chapter 6.1 for the force
in moving direction and transverse to it where unknown, this is the solution to solve the
discrepancies of the paradox.

6.3 Relativistic elastic collision

A further non-linear examination is possible for relativistic elastic collision. This will not be
of importance when macroscopic observers are considered, because velocities to create a
noticeable effect would certainly destroy the participating bodies on impact. However,
when the effect on the behavior of elementary particles is examined, e.g. in particle collid-
ers, it is an interesting question, how the tracking of the reaction changes when it is viewed
by observers with different velocities relative to the experimental set-up.

The foundation for the calculation is — like for the non-relativistic examination — the laws
of conservation for energy and momentum. The relevant relations for momentum and en-
ergy are

Rel. momentum: p=ymv (6.40)

Rel. Kinetic energy: E=(y —1mc? (6.41)
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6.3 Relativistic elastic collision

When in a simple example it is assumed that 2 masses are colliding centrally without
deviation, then for the momentum the presentation as vector can be skipped and the con-
servation laws are

MyY1V1 + MYV = MyY3V31MyYaly (6.42)

(1 — Dmyc? + (v — Dmyc? = (y3 — Dmyc® + (ya — Dmyc? (6.43)
where v; and v, are the velocities before and v; and v, after collision. This leads to

P = MY1V1 T+ MyYV, = MyY3VU3 + MyYaV, (6.44)

and

E
C—g =1 —Dmy+ = Dmy = (3 — Dmy + (y, — Dmy (6.45)

The determination of the results for v; and v, is not possible in closed analytical form
and so for the solution a numerical approach is necessary. For the required calculation the
principle of bisection is used. An example for the required computation is presented in an-
nex A in the attachment.

For the examination of the non-relativistic case the equation for the momentum in Eq.
(6.44) is modified

myv; + myv, = MyU3+m,v, (6.46)

where simply the values for y are skipped, and further the use of the approximation formula
UZ _1/2 1 172
1-— = 1+—C— +- (6.47)

for v « c and insertion into Eq. (6.45) leads to

1 2, 1 2 _1 2 1 2
5 MV +Em2v2 =5 Mivs +§m2v4 (6.48)

When Eq. (6.46) and Eq. (6.48) are suitably transformed it applies

my (v — v3) = my(vy — v3) (6.49)
and
my (v, — v3) (Vg +v3) = My(vy — v2) (v + v3) (6.50)

Hence, after division of both equations

Vi +U3 =0, + 0, (6.51)

and after insertion in Eq. (6.49) the classical equations for the central collision can be de-

rived in a simple way
m,v; + m,v
vy =2—L 22_ (6.52)
my +m,
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6. Relations for mass, momentum, force, and energy

and
p =AY (6.53)
my +m,

It is obvious that the result represents a simple analytical solution and that for this case
no numerical calculations are necessary.

Still open is the question, how the results will be tracked by observers with different
velocities relative to the collision. To examine this, the circumstances for the situation be-
fore and after collision must be considered in detail. In annex A the calculation of the values
of v; and v, is presented first, furthermore the equations for the relativistic addition of
velocities according to the following relations are calculated, which is then subject to fur-
ther comparison:

V1 — 1y

vT( U4, 172) = VU Uy (654)
1-—5%=
C
Uy — VU3
UT( Vy, U3) = 1 Uy U3 (655)
GE

For a meaningful comparison between both results the quotient will be calculated first
and then, because of the small deviation, the appearing value will be subtracted by1 result-
ing the error range

vr( vy, V)

0, = —
v vr( vy, v3)

(6.56)

In Fig. 6.1 the values of the velocities v;/c from 0.0001 to 0.999 are presented for the
mass-ratio m;: m, of 1: 2 and 2: 1 corresponding to the starting conditions v, = 0 and v; =
v,. To ensure comparability between the examined different velocities, for any value of
v, /c the results of v /v; and v, /v, were calculated and shown in a table, furthermore the
findings are presented in graphical form. The graphs of the relations between the velocities
show an asymptotic approach to the values of the non-relativistic cases calculated using Eq.
(6.52) and Eq. (6.53), which were also inserted in the diagrams. The calculation of §,, shows
clearly, that all observers come to the same result irrespective of their velocities. This is
corresponding to the examination of the non-relativistic case (see Eq. (6.52) and Eq. (6.53)).

In a further examination the error range 6, for different velocities is presented. Whereas
high velocities show almost no noteworthy deviations this is changing considerably for
lower values. This is caused by the decreasing accuracy during the calculation of small val-
ues because of round-off errors. Using standard spreadsheet calculation programs on a PC
(such as Microsoft Excel©) the possible calculation limit is reached at values for §,, of ap-
proximately 101>, It is not possible to calculate with higher precision, smaller values are
classified as 0. The question of accuracy is also of great importance for numerical solutions;
this topic is dealt with in a comprehensive way in annex D, where 3 different approaches
(recursion, Newton's calculus, bisection) are described and compared.
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Relativistic elastic collision for 0,0001 < v, /c < 0.999. Relations for
velocities v3 /v, (blue), v,/v, (red). Error range 6, (For definition: see text).
Non-relativistic case: dotted line.
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Finally, it can be stated that during relativistic elastic collision no effects appear which
would make it possible to identify the existence of a system of absolute rest in the universe.
However, new attempts are made (year 2017) to identify results of this kind using precision
measurements of particle mass (in this case: electrons) [45]. According to the considera-
tions presented here it is not possible that experiments of this type can be successful at all.

6.4 Exchange of signals during and after acceleration

In this chapter it is investigated how accelerated systems behave in relativistic situations
and which measurement results are obtained for other, non-accelerated observers with
constant velocity. The acceleration is not generated from outside sources - e.g. by an elec-
tromagnetic field acting on a charged object - as it was investigated by H. A. Lorentz (cf.
chapter 6.1), but shall be caused by thrust like it is the case for a rocket.

First, a simple situation is considered in which the system under investigation is sub-
jected to constant acceleration, with changes in mass due to the emission of propellant
gases initially being disregarded. Important results can be determined by analytical and
numerical methods. Then, in a more advanced approach, consideration of the decrease in
rocket mass with acceleration is added. If for the propulsion a proportional change of the
ejection mass compared to the remaining rocket mass is assumed, the acceleration remains
constant during a trial and the behavior is the same as in the previously investigated case.

In contrast, a constant mass decrease per time unit (as required when the classical rocket
formula is used) leads to increasing acceleration values. These calculations in full scale (in-
cluding acceleration and covered distance) can only be carried out numerically; a corre-
sponding program and the results obtained with it are shown in the appendix. Further, the
final velocity of a rocket, which can be calculated using the classical and relativistic rocket
formula, is determined and the agreement of the results is shown.

6.4.1 Exchange of signals in systems with constant acceleration

In the following the case shall be discussed that a rocket accelerates uniformly and is ob-
served from other inertial systems. During the acceleration process, signals are emitted by
observer S inside the rocket at regular intervals of Ats. Further observer A also participates
in the experiment and moves at the beginning of the acceleration with the same speed as S.
Out of an additional inertial system, a second observer B is moving with an arbitrary veloc-
ity relative to A. Both observers A and B are recording the signals of S.

First, the acceleration of the rocket monitored by observer A is investigated. An analyti-
cal calculation is complicated by the fact that the relation for the relativistic velocity addi-
tion is not linear. During the acceleration, for the current velocity v, the velocity change dv,
(from the point of view of A) is described by

vy + dvg

142 dvs
c

vA + dvA == (660)

where dvs represents the change of the velocity observed in the moving system S. The use
of a Taylor expansion results in
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v2 v — v, c?
vy +dv, = vy + dug <1 — C—';) + (dvg)? (%) ++... (6.61)

With a differential consideration for dvs — 0, values of (dvg)? and higher order can be ne-
glected. Equation (6.61) thus obtains the form

vi
dvA = dUS 1 - ? (662)

The applicable accelerations are now defined for both systems

_ dvs _ L 6.63
as_dts aA_th (6:63)
Furthermore
dty
_(Ya
1-(2)
and finally
3 3
A th dts CZ s CZ )/3 .

Thus, between a, and ag the same factor y 3 appears as it was derived when determining
the correlations for the occurring forces in case of relativistic mass increase (cf. chapter
6.1).

In the following, the relations between the subjectively observed times, velocities, and
distances for stationary and moving observers shall be determined. For this purpose, first
the velocity is considered. From eq. (6.65) follows immediately

1 v\ /2
th = 1 - dvA (666)
Assuming, that values for ag are constant and integrating Eq. (6.66), we obtain

1

v v? ~/2 vy v(v

tA=—A<1——A> po=la Y o (6.67)
Qs Qg

If concrete values are used (e.g. time runs from 0 to t4), the integration constant C equals
zero. This equation describes - with subjectively constant acceleration of the rocket - the
dependency between time and velocity from the point of view of A. With a given velocity,
time can be determined directly, in the opposite case, a numerical procedure must be ap-
plied to determine v, when using the equation. To avoid this, however, equation Eq. (6.67)
can be extended and transformed via

vi

2 V4 _
as ta\> _ (va-y(Wa) _c2+1 1_ 1 1
= = = (6.68)
c c LV | Y
c? c?
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6. Relations for mass, momentum, force, and energy

Transformed to v, the result is

ag -t
v, = s 4 (6.69)

L (o)

This representation is also found in the literature, using approaches similar to the one cho-
sen here [32] as well as using rapidity [91]. [Note: rapidity 6 describes a concept in which
velocities are added up according to Galileo's principle; the relationship with relativistic
velocity is © = arctanh(v/c)]. Equations (6.67) and (6.69) are equivalent and can be used
depending on the computational requirements.

To calculate the time subjectively elapsing in the rocket, equations (6.64) and (6.66) are
combined, yielding the relation

2\ —1
ats =~ (1-22) 4 6.70
s = as 2 Va (6.70)
Integration leads to
ts = —arctanh () + ¢ (6.71)
57 as c '

For direct calculation of the dependency on t, instead of v4, Eq. (6.69) can be substituted
into (6.71).
The distance travelled x, can be calculated using Eq. (6.66) with

1 p2\ "2
dx, = v,dty =—(1-= dv (6.72)
A ey as 2 A
Integration yields
_C (v _1/2+C 6.73
X4 = ag C2 ( . )

In contrast to the previous cases, the integration constant must be determined here. This is
done by using the boundary condition x, = 0 for the velocity v, = 0. Substituting in Eq.
(6.73) this leads to

2 2
C 1 C
0=—(1-0"24+4C = C=-—
as as
and inserted into Eq. (6.73), the final form is given by
2 2\~ /2 2
= ( Cz) =D (674)

Again, the relationship between v, and t, from equation (6.69) can be used alternatively to
obtain a direct dependence on t,.

Equation (6.74) has the peculiarity that for small values of v, the end results can become
very inaccurate. The value of y approaches 1 in this case; but since the value 1 is subtracted
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6.4 Exchange of signals during and after acceleration

in the formula, larger errors can occur with usual calculation accuracy. It is recommended
here to use a Taylor expansion where these problems do not appear. Appendix B contains
a derivation in chapter B.3 and it is shown under which boundary conditions Eq. (6.74) or
the Taylor method is more accurate.

Furthermore, a numerical method is also presented in this annex B, where the use of
additions of relativistic velocities with sufficiently small steps leads to the same results. An
analytical method is easier to use but would lead to problems in case of modifications, such
as changing the acceleration during the experiment. With numerical methods, on the other
hand, such a situation can be implemented easily. This becomes clear in the situation de-
scribed in the next chapter, in which the real behavior of creating thrust realized by ejection
of a propellant gas from a rocket and the resulting influences on the system are considered
in detail.

In the following it shall be demonstrated that based on these simple correlations no con-
tradictions will occur concerning the experimental findings of observers travelling with dif-
ferent velocities compared to the system, which is at rest at the start of acceleration of the
rocket. The only precondition necessary is, that from the rocket signals to observers A and
B are transmitted, and that these signals have a constant subjective frequency concerning
the system inside the rocket. The situation of all participants is presented in the following
diagram.

100 200
a)
| 50 150
— 100
:Ec 0 10
— 50
* 50
0
-100 0 2 4 6 8 10
t [103.5] —
Fig. 6.2: Comparison of different acceleration conditions calculated for

a=10m/s* a=0anda = —10m/s?
a) vo,=0, b) vg=50m/s

Observer B is at rest in all cases relative to the presentation of the diagram (i.e. from the
point of view of A and S, he is moving relative to them at the start of the experiment with
velocity vg), while A is moving on the line a = 0. Thus, in subplot a) with v, = 0, the results
for A and B coincide, while in b) participant A is increasing the distance in relation to B with
constant velocity v,. The aim of the following calculations is to show that the values of A in
parta) and also b) are identical from the point of view of B using the Lorentz equations. The
principle of relativity is valid because the subjectively measured times are independent of
the speed of the observers.
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6. Relations for mass, momentum, force, and energy

To prove this, Fig. 6.3 shows a situation in which subplot a) shows the rocket passing
observer B (blue line in the x/t diagram), decelerates and then approaches again. In subplot
b) the rocket starts from a position at rest and is accelerated uniformly. In this case, the
course of an additional test participant A moving uniformly at velocity v, is also shown
(blue line). To make the results easier to distinguish, the reference points in subplot a) have
been marked with P and in b) with Q and R.

500 500
a)
400 7 400
— 300 ’/’ 300
£ e
— 200 e 200
>
100 100
R,
0 0
0 2 4 6 8 10
t[s] —
Fig. 6.3: Identical accelerations observed by different participants

a) vp =50m/s, ag =—-10m/s* b) vy =0, ag =10 m/s?

With the very small values for v, chosen here for the presentation in the diagram, in
principle no significant deviations between relativistic and non-relativistic consideration
can be provided. Therefore, calculations were carried out which are based on a system ve-
locity of 369 km/s. As already pointed out in several other cases, this is the velocity with
which our solar system is moving relative to the uniform cosmic background radiation and
thus is of great interest for possible experiments to be performed. It remains to be clarified
how large the difference is in the present case between relativistic and non-relativistic con-
sideration. In order to show this, values for the non-relativistic case (Galileo) were also
added to the table. As it is well known, these relations are given by

v=a-t (6.75)

1
x=za t2 (6.76)
If it is assumed that a spaceship passes earth with 369 km/s and decelerates with
10m/s?, the maximum distance would be reached at about 6,8 - 10 km (subplot a, point
P,) in non-relativistic consideration. The total time until the earth is reached again at P; is
about 20.5 hours. The exact values and also the results calculated for a relativistic consid-
eration are summarized in a table (Tab. 6.1).
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6.4 Exchange of signals during and after acceleration

The information included in this representation will be broken down in the following.
For this purpose, it is necessary to note the sequence of the calculations. First, the subplot
a) is considered:

1. P> P,

The values of ts(P,) are calculated using Eq. (6.67), t4(P,) is derived from Eq. (6.71)
and x,4(P,) from Eq. (6.74) for the velocity v, = 369 km/s. The use of Eq. (6.74) is
permitted, although it was initially derived considering the case v, = 0; because of
symmetrical reasons first case P, — P; is calculated and the result is then trans-
ferred to P; — P,.

P, —> P;

Because of symmetry reasons the values of t5(P3) und ty (P3;) must be twice as large
as for (P,). The value of x,(P3;) = 0 by definition.

For subplot b) the values are accordingly:
1. Q1—0Q:

Sy

~
>

—

Symmetry reasons result in tg(P,) = ts(Q3), ta(Py) = t4(Q2) and x4 (P;) = x4(Q5).
Q2 > Q3

In this case the assumption is used that subjectively within differently moved iner-
tial systems no differences may arise at the same changes of state; this means
ts(P3) = ts(Q3) is set (the two fields are green and marked with arrow). If this as-
sumption is correct, no differences may show up in a later comparison of results.
First, the value for v4(Q;) is calculated from Eq. (6.71), then t,(Q3) from Eq. (6.67)
and x,(Q3) from Eq. (6.74).

8 S T N N

=
=
i

relativ, 0 36900,0186344619 36900,0279516977 6808057,73532358
Galilei 0 36900 36900 6808050
relativ, -369 73800,0372689239 73800,0559033954 0
Galilei -369 73800 73800 0

0 0 0 0
relativ, 369 |36900,0186344619 36900,0279516977 6808057,73532358
Galilei 369 36900 36900 6808050
relativ. 737,998881935078 73800,0372689239 73800,1118068352 27232241,2567440
Galilei 738 73800 73800 27232200
relativ, 369 73800,0559034565 73800,1118068942 27232241,2567440
Galilei 73800 73800 27232200

-8,28559- 10713 -8,001-10713
.1: Results of calculations for v, = 369 km/s using as = —10 m/s? (values P) and

as = 10 m/s? (values Q) for a non-relativistic (Galileo) and relativistic approach.
Points are defined according to Fig. 6.3.
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6. Relations for mass, momentum, force, and energy

For a further evaluation, the case must be calculated, how the situation arises in subplot
b) for a linearly (unaccelerated) moving observer (blue line). To realize this, the boundary
condition is used that accelerated and non-accelerated observers meet at the point Q5, i.e.
the values xy for Q; and R; must be the same in this case (these fields are also green and

marked with an arrow). From
Xa

t, = 6.77
A= (6.77)
and
£ = A (6.78)
S Y .

the values of t, and ts can be calculated.

With the data determined here, a comparison between individual values can be carried
out. First, the values for t, for the accelerated and non-accelerated case are compared at
point Q3 = R3, which by definition must be the same, since both start and end from the same
point (Q; = Q3 and R; — R3). The values are marked in blue. Despite different calculations,
they lead to approximately the same result, with the deviation according to the calculation
for

_ta(@3) 1

KT ta(Rs) (679)

to be determined. The same behavior occurs when the values for t,(P;) and t5(Q5(L) are
compared (marked in yellow)

ta(Ps) _1

= 15 (Ry) (050

These must be equal for the following reason: The stationary observer in subplot a) deter-
mines that the passing rocket arrives at his position again after uniform negative accelera-
tion at the time t4. The uniformly moving observer in subplot b) must subjectively observe
the same behavior. For the situation of an observer at rest in subplotb), represented by the
course of the dashed line, the value for t, is higher in this case, but can be traced back to the
subjective measured value of the moving system by simple division by y. No relevant calcu-
lation differences can be determined here.

With the boundary conditions selected here using v, = 369 km/s, deviations of approx.
8 - 10713 occur for 8. If, on the other hand, higher values for v, are selected, as e.g. in Tab.
6.2 with v, = 0,5¢, no deviations are detectable within the scope of the calculation accu-
racy, but with smaller values for v, they increase. This is due to the occurrence of very small
values of y, especially in Eq. (6.74). At small velocities, the value for y is only slightly larger
than 1; if the value of 1 is subtracted from this, large deviations can result depending on the
accuracy of the calculation. This effect is shown in more detail in annex B, chapter B.3 and
for this purpose a significant improvement of the accuracy is demonstrated by using a Tay-
lor expansion.

Instead of the analytical approach chosen here, the regularities can also be determined
numerically. A procedure for this is compiled in Annex B. If the occurring deviations are
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6.4 Exchange of signals during and after acceleration

considered, an advantage for the numerical procedure is shown with low values of v,, with
higher velocities it is the other way round; the accuracy depends beyond that substantially
on the number of the selected iteration steps. After performing the numerical calculations,
it is shown here that the subjectively existing acceleration between motionless and moving
observer differs by a factor y3; in contrast to the analytical method, where this was deter-
mined by basic considerations, this is a result of the calculations performed. In the Annex B
the results are presented in detail. Also added is a comparison with results of the numerical
method from Annex C, in which the amount of propellant gas ejected was kept constant in
relation to the residual mass of the rocket, thus achieving uniform acceleration.

8 R I R

149896,229
relativ. 0 16467783,9204409 17308525,6327320 1390379100217,26

P, Galilei 0 14989622,9 14989622,9 6808050
relativ. -149896,229 32935567,8408818 34617051,2654639 0
Galilei -149896,229 29979245,8 29979245,8 0
E——]
m 0 0 0 0
relativ. 149896,229 |16467783,9204409 17308525,6327320 1390379100217,26
Galilei 149896,229 14989622,9 14989622,9 6808050
relativ. 239833,96640 32935567,8408818 39972327,7333333 5991701191578,78
Al Gl 299792,458 29979245,8 29979245,8 |4493775893684,09
|
relativ, 149896,229 34617051,2654639 39972327,7333333 5991701191578,78
Galilei 299792,458 29979245,8 29979245,8 4493775893684,09
i—

8y 0 0
Tab. 6.2: Results of calculations for v, = 0,5¢ using ag = —10 m/s? (values P)

and 10 m/s? (values Q) for a non-relativistic (Galileo) and relativistic approach.
Points are defined according to Fig. 6.3.

An evaluation of the chosen general conditions reveals at first sight that a rocket tech-
nology generating the required thrust long enough is not existing today; with such a system
it would be possible to reach Mars in a few days. This becomes even clearer if a long journey
is considered under the conditions chosen here. If it is assumed that a body of 100 tons with
constant acceleration of 1g crosses the galaxy (100,000 light years, subjective time on
board: approx. 12 years), the rocket with a propellant density of 70 kg/m?* would have to
have a size of 14 x 14 x 14 km?® at departure, even if an optimal conversion of mass into
kinetic energy is assumed [91]. This does not include any statements on the deceleration of
the rocket after the journey or on the influence of micrometeorites and gas causing a speed
reduction, or the protection of the passengers by additionally required masses due to nec-
essary shielding devices.
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6. Relations for mass, momentum, force, and energy

Despite the obvious impossibility of implementation on an industrial scale, however, the
results calculated here are unambiguous and show that - although the influence is small -
they must be taken into account when even small acceleration phases are considered.

Finally, questions of the influence of acceleration on the measurements shall be exam-
ined in general. According to the Theory of General Relativity it is not possible for an ob-
server to decide with measurements in a closed system, whether he is exposed to an accel-
eration effect caused by increasing velocity or by a gravitation field. Although it is not with-
out controversy that additional (gravitational) time dilatation will appear in accelerated
systems, the potential effect shall be estimated to complete a general consideration.

For the conditions chosen here with an acceleration value of 10 m/s? which corresponds
approximately to the effect of the earth's acceleration due to gravity of 9.81 m/s?, a time
dilation of about 7 - 10710 results, which has been confirmed by many measurements [80].
If this value is multiplied by the total time from Tab. 6.2, an effect of 5,17 - 1073 s results.
This would mean that the calculated time difference between relativistic and non-relativ-
istic consideration is extended by a value of 0.28%. Thus, because of the small deviation,
this potential effect can be neglected here.

6.4.2 Relativistic rocket propulsion

Now the question arises, how a rocket behaves in reality, which is accelerated by outflowing
gas and accordingly loses mass. An observer B, who monitors this process from another
inertial frame and measures the velocity v, for S and A at the beginning of the experiment,
will find differences to the measurements of S due to the time dilation and the relativistic
mass increase, namely

1. The quantity of the gas-molecules generating the repulsion force is reduced by the
factor y(vy) per time unit.

2. The mass of any single molecule of the gas is increased by the factor y(v,).

The remaining mass of the rocket is increased by the factor y (v).

4. The speed of the outflowing gas corresponds to the theorem of relativistic addition
of velocities.

5. The elapsing time between outgoing signals is increased by the factor y(v).

6. The total time for acceleration during an experiment is increased by the factor y (v,).

w

For the exact determination of the situation, all influences related to these criteria must
be calculated with respect to the reduction of the rocket mass due to the gas ejection for
propulsion. These conditions are considered for cases with constant gas ejection (which
leads to a steady increase in acceleration) and with constantly reduced gas ejection (to en-
sure constant acceleration).

The relativistic momentum is used to establish the equations relevant to solve this prob-
lem. It is determined in general that all functions referring to the outflowing gas are marked
with f'; relations connected with the moving rocket, on the other hand, are represented
without this marking.

Following this general definition, the relativistic momentum of a rocket before starting
acceleration is

Po = MyVpYo (6.81)
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6.4.2 Relativistic rocket propulsion

where v, is the velocity of the rocket relative to a reference frame at the start of the trial.
After the first step the relation changes to

P1 =M1 Y1 (6.82)

and the values for step 1 are calculated as follows:

1. Itis assumed that during the first step of acceleration the rocket is losing mass 4m,
with the jet velocity v}; the gas used to form the high-speed jet to generate the re-
pulsion force is generally called “propellant mass”.

2. The momentum of the rocket p; (related to the remaining mass m; = my, — 4m)
and p; of the propellant mass 4m,, are added and set equal to the momentum p, of
the rocket (using of the law of conservation of momentum). From this, the changing
velocity of the rocket is calculated. This results in

p1 + p1 = (Me—Amy)vyy; + Amoviy; = MoVgYo (6.83)
and generally

Pk + Pk = (Myg_1—Amyg_1)vgyy + Amyg_1VgYg = Mg_1Vk_1Vk-1 (6.84)

The values for v and v’ show in different directions (this is explaining the “+” in the for-
mula). Relative to the rocket, the gas flow maintains at a constant speed of v;. The relativ-
istic addition of velocities is leading to

/
vy = LT (6.85)
14+ VK+21170
c

Using the equations (6.84) and (6.85) for every step K the velocity of the rocket can be
calculated; this means the complete numerical evaluation is following a nested loop with a
subroutine for any v.

To perform such a calculation, programming was done in Visual Basic (VBA). The VBA
program code is compiled in Annex C with the corresponding formulas and a flow chart.
The main purpose of these calculations is the comparison of systems which are at rest at
the time of the start of the trial to those which are relatively moved. For this purpose, two
exemplary calculation variants were programmed, whereby firstly the acceleration and in
the second case the outflow velocity of the propellant mass were kept constant. The differ-
ences associated with both concepts are presented in the following.

a) Propellant mass proportional to the remaining mass of the rocket

The precondition of propellant mass proportional to the remaining mass of the rocket re-
sults in constant acceleration values for the rocket over the entire observation period. This
situation corresponds to the case already described in chapter 6.4.1.

Table 6.3 shows the results of two calculations with vy = 0 and v, = 0,5¢ as initial ve-
locities. The selected values are quite different and this also the case for the results. In order
to enable a comparison of the values with each other, the final velocity of the rocket from
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6. Relations for mass, momentum, force, and energy

the view of an observer at rest was defined as the difference vy = vy — v,. The value t; is
the total time, which results subjectively from the view of the unmoved system when ap-
plying the Lorentz equations for an observer moving with system velocity v, until the arri-
val of a signal from the rocket.

In addition, the distance x, covered by the rocket from the view of the stationary ob-
server up to the emission of the impulse is listed. Furthermore, the result for the remaining
mass my of the rocket after completion of the experiment is shown (related to the initial
value my = 1). In addition, the values for the accelerations ay and also the calculations for
y3ay are presented.

10 3,9999999999413 400,00266852469 0,3486784401000 800,0000000579 9,9999999975878 10,000000000258

2 102 3,9999999999407 400,00266852463 0,3660323412732 800,0000000592 9,9999999973564 10,000000000027
3 103 3,9999999999408 400,00266852463 0,3676954247710 800,0000000594 9,9999999973343 10,000000000005
4 10* 3,9999999999424 400,00266852463 0,3678610464329 800,0000000596 9,9999999973292 10,000000000000
5 105 3,9999999999581 400,00266852464 0,3678776017666 800,0000000616 9,9999999975070 10,000000000177
6 10° 4,0000000001169 400,00266852155 0,3678792572316 800,0000000717 9,9999999975070 10,000000000177
7 107 4,0000000016930 400,00266859493 0,3678794227775 800,0000004935 10,000000005125 10,000000007795
1/2 -57021 107%3  .5,7980: 10~ 1,7354.107%  1,2930-10°° -2,3141-107*" -2,3141.107%°
2/3 1,3989-1071%  -1,0232-107%2 1,6631-107% 1,3006-1071° -2,2089-10"1! -2,2089 10711
3/4 1,5601-1012 0 1,6562:-10°* 2,1396-1071¢ .5,0804-107'2 -5,0804.10712
4/5 1,5710- 107! 8,98: 10712 1,6555-107°  2,0430-10"% 1,7776-107'® 1,7776-10°%°
5/6 1,5883- 10710 -3,09:10™"  1,6555-10"% 1,0087-107% 0 0
6/7 1,5760-107° 7,3485-1078 1,6555:1077 4,2175-1077 7,6180-1077 7,6180-107°

n

1
2

N o s oW

10 2,9999709803087 400,00266851663 0,3486784401000 69235026,29063 6,4951038669616 10,000066715204
107 2,9999700801272 400,00266851582 0,3660323412732 69235026,29036 6,4950395173348 9,9999676404299
102 2,9999699985783 400,00266851575 0,3676954247710 69235026,29034 6,4950389552623 9,9999667750399
10% 2,9999700695917 400,00266851581 0,3678610464329 69235026,29036 6,4950385228968 9,9999661093612
10° 2,9999708701507 400,00266851649 0,3678776017666 69235026,29059 6,4950356404560 9,9999616715177
10% 2,9999825792620 400,00266852517 0,3678792572316 69235026,293606,4949779917004 9,9998729144571
107 3,0001320510055 400,00266865907 0,3678794227775 69235026,33995 6,4955544754057 10,000760496920

1/2
2/3
3/4
4/5
5/6
6/7

Tab. 6.3:

-9,0018 -

-8,1549.
7,1013 -
8,0056 -
1,1709
1,4947 -

1077
1078
1078
1077
1075
1074

-8,1502- 101
-7,2987- 10711
6,4006- 10~ 1!
6,7701-10710
8,6780-107°
1,3391-10°7

1,7354 -

1,6631-
1,6562 -
1,6556-
1,6555-
1,6555-

1072
1073
107%
1079
1076
1077

-2,6439 -

-2,5108 -
2,2203 -
2,3431-
3,0045 -
4,6355-

10°%
1075
1075
1074
1073
1072

-6,4350

-5,6207
-4,3237 +
-2,8824.
-5,7649

5,7648

1075
1077
1077
10°°
1073
1074

-9,9075 -

-8,6539 -
-6,6568 -
-4,4378 -
-8,8757 -

8,8758 -

107
1077
1077
107¢
1079
107

106

Values of vy, tr, my, Xy, ay, ¥>ay for proportional reduction of propellant mass.
Top: vg = 0, bottom: vy = 0,5 ¢ (149.896,458 km/s).

Amy = 0,25%/s, tg = 400s. The values for my are normalized to 1.

Values for vy in km/s, tr in's, xy in km, ay and y3ay in m/s?.



6.4.2 Relativistic rocket propulsion

For the calculations a loss of propellant mass per time unit of Am, = 0,25%/s was spec-
ified. This leads to an acceleration of 10m/s? and thus a comparability with the other al-
ready performed calculations is given. The experimental time chosen was t; = 400s, and
this leaves the realistic magnitude of a residual mass of almost 37% of the initial value after
the completion of the experiment. For better evaluation, the deviations between the values
6vr = vr(K) and vy (K — 1) are shown according to the relationships also used elsewhere
(e.g., as defined in Eq. (6.79)), and in the same way for §t;, my, 6xy, ay and y3ay, where
K corresponds here in each case to a potency of ten in the number of calculation steps be-
tween 10 and 107 (cf. Tab. 6.3). First, it should be noted in principle that the values for §vr,
&ty and 6xy show unsystematic fluctuations and exhibit the smallest deviations from each
other considering the number of iteration steps between N = 102 and 10*. Hereby it is clear
that the visible differences are not caused by a physically explainable effect, but only by the
use of the numerical method.

Furthermore, it can be seen that the value of the remaining mass my becomes more ac-
curate with each increase by a factor of 10 in the number of iteration steps (Iteration
103> 10* = 1.6562 - 10™*; 10*— 10° = 1.6566 - 10~> and so on, see Tab. 6.3). This is not
of further importance here and therefore an evaluation is not carried out at this point; how-
ever, this changes in the following considerations for the case of constant propellant mass
and will be further investigated there.

The results of the calculations for y3ay show again that the ratio for the accelerations
between differently moving observers reveals the factor y3.

The determination made here with a proportional loss of propellant mass with respect
to the residual mass of the rocket allows a direct comparison with the analytical and nu-
merical results from Section 6.4.1. and the conformity proves to be very good. A detailed
evaluation is presented in Annex B.4.

b) Propellant mass constant

This case proves to be significantly more complex with regard to the evaluation compared
to the situation discussed before. This is due to the fact that the values of vy, tr and xy,
which are important for the observation, show the same behavior as my before and become
more precise with increasing number of iteration steps. Therefore, they must be analyzed
in particular (in contrast to the case before, my does not show this behavior here!).

This becomes clear when considering the case shown in Tab. 6.4. In the upper part of the
table, as before, the results of the calculations of the relevant values are given, below —
marked with section I — the compilation of the deviations dvy, 6ty, dmy und dxy follows.
The first and the last calculation deviate in values from the systematics of the other results
and were not considered further. Therefore, only the blue colored fields were used for final
calculations and the values reproduced in section Il were extrapolated from them. The re-
sults presented in the lower part of the table show the outcome of these calculations. The
mass reduction was set to 4m, = 0,5%/s, which leads to a test duration of t, = 100s for
the final mass value of 50% desired here.

In the Annex C, besides the derivation of the program structure, further results of the
calculations for different boundary conditions were presented in the tables C.2, C.3 and C.4.
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6. Relations for mass, momentum, force, and energy

In addition to the figures for the system velocity of v, = 0 discussed here, calculated values
for 369 km/s plus 2,000 km/s and 10,000 km/s were also added to provide a better over-
view. In these cases, a lower remaining mass after the test was also determined with a rest
of 10%.

2,67508561278727 100,000397329364 0,500000000000000 119,116010675216 10
102 2,76261372200990 100,000408141269 0,500000000000000 122,357320955608 1
10% 2,77158897232187 100,000409292747 0,500000000000055 122,702523336750 107!
10* 2,77248872482278 100,000409408634 0,500000000000055 122,737265091767 102
105 2,77257872237194 100,000409420246 0,499999999996724 122,740741494222 1073
10° 2,77258772224753 100,000409422400 0,500000000041133 122,741089155569 10~ *
107 2,77258862465211 100,000409440862 0,499999999708066 122,741124020357 1075
T T T T
8,9931 1,4064. 1073 3,4698 - 107
102 8,7528-1072 1,0812. 107 0 32413 |
103 8,9753-1073 1,1515.10°¢ 5,4956- 1071 3,4520-107
104 8,9975-10°% 1,1589- 1077 0 3,4742.1072
10° 8,9998-10°° 1,1612- 107" -3,3309- 10712 3,4764-1073
108 8,9998-10°° 2,1540- 107° 4,4409- 10711 3,4766- 1074
107 9,0240 - 1077 1,8462-10°° -3,3307 - 10710 3,4865.10°°
109 8,9931-10°° 1,4069- 10711 3,4698-10°¢
10° 8,9931-107° 1,4069. 10712 3,4698.1077
1010 8,9931.10710 1,4211. 10713 3,4698.10°%
1011 8,9931.10° 1! 0 3,4698 - 1077
1012 8,9933.10712 0 3,4699.1071°
1013 8,9928.10°13 0 3,4703 . 1011
1014 9,0150.1071% 0 3,4674-10°12 11
1018 8,8818.10715 0 3,4106- 10713
1016 0 0 0
107 2,77258862155768 100,000409422541 122,741123853607
108 2,77258871148869 100,000409422555 122,741127323411
107 2,77258872048179 100,000409422556 122,741127670391
101° 2,77258872138110 100,000409422556 122,741127705089
1011 2,77258872147103 100,000409422556 122,741127708559
1012 2,77258872148003 100,000409422556 122,741127708906
1012 2,77258872148093 100,000409422556 122,741127708941
1014 2,77258872148102 100,000409422556 122,741127708944
10'5 2,77258872148102 100,000409422556 122,741127708945
1016 2,77258872148102 100,000409422556 122,741127708945
Tab. 6.4: Values of vy, ty, my and xy for linear reduction of propellant mass.
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6.4.2 Relativistic rocket propulsion

Again, the most important statement results from the comparison of the calculated val-
ues for tr, which represent the signal propagation times until reaching an observer moving
with v, calculated in view of the system at rest. For a better comparison of the times, here
as in other cases, the comparative formula

tr(v
sty = )y (6.86)
tr(Vg-1)
was chosen. Table 6.5 shows the results of values for t; and §t;, where the calculation was
based on t; using iteration steps of N = 10, No systematic deviations can be found when

results for different system velocities are compared.

100 000409422556 1.000,00992905474 10.002,4827416511

ELENN 100,000409421505 1,05+ 107'" 1.000,00992904501 9,73-107'* 10.002,4827411418 5,09 107"
pAVEVl 100,000409421509 -3,40-10°'* 1.000,00992904483 1,76-107'* 10.002,4827388902 2,25- 1077
AL} 100,000409421471  3,74-107'°  1.000,00992904385 9,82-107** 10.002,4827278462 1,10 - 1077

Tab. 6.5: tr and 8t with constant propellant mass per time unit for different v,.
Am, is normalized to 1.
l:vy=—4km/s, A4Amy,=0,5%/s, t,=100s
2: vy =—4km/s, Amy=0,09%/s, t,= 1.000s
3: vy = —100 km/s, 4m, = 0,009%/s, t, = 10.000s

For the consideration of the final velocity vy the possibility of a comparison with the
values determined according to the classical rocket formula arises. The formula derived by
K. E. Tsiolkovsky in 1903 is based on the non-relativistic momentum equation and aims to
calculate the terminal velocity of a rocket as a function of the exit velocity of the gas for a
constant propellant mass. For non-relativistic consideration with v < ¢, first Eq. (6.85) is
reduced to

Vg = Vg + 1 (6.87)

To solve the equation Eq. (6.84), the stipulation that y = 1 (not relativistic) applies. Since
the mass of the rocket decreases with increasing index K, but the velocity rises, the follow-
ing relations apply additionally

myg =mg_q —Amg_4 Vg = Vg1 +Avg_4
In addition, for differential consideration the following definitions are introduced:

mg > m Am — dm

Vg DU Av - dv

This results in the following approach for Eq. (6.84):
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6. Relations for mass, momentum, force, and energy

(m+dm—-dm)v+dmw + vy) = (m+ dm)(v — dv) (6.88)

mv + vdm + vgdm = mv — mdv + vdm — dmdv (6.89)

and because of dmdv — 0
mdv + vgdm =0 (6.90)

If mass and velocity of the outflowing gas (and thus the momentum) are kept constant,
the integration of eq. (6.90) leads to the classical rocket formula

v m
d
f dv = — v(’)f o (6.91)
0 my m
v =1 ln(%) (6.92)

where m,, is the mass at the start from an unmoved platform. If the starting point is moving,
the velocities are simply added. This becomes necessary e.g. at the drop of a rocket stage,
when the mass decreases and also the momentum changes.

Besides the classical rocket formula according to Tsiolkovsky, also a relativistic rocket
formula exists. This was derived in 1946 by ]. Akeret [90]. The derivation is clearly more
complex and requires additionally the use of the energy conservation theorem; the deriva-
tion is shown in the appendix C under point C.4. The result of this relativistic rocket equa-
tion according to Eq. (C.33) is

m \2vo/c
v 1= ()

- — (6.93)

m \2vo/c
1+ ()
If the classical and/or the relativistic rocket equations vy are taken as a limiting case to
the presented solution of the numerically derived relativistic rocket formulas, and the re-
sults from the values for v calculated in appendix C, tables C2, C3 and C4 are related to

each of them, the following values for a comparison can be obtained
bp=—-1 (6.93)

The results of these calculations are shown in Fig. 6.4. First, it becomes clear that for low
system velocities, especially in the case v, = 0, no sufficient accuracy is achieved for itera-
tion steps from N = 10 to N = 107 and they are therefore to be considered only with re-
strictions. On the other hand, if the extrapolated values calculated up to N = 10%® are added,
a significantly improved result is obtained. When the values for classical and relativistic
rocket formulas are compared, no differences can be found for vj = — 4 km/s, while for
vy = —100 km/s, discrepancies can be seen for small system velocities (v, = 0 und 369
km/s). To show the differences, the results for the classical rocket formula (Tsiolkovsky)
and relativistic (Akeret) were presented separately in subplots c) and d).
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6.4.2 Relativistic rocket propulsion

a) lteration Extrapolation b) Iteration Extrapolation
10" 104 10# 1012 1016 10" 10t 10% 1012 1016
10 10"
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1074 . 1074 \\..
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- " o
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1o=" 1=
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c) d)
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Fig. 6.4: Dependency §; between relativistic und classical rocket formula related to

the number of iteration steps acc. to Tab. C.2, C3 and C4.

a) vy =—4km/s, Amy =0,5%/s, t, = 100s

b) vy = —4km/s, 4m, = 0,09%/s, t, = 1.000s

c)andd) vy = —100 km/s, 4m, = 0,009%/s, t, = 10.000s

¢) classic (acc. to K. E. Tsiolkowski), d) relativistic (acc. to J. Akeret).

a) to d) at the bottom v, = 0 then ascending v, = 369, 2000,10000 km/s
Am, normalized to 1.

To evaluate the behavior at higher velocities, results from the numerical rocket equa-
tions are compared with corresponding values from the classical and relativistic rocket for-
mulas. In Tab. 6.6, the calculated values of the final velocity are entered for the parameters
v, /c (gas velocity of a rocket in relation to the speed of light) and for the ratio of the masses
at the final stage compared to the start.

An evaluation shows that up to a velocity of the propellant gas of 0.01c, there are no
major differences between the calculations. At 0.1c the differences between the classical
rocket formula and the other two variants already become clear and at 0.5c the speed of
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6. Relations for mass, momentum, force, and energy

light is exceeded according to the classical nonrelativistic method at a mass release of ap-
prox. 90%. The values according to ]J. Akeret and those of the own numerical calculation,
which of course remain below the speed of light, hardly differ.

- T TR PR
Mgy

0 006931 0,006931 0,006932 0,069315 0,069204 0,069432 0,346574 0,333333 0,362675

[tV 2N 0,016094 0,016093 0,016093 0,160944 0,159568 0,159727 0,804715 0,666667 0,681958
m0,023026 0,023022 0,023022 0,230259 0,226274 0,226122 1,151293 0,818182 0,818378
0,046052 0,046019 0,046021 0,460517 0,430506 0,428238 2,302585 0,980198 0,973447
m0,069078 0,068968 0,069009 0,690776 0,598480 0,593888 3,453878 0,998002 0,996217

Tab. 6.6: End velocity of a rocket (values in relation to the speed of light) depending on
the calculation method
Parameter top: Values for propellant gas (values in relation to the speed of light)
Parameter left: Ratio of final mass to the mass at the start
A: Classical, acc. to K. E. Tsiolkowski
B: Relativistic, acc. to J. Akeret
C. Numerical, calculation acc. to annex C (4Amg = 107° %/s, Atg = 100s)

The essential difference between analytical and numerical calculation is that for the an-
alytical method no output quantity of the gas per time unit must be given and that therefore
the result is independent of the acceleration occurring during a rocket launch. Therefore,
there is also no information about which distance the rocket has covered in which time.
This means, only the data determined according to the described numerical method can be
used for the previously performed calculations; the analytical rocket formula does not pro-
vide the necessary information.

To illustrate this, results for gas ejection velocities of v), = —0,5c and vj = —100 km/s
are presented below. In Tab. 6.7, gas ejection rates of Amy = 1077 to 10™*/s (correspond-
ing to 107> and 1072 %/s) were selected for the numerical determination and the values
of vy, tr, xg and ai were calculated on these. First, it should be noted that in all cases the
final velocity v; remains constant for the respective gas exit velocity. When the gas ejection
rate (per time unit) is increased by a factor of ten, the values for the total duration of the
experiment t; as well as the distance traveled xy increase by the same factor. The acceler-
ation ag, on the other hand, decreases by the same amount.

Finally, an essential difference between the numerical method and the relativistic rocket
formula must be pointed out. While the latter was derived using the law of conservation of
energy, the numerical method (as well as the classical rocket formula according to Tsiol-
kovsky) is based exclusively on the law of conservation of momentum. For the calculation,
this means that the momentum of the propulsion gas could in theory be increased unlimited
by approaching the speed of light more and more, and thus extremely high rocket velocities
could be achieved connected with a low mass output. However, in reality this is not possi-
ble, because for the acceleration of the propellant gas considerable amounts of energy (and
thus because of E = mc? additional mass losses) would be needed, which are not
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6.4.2 Relativistic rocket propulsion

considered in the calculation. For these extreme values, therefore, the numerical method
presented cannot be used.

0=-0,1c Vo = - 100km/s

IO 7 67789,6421 9713871,60 2017951968 27,5336472 230,263962 9500233,452 669757541 0,0999999043
(IR 67789,6421 971387,160 2017951968 275,336472 230,263962 900233,45266975754,10,9999990426
(Ul 67789,6421 97138,7160 2017951968 2753,36472 230,263962 90023,3452 6697575,41 9,9999904265
67789,6421 9713,87160201795196,827533,6472 230,263962 9002,33452669757,54199,999904265

Tab. 6.7: End velocity vy, total time tr, covered distance xx and acceleration ay as a
function of the gas ejection velocity and the gas quantity Am, (per time unit).
vrinkm/s, trin's, xx in km, ag in m/s?, Amg in 1/s (normalized to 1)

The problem of determining the energy requirement for rocket propulsion systems has
been discussed for a long time and can be solved by defining various loss factors. As an
example, the representation used by U. Walter [91] is given in Fig. 6.5.

mass converted
into energy

energy for

ne - dm propulsion

(1—&)dm v (1=3)pe-dm || (1-n)e-dm

one-dm
exhaust mass exhaust photons || energy losses
Fig. 6.5: Energy scheme for a relativistic rocket with energy losses and expelled propulsion

mass and photons (extracted from [91])

Further information on this topic can be found in the following literature [91,92].
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7. Non-elastic processes

The situation concerning the elastic behavior during collisions was already discussed at
length in chapter 6. The analysis of non-elastic processes is also of great importance for
further considerations and shall now be examined in detail. At first the non-elastic collision
will be scrutinized, where during the experimental situation two or more bodies are com-
bined and an energy-absorption takes place. The reversing effect is observed during parti-
cle disintegration; in this case kinetic energy is set free because of conversion of mass into
energy and carried away by the decay products. Non-elastic collision and particle disinte-
gration can thus be interpreted as complementary processes.

7.1 Relativistic non-elastic collision

For the relativistic consideration of non-elastic collisions, the situation of observers with
different velocities will be examined. For that purpose, a simple example shall be looked at
and, after exact evaluation, the consequences derived will be discussed. The experimental
conditions are as follows:

Two bodies are approaching each other and combine after axial contact, which means
ideal plastic behavior is assumed. The collision shall be completely central and so no rota-
tion will appear. In this case it is not necessary to use a vectorial calculation and the follow-
ing calculation for the momentum can be used

P3 = P1 T P2 = MyY1V1 + MYV = M3Y3V3 (7.01)

where v; and v, are the velocities before and v; after the collision, the same definition is
valid for the masses m;, m, and ms. If it is assumed that mass ms is at rest after the collision,
then the values of p; and p, will neutralize each other because the conservation-principle
of momentum must be respected. This means, that the absolute values of p; and p, are equal
but the algebraic sign is different and so the total momentum after collision p; is zero.

However, the kinetic energy before and after the collision is not equal. This becomes
clear when the equation of kinetic energy before the collision is considered (see also expla-
nations in chapter 6.1)

Exin = (y1 — 1)myc? + (y2 — 1myc? (7.02)
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7.1 Relativistic non-elastic collision

When again the situation is considered that mass m; is at rest after collision, then the
kinetic energy is zero ether. Because kinetic energy is a scalar and not a vector like it is the
case for momentum, it is compulsory that it must be transformed into another form. Other-
wise, the conservation principle of energy would be violated. When it is assumed in this
case that kinetic energy is transformed completely into mass the following equation is valid

Amz = (y; — Dmy + (y2 — Dmy (7.03)

where Am; is the increase of mass according to the transformation of kinetic energy.

To examine the situation an experiment with two different cases will be looked at, where
in one instance an observer will be at rest and in another case moving. For simplification of
the calculations, it is assumed that the masses of the bodies involved are equal, i.e. m; =
m, = m. The cases will be marked with A and B; this identification will be continuously
used for the relevant situations as index for the parameters depending on the velocities. It
will be presumed in the first instance that the simple relation m; = m; + m, is valid. How-
ever, during the following considerations it will become clear that this assumption is lead-
ing to discrepancies, and it will be proven that Eq. (7.03) is valid in any case without re-
strictions.

A: Referring to an observer A at absolute rest the velocity is v, = 0

Because m; = m, was presumed this stand for the fact, that before the collision the
two bodies are moving with equal speed but different directions, this means that be-
side v34 = 0 also v;4 = —v,, is valid.

B: Referring to an observer B at absolute rest the velocity is v;5 = 0

All calculations refer to v;5 = 0.

The following relations apply:

Observer A Observer B
V3a =0 vip=-Vpp vig =0
Momentum before P1Aa = MY1aV1A pig=0
collision Doa = —MY1aV1A Dog = MY25V2B
Momentum after
collision p3a =0 D3 = 2MY3pV3p
Eia Eig
Kinetic energy before 2 (r1a = Dm ~z =0
collision E E
2A 2B
Q2 = (yia — Dm Q2 = (Y28 — Dm
Kinetic energy after E3p E3p
collision = -0 —2 = 2(y3e = Dm
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7. Non-elastic processes

In the presented table the results for momentum and kinetic energy are presented which
apply for identical experimental conditions in view of the observers A and B. These will be
discussed further in the next chapters using the relativistic addition of velocities for com-
parison.

7.1.1 Results based on relativistic addition of velocities

For observer A the simple case v;, = —v,, is valid. The calculation of the velocity for ob-
server B makes is necessary to use the relativistic addition of velocities, which was already
described in chapter 4.1. Because of symmetry reasons the relation v;g = v applies and
this is leading to

Zle
Vpp=———— (7.04)
1+ (ULA)
c
Example:
Observer A via = 0,5¢ vos = —0,5¢ v3p =0
ObserverB vig=0 v, = 0,8¢ v3g = 0,5¢

7.1.2 Results based on relations for momentum

Observer A is considering the total value of the momentum before and after the collision as
zero because of the relation v;, = —v,, and thus

P3a = P1a T P24 = MY1aV14 — MY1a014 = 0 (7.05)

Observer B finds the following relations:

pig =0 (7.06)
P2 = MY28V>2B (7.07)
P3g = 2my3gVsp (7.08)

Because of the conservation principle of momentum, the values for p,5 and p;5 accord-
ing to (7.01) must be equal, so

Y2BV2B = 2Y3BV3B (7.09)

This equation allows the calculation of v;5 depending on v,5.

Because of the structure of the equation an analytical solution is not possible and so a
numerical solution must be used. In annex D different approaches are presented; here the
use of simple recursion, a procedure according to Newton and the bisection method were
chosen to effectuate a solution. In all cases the results for v;g were calculated using differ-
ent values for v,g.

As expected, all iteration methods lead to the same values; the procedures using simple
recursion and according to Newton share the advantage, that they converge very quickly
for small values of v/c. However, as a drawback the convergence is reducing for increasing
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7.1 Relativistic non-elastic collision

v/c and the use is no longer possible when extremely high values are taken. Increasing to
values higher than v/c > 0.9¢ the bisection method is the only procedure which is still
working.

Example:

Observer A vip = 0,5¢ vy = —=0,5¢ vy =0

Observer B vig=0 vy = 0,8¢ vag = 0,5547¢

7.1.3 Results based on relations for energy

Observer A will consider the case that the kinetic energy of the colliding masses will be
transformed completely into another form of energy (e.g. heat). This loss of energy has the
value of

Ejp + Ezp

2 =2m(y;a—1) (7.10)

For observer B this is implicating that the difference between the kinetic energy before and
after the collision is balanced and thus

2m(yzg — 1) =m(yp — 1) — 2m(y;a — 1) (7.11)

Y2B — 2Y1a +3
V3B = > (7.12)

This equation shows a simple analytical solution using

v 1 4
LEL N PR S _ (7.13)
c V3B (Y2 — 2y1a +3)

Observer A vip = 0,5¢ vy = —=0,5¢ vy =0

Example:

Observer B vig=10 vy = 0,8¢ vsg = 0,5293¢

(Negative results of the square root are not relevant because of plausibility reasons.)
7.1.4 Evaluation of the results

In Fig. 7.1 the deviations between the velocities according to the different calculations are
presented.
Here the following definitions apply:
V3p — Via

§ =3B "1A 7.14
- (7.14)

where &, is the percental difference for the momentum (chapter 7.1.2) and &g for the en-
ergy (chapter. 7.1.3). It is clear at first sight that the height and also the position of the max-
ima are not sharing any similarities.
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Fig. 7.1:  Difference values 6, and 8 depending on v,

It is obvious that for the non-elastic collision the consideration of the relations for rela-
tivistic addition of velocities and the conservation laws for momentum and energy using
these calculations are leading to completely different results. This means that in these cases
severe discrepancies would occur between the relativistic principles of identity and equiv-
alence (for definition of the principles see chapter 1.6).

Up to now the velocity vz of the two combined masses was calculated based on the va-
lidity of the laws of momentum and energy without any further correction. To find a solu-
tion for the observed problems, in the following the attempt is made to examinate the effect
on momentum and energy which occurs, when the relativistic addition of velocities is sup-
posed to be valid without further discussion. To realize this, the correction values C,, for the

momentum and Cj, for the energy are defined and used in the relevant relations.

a) Momentum

Equation Eqg. (7.09) is modified to
Cp - 2Y3BV3B = V2BV2B (7.15)

using the relation v;g = v, (see chapter 7.1.1)

1- (U%A)Z V2B

AN 1 (ULB)Z
c

(7.16)

Because of Eq. (7.04) is
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7.1 Relativistic non-elastic collision

. 2v14
ey ney
P 201, N 2
T
()
_ (Y1a)’
_ |2 () = L (7.17)

-]

This means that using unrestricted application of the relativistic addition of velocities
the momentum is smaller by the factor y, 4 than required by the law of conservation of mo-
mentum.

b) Energy
Equation Eq. (7.11) is modified to
Ce- 2(rsp =D =U2—-1D—-2(0r1a—1) (7.20)
With v3g = v, applies
(y2s— 1)
Cp=r——=<-1 7.21
P 20ra -1 (7.21)

To develop a simple solution, first the term y,g — 1 is considered. This can be trans-
formed using Eq. (7.04) to

1
Y — 1= =1 (7.22)
Zle
Via
1+ (%22)
and
14 (ILA)Z

Y —1=1% £ —1=20k-1) (7.23)

1— (ULA)
c
For this calculation it was decided to take only positive values for the results of the
square root, because negative values would lead to negative y, and physical interpretation

makes no sense in this case.
The result is inserted in Eq. (7.21)

_2(yia— 1) B
" 20D 729
_ (Yia+D@ia—1) 4
Cp = =1 1=vy1a (7.25)

This calculation is leading to the same result as already obtained for the momentum.
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7.1.5 Final approach for calculation

For final evaluation, the findings developed so far shall be summarized and reviewed first.
When in case of nonelastic collision examinations concerning the conservation laws of mo-
mentum and energy with invariant mass (this means ms; = m; + m,; 4ms; = 0) before and
after collision are conducted, then it becomes clear that the gained results for the velocity
vz are different to each other; further the calculated value using the equation of relativistic
addition of velocities come to another different result. The values of v; for the combined
body using conservation laws are both higher than the calculated result derived by relativ-
istic addition.

This would mean that the concept of simple addition of mass before and after collision is
no option because the basic principles concerning conservation of energy and momentum
are violated. If the approach presented in Eq. (7.01) of complete conversion of kinetic en-
ergy into mass is used instead, then considering the special case m; = m, = m

Eia + Ezp
Ams = — Q= - 2m(y;a — 1) (7.30)
is valid for the generated mass Am; by energy conversion (see also Eq. (7.04). For momen-
tum, the relation Eq. (7.07) remains unchanged before collision

P2 = MYy2BV2B (7.07)
but Eq. (7.09) after collision is developing to

P3g = 2MysgVsg = P3p = M3Y3pV3B (7.31)

Because of v;4 = v;p derived from relativistic addition of velocities this leads to

p3g = [2m(y1a — 1) + 2m]yspvap = 2mydgvsp (7.32)

The consideration of complete transformation into mass can be looked at as reverse ob-
servation compared to the conditions during the disintegration of particles and may be des-
ignated as “negative mass defect”. This result is corresponding exactly to the value of the
missing part of momentum and energy during collision and leads to the conclusion, that for
relativistic considerations of the non-elastic collision always an increase of mass in the
amount of the value presented by the transformation of kinetic energy must be presumed
to prevent the occurrence of discrepancies.

This is comprehensible on an atomic scale, for macroscopic objects it is not conforming
to the general understanding of processes, because e. g. during the generation of heat no
transformation processes are observed. However, in this case because of the definition of
heat — which means that a rising heat input is corresponding to increasing velocities of the
apparent mass — the increase of energy can be interpreted as relativistic consideration of
the oscillation-velocity of the participating atoms or molecules. When this issue is discussed
in the literature, normally the transformation of kinetic energy into mass is placed first and
then verified using the relevant equations, e.g. [47]. The approach presented here, however,
provides clear evidence that the increase of mass caused by complete transformation of
kinetic energy is required by the valid conservation laws.
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7.2 Relativistic considerations of particle disintegration

7.2 Relativistic considerations of particle disintegration

As already mentioned before, the disintegration of particles can be interpreted as the re-
version of the situation valid during non-elastic collision (see chapter 7.1). Because the
mathematical correlations of both effects are exactly the same, it is not necessary to present
the evaluations again. In this chapter the emphasis is laid on considerations of decay parti-
cles moving in different spatial directions and concerning the conditions, when the kinetic
energy is not converted into mass as discussed before but is dissipated by electromagnetic
radiation.

To avoid misinterpretations, it shall be generally defined that the dissipating particle is
indicated with index 1, for the decay products the indices 3 and 4 (and increasing further if
applicable) are used. An observer moving with a dissipating particle is additionally marked
as f', for an observer at rest f is used (without marking).

7.2.1 Analysis of disintegration into 2 particles

For the investigation of the situation in arbitrary spatial directions it is necessary to use the
analytical determination of aberration, which was already derived in chapter 2.3. The geo-
metrical dependencies are presented in Fig. 7.2. The description is completely comparable
and therefore the calculations will not be repeated. The only valid difference is concerning
equation Eq. (2.43), where the relation between the velocity of the moving system and the
speed of light is calculated. These must be replaced by the following relation

Eq.(2.43): b_d b_4 7.40
q.(243): —=- = e (7.40)
where v, is the velocity of the moving system and v; is the speed of an arbitrary particle
(the equations presented in the following can be derived in the same way for particle 4). It

is necessary to calculate the velocity v; using Eq. (4.20) according to

12 P Vi 2

V1V3SIina

2 2 / / 1”3 3
jvl + v3° + 2v,v3c08a; ( - )

vy = (7.41)

v v5C0Say

1+ 2

where in this case v3 is the velocity of the particle relative to the moving system and v; is
the velocity in view of the observer at rest. The calculation leads to the following result [see
also Eq. (2.48)]:

sinas
(cosa v1>
Y 3 Ué

Here a5 is the angle, which an observer at rest will find between the motion of a particle
relative to his system, while a3 is the angle of the same particle in view of the moving ob-
server. When the value of a3 is given then the resulting value for a5 can also easily be cal-
culated. The only conversion necessary is the change of the algebraic sign (for details see
chapter 2.3.4) and the result is

tana; = + (7.42)
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7. Non-elastic processes

sinaj

L
y (cosa3 + vé)

tanaz = *+

(7.43)

The validity of this relation can also easily be verified by numerical comparison. In table
Tab. (7.1a) some examples for the calculation of the resulting angles for different velocities
v; and v; are presented.

Fig. 7.2:  Definition of parameters to determine the angle of an outgoing beam for a moving
observer (examples for v; = 0.5¢, aj = 45°, a, = —135°)
a) Signal emitted in moving direction, a3 = 19,73°
b) Signal emitted backwards, a, = —64.44°
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7.2 Relativistic considerations of particle disintegration

0,57143 0,69631 0,69631 -180 0, 42105 =
45 0,55439 37,80 0,66612 0,52636 0,40825 —125 78 10,44953 0,1
90 0,50744 78,63 0,58890 0,11605 0,57735 -78,63 O, 50744

135 0,44953| 125,78 |0,50324 -0,29425 0,40825 -37,80 0,55439 0,5
180 0,42105| 180,00 ]10,46421 -0,46421 0 0,57143

0,46421 -0,46421 0,23210 0,218544 0,102492 0,321035

45 0,50324 -0,29425 -0,4085 0,23210 0 0,201548 0,119487 0,321035
90 0,58890 0,11605 -0,57735 0,23210 0 0,160518 0,160518 0,321035
135 0,66612 0,52636 -0,40825 0,23210 0 0,119487 0,201548 0,321035

0,69631 0,69631 0,23210 0,102492 0,218544 0,321035

1,33333 1,33333 0,00000 m 0,00000
45 0,77059 19,73 1,20008 1,13807 0,40825 -64,44 0,41229
90 0,66144 40,89 0,88192 0,66667 0,57735 -40,89 0,66144 —
135 0,41229 '54 44 0,45254 0,19526 0,40825 -19,73 0,77059 0,5

0, 80000
-
1,33333 0,666667 0,000000 0,666667
45 0,45254 0,19526 -0,40825 1,33333 0 0,569036 0,097631 0,666667
80 0,88192 0,66667 -0,57735 1,33333 0 0,333333 0,333333 0,666667
135 1,20908 1,13807 -0,40825 1,33333 0 0,097631 0,569036 0,666667
1,33333 1,33333 1,33333 0,000000 0,666667 0,666667

-----
0,57143 0,69631 0,69631 0,42105

45 0,55439 6,12 0,66612 0,66232 0,07107 -8,12 0,44953 0,5

90 0,50744 9,83 0,58890 0,58026 0,10050 -9,83 0,50744 AN
135 0,44953 812 0,50324 0,49820 0,07107 -6,12 0,55439 0,1

0,42105 0,46421 0,46421 0 0,57143
- “

0,46421 0,46421 1,16052 0,218544 0,102492 0,321035
45 0,50324 0,49820 -0,07107 1,16052 0,201548 0,119487 0,321035
90 0,58890 0,58026 -0,10050 1,16052 0,160518 0,160518 0,321035
135 0,66612 0,66232 -0,07107 1,16052 0,119487 0,201548 0,321035
180 0,69631 0,69631 0 1,16052 0 0,102492 0,218544 0,321035

o o o

Tab. 7.1a: Calculation for momentum and kinetic energy in a moving system.
Values marked grey: Approximation.
Values presented in frames: 180 °-angels.
Equations and dimensions: Tab. 7.1b and text.
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r o I\ 2
\/ v + v + 2v,vicosay — (M) []
U3 = 7 7 - C
1+ v1v3czosa3
c
sinas 180 | _ D3 VU3
a3z = arctan o | P3=—"—=—"V3
% (cosag + —}) n me. ¢
U3
- P3x V3 [] - Py V3 , []
= —=—vY,00S (x = —=—YVY3SIn (a
P3x me c V3 (as3) D3y me c Y3 (as3)
vivlsinal)\
v +v,% + 2v,v4c0say — (%) []
Uy = 7 7 ' C
1+ v1v4czosa4
c
sinay 180 ] Py Uy
a, = arctan | Pp=—=—Y,
% (cosa; + —}) n mec ¢
Uy
- Pax V4 [] - Pay Vs . []
= —=—v,c0S (o = —— = —VY4sSIn (&
Pax me c Va (aq) Day me c Ya (a4)
2Px = D3x + Pax ] XDy = Pay + Day ]
~ Eyin3 - ~ Eyina -
Ekin,3=#=y3_1 ] Ekin,4=#= s— 1 U]
ZEkin = Ekin,3 + Ekin,4 [-]
Tab. 7.1b Equations and dimensions used in Tab. 7.1a

The equations used in table 7.1a and the connected dimensions are summarized in table
7.1b. To ensure a clear arrangement the values are presented in a normalized form as p and
E with the dimension 1. This is also valid for the velocities; here the form v/c was chosen.

The values marked grey were calculated using an approximation process, because for
v3 = v; the developing equations contain a division by zero. The values of @3 and a, > 90°
were calculated using first standard calculations and then the results were reduced by 180°;
this is marked in the table using a frame (for further details see also chapter 2.3).

For the calculations, the following preconditions apply:
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7.2 Relativistic considerations of particle disintegration

[tis presumed that a particle is disintegrated into 2 decay products of equal size, of which
one is removing with an arbitrary angle a3. In this case the second “twin particle” will obey
an angle of @, = a3 — 180° because of symmetry reasons. For these products, the angles
as; and a, are calculated and the connected velocities v; and v, also. In a second step the
values for momentum according to

p3 = y1mvsz bzw. py =y,mu, (7.44)

were determined. In a further step the fractions in moving direction (x) and perpendicular
to it (y) according to

px =p - cos(a) (7.45)
py =p - sin(a) (7.46)

were calculated. When the angles a; and a, are added, the results in x-direction always
show the same results, in y-direction they annihilate each other. Further the values for the
kinetic energy were determined for particle 3 according to

Exinz = (y3 — Dmc? (7.47)

and for particle 4
Ekina = (o — 1)mc? (7.48)

The summation of these values is producing the same result for all angles. It was possible
to show with these calculations that for the disintegration into 2 decay particles the values
for momentum and kinetic energy in all cases for an observer at rest and in a moving system
are resulting in the same results and that it is not possible inside a system to decide whether
this is moving or not.

7.2.2 Disintegration into 2 photons

It is well known from experimental results that a particle can disintegrate completely into
photons without leaving matter. The °-pion for example is an extremely unstable particle
with an average lifetime of approximately 10718 s with the specific characteristic that it is
disintegrating with almost 99% probability into 2 photons. When it is presumed that the
disintegration is happening at a state of absolute rest the energy can be calculated using

E = myc? = hfs + hf, (7.50)

where h is Planck’s quantum of action and f; as well as f, are the frequencies of the emitted
photons. The momentum of one photon is

7= hga (7.51)

with € as unit vector in moving direction. Because of the conservation laws of energy and
momentum the frequencies for both photons are the same and their moving directions are
exactly opposite to each other. The momentum is zero before and after disintegration.
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7. Non-elastic processes

If an observer is monitoring a velocity v; before disintegration, then because of the rela-
tivistic mass increase the total energy of the particle is

E = yymyc? (7.52)

After disintegration, the emitted photons must carry the total energy and the momentum
of the particle. The total energy of the photons is

E =yihfs + y1hfa (7.53)

and the momentum of one photon
p= ylhée? (7.54)
When these relations are analyzed according to the ratio valid in moving direction, for

an observer at rest the kinetic energy of the particle and the momentum has also to be car-
ried away completely by the emitted photons. For the energy, the following relation applies

y1m062 =v1hfs + v1hfa (7.55)

and for the momentum in moving direction

f3 fa
Y1MoVy = V1h? - V1h? (7.56)

where f; is the emission in moving direction (positive) and f, opposite to it (negative). Us-
ing subtraction resp. addition of equations Eq. (7.55) and (7.56) then the values for the fre-
quencies are

_ my(c? +v,0)

3 = h (7.57)
_ mp(c? —vyc)
fa= h (7.58)
with
f3 c+ V1
== 7.59
fa ¢c—n ( )

This relation is exactly corresponding to the macroscopic behavior of moving emitters
which will be described in chapter 8.

For the derivation of the correlations in arbitrary spatial directions first the geometric
dependencies for emitter and receiver must be examined. In Fig. 7.3 it is demonstrated, in
which way observer A at the time A; and A, is sending specific signals. Depending on the
distance to receiver B and on the velocity different angles in relation to the moving direction
will appear. For simplification it will be assumed, that the receiver B, which is at rest, is far
away and the time between 2 signals is comparatively short and thus for the angles the
relation @; = @, = a can be presumed.

The time between the signals send by the moving emitter A is

At, = yAt, (7.60)
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7.2 Relativistic considerations of particle disintegration

compared to the relations valid for an observer at rest. Beside the extension caused by time-
dilatation, receiver B will also notice a geometric influence on time, because the emitter is
either coming or going relative to his position between sending out the signals. In total this
adds up to

Aty = yAt, (1 — gcos(a)) (7.61)

This is resulting for the frequency detected by receiver B

_ fo
Jo = y (1 —%cos (a))

(7.62)

A1 vd - cosa;
Fig. 7.3: Radiation geometry

To provide a final comparison between a particle at rest and moving, calculations for
different angles for outgoing photons are made. In Tab. 7.2 different angles a3 (in view of a
moving observer) are defined; the corresponding angles of the “twin” photon are differing
exactly by 180°, i.e. this means a, = aj — 180°. First the angles in view of the observer at
rest are determined using the equations developed in chapter 2.3 and the value for a5 is
calculated. Further the corresponding frequencies are determined, in the next step the mo-
mentum in x- and y-direction is calculated (using cos resp. sin of the angle according to Eq.
(7.45) and (7.46) presented in chapter 7.2.1). Finally, the total energy, which is released
during disintegration of the particle, is calculated for any angle.

The starting value for f, was set to 1. To ensure a clear arrangement the values for mo-
mentum end energy are again presented in normalized form as § and E; the dimension is
in this case 1. Detailed definitions and the resulting dimensions are summarized in Tab.
7.2b.

The summation of the values for momentum in x-direction and total energy are always
identical and correspond to the expected results; the values in y-direction add up to zero.
Further it is easy to show, that the results found for angle a3 = 0 correspond exactly to
equation (7.59), which was derived for the simple case for emission in moving direction
and opposite. Thus it was possible to show, that also in this case no differences appear
whether experiments are viewed by an observer at rest or referring to a moving system and
so no violations of the principles of relativity occur.
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7. Non-elastic processes

8 N 2N A 2 T A T

180 1,732 0577 0,866 -0,289
15 869 -15431 1,712 0597 0846 -0,269
17,59 -130,21 1,655 0,655 0,789 -0,211
26,90 -108,69 1,563 0,746 0,697 -0,120
G 3687 -9000 1,443 0866 0,577 0,000
47,79 73,92 1,304 1,005 0,438 0,139
B 6000 -60,00 1,155 1,155 0,289 0,289
73,92 -47,79 1,005 1,304 0,139 0,438
90  -36,87 0,866 1,443 0,000 0,577
108,69 -26,90 0,746 1,563 -0,120 0,697
130,21 -17,59 0,655 1,655 -0,211 0,789
15431 -869 0597 1,712 -0,269 0,846
COM 180 O 0577 1,732 -0,289 0,866
Tab 7.2a

Equations and dimensions see Tab. 7.2b

0,577

0,577 0,129 -0,129
0,577 0,250 -0,250
0,577 0,354 -0,354
0,577 0,433 -0,433
0,577 0,483 -0,483
0,577 1 =il
0,577 0,483 -0,483
0,577 0,433 -0,433
0,577 0,354 -0,354
0,577 0,25 -0,25
0,577 0,129 -0,129
0,577 0 0

o O O O O O O O o o o o

Calculations of angles, momentum (moving direction: x, vertical: y), energy.

2,309
2,309
2,309
2,309
2,309
2,309
2,309
2,309
2,309
2,309
2,309
2,309
2,309

[ c—v\'/2 as\] 180 ]
az = 2 -arctan ( ) tan|—= || -— Eq.acc.Tab. 2.4, No. 4
[\c +v 2 T
c—wv\/2 T —as\] 180 [°]
a, = 2-arctan ( ) tan . Eq.acc.Tab. 2.4, No. 4
N4 2 T
f3 — va [S—l] f4 — va [S—l]
y (1 — ;cos (a3)) y (1 +cos (a4))
I L [-] 5., =P _ Y [-]
P3x me  c fzcos (az) Pax me  c facos (@)

2Px = Pax + Dax

D3y = & = —f351n (a3) y Day = % = —f,sin (ay) ]
- - E -
2Dy = D3y + Day y E:y_h—f3+ﬁ} ]

Tab. 7.2b
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8. The constant phase-velocity of light

The topics discussed so far showed exact conformance with the explanations presented in
many other important and undisputed publications. In the following the observations of
transmitted signals with constant frequency will reveal an aspect, however, that is in con-
tradiction to established interpretations. These can only be solved when the constant phase
velocity of light is considered; this issue is therefore of great relevance for Special Relativity
and the most important part of the examinations presented here. Subsequently it will be-
come clear, that the assumption of a system at absolute rest in the universe is generally in
contradiction to Special Relativity but when using the principle of constant phase velocity,
it is just a special case inside the theory without violating basic experimental results.

8.1 Incoherency with Special Relativity using the standard derivation

In Figs. 8.1a and 8.1b the situation is illustrated, that two observers A and B exchange light
signals. At the beginning (position no. 1) a signal is transmitted from observer A, and at no.
2 it is received from B and reflected immediately. At position no. 3 observer A is receiving
the returning signal and the experiment comes to an end. Observers A and B are either at
rest relative to each other (case a, d and g) increase the distance (case b and c) or approach-
ing each other (case e and f). The transmitted and received signals are analyzed. It is well-
known that transmitted signals with a constant frequency leaving a moving system are re-
ceived with a higher frequency by a second observer when they approach each other, and
the frequency is lower in the opposite direction. The relation is described by

1 1+ 72
o1 c| _ .. v
feg=tl—z| =fhr(1+7) (8.01)
c

It is considered that the frequency of a moved observer is lower by the factor y because
of time dilatation. The values for the calculated frequency f, the covered distance a, the
necessary time t and the number n of the oscillations in these intervals are presented in the
following tables.
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8. The constant phase-velocity of light

It is not possible for both observers to decide based on a frequency analysis whether
they belong to system a), d), g) or b), c) resp. e), f). Considering the number of oscillations
between the observers, however, it should be clear that A and B according to the “principle
of identity” (see chapter 1.6) in cases d) and g) for the signals coming and going (situation
2 and 3) should measure the same values. A similar situation exists for b) and c) resp. e)
and f). It is obvious at first sight and without calculation that this cannot be the case. In the
following this will be discussed in detail.

In the tables of Fig.8.1a and 8.1b the results for the frequencies measured by an observer
at rest are shown. It is incorporated, that the generated frequencies in a moving system
appear to be reduced by the factor y for an observer at rest. In the second part of the table
the values for the distance a, the travelling time for the signal exchange t and the numbern
of the oscillations in these intervals are presented. The number of oscillations is calculated
using

n=f-t (8.02)

If the light signals are passing through an interferometer and have the possibility for in-
teraction, the observer at rest should be able to monitor interference patterns. Turning the
system by a degree of 90° towards the direction of motion the interference effect should
disappear.

Out of these considerations it is clear, that a discrepancy between the results of the num-
ber of oscillations between the moving system and the system at rest exists. Corresponding
to the presented diagrams the observations in these systems should be completely differ-
ent. According to this general theoretical approach the principle of relativity is violated
here.

Not surprisingly in reality this is not the case, however. The explanation for this is that
measurements by the moving observer cannot directly be compared with that of an ob-
server at rest. Because of the dependency of measurements of electromagnetic waves on
time and space, the two observers would find different results using this approach. To re-
solve the problem, it is therefore necessary to introduce the phase velocity, which is equal
to the speed of light for both observers.

When considerations of phase velocities are used, the conformity between the numbers
of oscillations detected by the two observers can be derived without difficulty. This is in
particular valid for the results in the discussed cases a, d and g. Because of the impact of this
important feature the effect of phase velocity is discussed in detail in the following chapter.

8.2 Concept of phase velocity to overcome the discrepancies for observers

During an exchange of signals between two observers, which are generally using light
beams for transmission, in a standard case harmonic oscillation will be used. It is not pos-
sible to integrate these oscillations directly into a space-time-diagram (i.e. in a Minkowski-
diagram). In short summary waves are typically considered in a way, that one of the varia-
bles (i.e. time) is looked at as constant and the other (for this example: space) is varying.
Taking the simple example of a wave, which is produced when a stone is thrown into water,
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8.2 Concept of phase velocity to overcome the discrepancies for observers

the investigation could be performed by taking a picture and measuring the distance of the
wave peaks (in this case time is constant). If in a further measurement the distance is kept
constant, e.g. by measuring a small cork moving up and down, then the frequency of the
wave can be calculated by measuring the time between two defined points e.g. the maxima.
Out of the combination of these measurements the velocity of the wave, which is travelling
with a certain phase velocity, can be calculated. It is also possible, however, to observe the
moving maxima in a direct way and measure the dependencies of time and the traveled way
by taking a video.

The situation can be described as follows: The oscillation is dependent on space (x) and
time (t) and is corresponding to the following equation [46a]

21 21
> (8.10)

0= ageos (e
w(x,t) 0COS Tt Ax a

In this case 4 is the amplitude, T is the oscillation time (considering a stationary view),
Ais the oscillation length (considering constant time) and « is the angle at the starting point.

w(0,t)

a =0, x=0
\ /\ /t w(0,t) = A, cosz—nt
\/ \/ 7
T

w(x,0)

NN\ e
\/ \/ X w(x,0) = A, cosz;x
A

Fig. 8.2:  Oscillation diagram for constant space (x = 0) and constant time (t = 0)
with starting point ¢ = 0

A major simplification is possible, when the variation of space and time of a certain point of
the wave (i.e. the maximum) is defined as constant (see Fig. 8.3). In this case the cosine
remains unchanged, and it applies

o 2 e~ a = const 8.11
T Ax a = const. (8.11)

After differentiation of this equation
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8. The constant phase-velocity of light

At Ax_

T =0 (8.12)

the phase velocity u of this point will be described by

—lim X2 8.13
e R tT ©3)

Without the dispersion by a medium (as it is the case in a vacuum), the formula develops to

u=g=c (8.14)

This derivation using the mathematical concept of differential quotient and limes provides
a good explanation of the physical principle [46a], more complex deductions with 4-vector
and gradient are also possible and obviously come to the same solution [27].

w w(x, t) w(x, t + At)

AN ~X_/

— U - At fe—

Fig.8.3: Phase velocity u as propagation speed of defined parts of the oscillation
(i.e. the maximum)

Thus, the main conclusion is that the phase velocity of an electromagnetic wave measured
in any arbitrary inertial system is exactly equal to the speed of light. In Fig. 8.4 the phase
velocity is presented as a function of space and time. Because it obviously shows a linear
characteristic the graph will be a straight line with origin zero and, after scaling, it will dis-
play an angle of 45° to the x- and t-coordinate. The right part of the diagram is showing in
addition the graphs for a moving observer with velocities of v = 0.2¢; 0.5c¢; 0.8c.

02 05 08 1
t t
1 - 1 =
T T
1 X 1 X
Fig. 8.4:  Left: Phase velocity as a function of time and space (scaled diagram)

Right: Velocities of moved observers with different speed added
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8.2 Concept of phase velocity to overcome the discrepancies for observers

At this point it becomes clear, that this presentation is exactly coherent with a Minkow-
ski-diagram. This means, that a phase-propagation (i.e. the maximum of a wave) can be
taken as a short light pulse and therefore it can be incorporated in diagrams of this type and
evaluated in the same way.

In Fig. 8.5 a situation like this is illustrated. The presentation of this diagram seems to be
unusual at first sight. Having a closer look, however, some important issues can be derived
from it, so that the appearance of this Minkowski-diagram will be discussed in detail in the
following. Many important examinations are possible, but a clear arrangement in one dia-
gram would not be reasonable because of the quantity of information. So, it was decided to
use in Figs. 8.6 and 8.7 the same chart, covering additional information while others were
skipped.

ct

Fig. 8.5:  Minkowski diagram for the exchange of signals inside a moving system

First the general setting of the chosen experiment shall be discussed: A laboratory with
the length 2a is moving relative to another observer at rest with the speed v = 0,5 c. The
diagram is scaled to 1 concerning space and time (this means that a = 1 for a laboratory at
rest). At time zero the moving observer starts from point E, with the transmission of a har-
monic oscillation of 1Hz and is beginning with a maximum. The oscillation is reflected at
point A and sent back to E.

The observer at rest will find, that the moved laboratory has a length of 2a/y. Because
of his view on the time dilatation in the moved system, he will additionally find that the
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8. The constant phase-velocity of light

oscillation will end at AT, = y (at point E; ). The following maxima will therefore start at E;,
E, etc. and can also be interpreted as separate pulses and so it is possible to record them in
this diagram as well.

ct

Fig. 8.6:  Minkowski diagram for the exchange of signals in a moving system
(middle section), variation of Fig. 8.5

The maximum of the oscillation it is moving at a speed of v = ¢ and is reaching the middle

at

1
ty, = ——~ (8.15)

T

(see Fig. 8.6) Point A will be reached after twice the time. When the wave is reflected, the
point M, will be passed at

2 1
tMZ = +

AR

This is exactly the value, that would be yielded by a pulse emitted from E, (equivalent to

)=y- (3 +§) (8.16)

the maximum of a wave) which leads to

tw, = 2y + ;)=y- (3+9) (8.17)

T
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8.2 Concept of phase velocity to overcome the discrepancies for observers

This calculation shows that the situation in the middle of the moved laboratory reveals
exact the same conditions compared to an observer at rest. In the latter case a signal would
be emitted by E,, that after reflection arrives back at t = 3 in the middle of the laboratory.
Another signal, that is sent from Ej at t = 2 would reach the middle at the same time. This
is as already presented also valid for the moved observer when phase velocities are consid-
ered.

The relations presented here can easily be transferred to other situations, if for example
frequency, geometry or other conditions are modified. This is leading to the general state-
ment, that the measurement of the number of oscillations under no circumstances can be
used to measure the state of motion of an inertial system.

Fig. 8.7:  Minkowski diagram for the exchange of signals in a moving system,
variation of Fig. 8.5

Furthermore, the values for oscillation time and frequency of an observer at rest shall be
derived out of this diagram. If the testing object is increasing the distance the value is

AT, =—=——— (8.18)

and when it is approaching
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8. The constant phase-velocity of light

i1
)

This is in accordance with standard publications (i.e. [46b]).

As main result it is possible to prove, that concerning the radiation of light in any arbi-
trary inertial system the phase velocity of the light emitted by one source is equal to the
measurement of the speed of light in any of these systems (this is of course not the case for
the simple example of surface waves on water!). The important finding derived by the con-
siderations presented here, is that during the transition from an arbitrary inertial system
to another not the speed of light, but the phase velocity remains unchanged. It was clearly
shown that this is required by the theory of Special Relativity and otherwise contradictions
would appear.

In the literature the importance of phase velocity in connection with Special Relativity is
treated very differently. In a normal case it is not mentioned at all in books, lecture notes or
publications, but there is an exception in the work of R. K. Pathria [16]. Herein the “invari-
ance of phase velocities” between systems moved relative to each other is examined in ex-
tenso, but no further consequences concerning the theory are discussed.

The discovered relations are of great importance for the theory. It is interesting, how-
ever, that it is not possible to find this concept in the literature up to now. Because of this
reason it is necessary to reconsider classical experiments, in particular those of Michelson-
Morley and also Kennedy-Thorndike. It will be demonstrated that the use of the concept
presented here will lead to a different understanding of the results. This will be presented
in detail in chapter 9.

Finally, it is possible - before developing the theoretical background further - to present
a first result of the examinations:

AT, = (8.19)

e Itis possible, that the universe is at absolute rest and all electromagnetic waves are
travelling with the speed of light ¢ inside this system.

e Observers in any inertial system with an arbitrary velocity relative it can only meas-
ure the phase velocity of these waves and doing this they will find also the same
value of c.

At first these perceptions will be used to carry out new interpretations of classical ex-
perimental results. After further discussions finally in chapter 13 a proposal for modifica-
tion of the theory of special relativity will be presented.
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9. New interpretation of experimental
results

In the following the most important experiments with impact on Special Relativity will be
presented and discussed. In particular concerning the Michelson-Morley- and the Kennedy-
Thorndike-Experiments new considerations will be derived when the concept of phase ve-
locity is used. In addition, other fundamental experiments will be described in a short way.

9.1 Michelson-Morley-Experiment

At first the experiment conducted by A. A. Michelson and E. M. Morley will be discussed in
detail. Because of the high importance, subsequently a comprehensive literature survey will
be presented, and the conclusions derived from this test will be described.

9.1.1 Experimental layout and evaluation

The layout of the experiment presented in Fig. 9.1 is a reproduction out of the original pub-
lication in 1887 [7]. In this figure the set-up is shown, where a light beam at mirror a is
partly reflected in direction ab and partly transmitted in direction ac, being returned by
the mirrors b and c, then reflected resp. transmitted to d and at this point examined with
an interferometer. Part 1 of Fig. 9.1 is presenting the position at rest; in part 2 the situation
of a moved system (against the supposed ether) is given.

Theoretical basis of the experiment was the assumption, that the speed of light and the
speed against the ether at rest could be added and that it would be possible to evaluate the
latter by precise measurements. The whole time of going and coming between a and ¢ can
be calculated using

_— D D _ 2Dc 9.01
”_c+v+c—v_c2—v2 (9.01)

where D is the distance between a and c. The distance traveled in this time is

2

c
D” = 2D —CZ — UZ

(9.02)
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9. New interpretation of experimental results
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Fig. 9.1: Layout of the Michelson-Morley-Experiment, reproduction from original report [7]

In transverse direction the calculation yield

D,
T, =% (9.03)
vy
and
vi = c? +v? (9.04)

172
Dy =2D |1+ (9.05)

Neglecting terms of 4t order and higher the equations (9.02) and (9.05) after Taylor
expansion develop to

2
D, =~ 2D <1 + c_2> (9.06)
2
D, ~2D[1+— 9.07
Now the difference is
AD = D,—D, = 2D 1+v2 2D 1+v2 —sz 9.08
e c? 2¢2) 7 2 (9.08)

Looking at the calculation with today’s knowledge concerning the speed of light, it con-
tains the obvious problem that the calculations predict velocities v > c. In the following it
will be shown that this will not be the case when correct calculations are used.
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9.1 Michelson-Morley-Experiment

First the value of T; will be considered. For this purpose, the calculations in chapter 2 are
used (see Tab. 2.1):

D D 2D )
Ty = - =—y (9.09)

-5 ey

It is clear at first sight that for the consideration according to this approach the time for
going and coming is exactly opposite to Michelson’s ideas, but that the addition of both re-
veals the same result.

In transverse direction the calculation is slightly different. For the calculation, the de-
pendencies shown in Fig. 9.2 are used (see also chapters 2.1.2 and 2.2.3).

/ \ (¢T)? = D?* + (vT)?

cT / \ cT T D
/ D \ - \."m

Fig. 9.2:  Dependency between distance D to the reflector and velocities v and c.

So, the value for T'; is

_— 2D _2D 9.10
1= '—CZ_UZ_CY (9.10)
and
2D
D, = ———==2Dy (9.11)
1Y
-

This result differs from the conclusion of Michelson according to Eq. (9.05). The differ-
ence is appearing with the following term and the connected Taylor expansion

l+S=1l+s5—=-—+—=—— (9.12)

v* 15v°

— 9.13
c* + 48 c® + ( )

I
Uy
+

|

|

| w
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9. New interpretation of experimental results

If terms of 4th order or higher are neglected the results are the same and both calcula-
tions can be used without restrictions.
Now the calculation reveals

_h =T 2
and for v < ¢ because of
2
v
~1+— 9.15
the result is
AD = 2D 1+v2 2 1+v2 sz 9.16
- 2c? 2¢2) |7 7 c2 (916)

A. A. Michelson showed in his calculations, that the experiment was able to detect veloc-
ities of about 8km/s but a null result was received instead. The motion of the earth around
the sun (without further consideration of the motion of the sun compared to the galaxy)
reveals however values of approximately 30km/s.

G. F. FitzGerald proposed already in the year 1889 the idea that the length of material
bodies changes, according as there are moving through the ether or across [8]. He expected
an amount depending on the square of the ratio of their velocities to that of light. The same
issue was also predicted independently by H. A. Lorentz three years later [13]. After the
Lorentz equations were fully developed it was shown that contraction of space and dilata-
tion of time is covered by the same parameter and the factor y was defined (see Eq. 1.03),
ie [12,13].

The results of the experiment were further leading to the conclusion that the proposed
“luminiferous ether" could not exist. This interpretation is correct in so far, if the radiation
of light is thought to be connected in a simple way, as e.g. transporting sound through a
carrier medium like gas or a liquid. If in a space, however, which is considered as absolutely
at rest, time dilatation and spatial contraction in direction of a moved body belong to the
characteristics of space, then a simple solution of the problem is also possible. Considering
the possible effects of constant phase velocity, then during changes between different iner-
tial systems any discrepancies will disappear.

Summing up the results of the Michelson-Morley-Experiment it can be stated, that in the
direction of movement a contraction of space must take place. This contrasted with the as-
sumptions at the end of the 19th century that ether-wind like in a gas would exist. Further
interpretations, however, concerning “luminiferous ether” are not possible.

9.1.2 Literature review

The Michelson-Morley-Experiment is discussed in many publications. The “Conference on
the Michelson-Morley Experiment” held in Pasadena at the Mount Wilson observatory in
1927 is for sure one of its highlights. Because of the paramount importance of the partici-
pating scientists and the detailed discussions laid down in the conference paper published
in1928 [49] a very meaningful document of the scientific standard of that time is preserved.
The basic understanding has still not changed substantially until today. Because of the
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9.2 Kennedy-Thorndike-Experiment

particular significance in the following the detailed topics and discussions of the Conference
will be presented. Beside the scientific importance there are further interesting historical
highlights which will be recognized as well.

First A. A. Michelson presented a report about the historical background [49a]. He told

about the first trials at the Helmholtz-Institute in Berlin, which were not successful because
of disturbing traffic and were later repeated at the Observatory at Potsdam. The null result
that was achieved was questioned by many scientists of that time, because of the short
length of the detector arms of the device used. The important improvements realized by E.
W. Morley at the University of Cleveland later led to an experiment without doubt.
The theoretical background of the experiment was presented by H. A. Lorentz [49b]. His
considerations were far more complex, especially concerning the dependencies of angular
measurements which were not covered by A. A. Michelson before (see chapter 7.1.1). Sub-
sequently D. C. Miller [49c] summarized the status of the results of the experiments at that
time. He also reported about measurements, which showed positive results concerning the
measuring of the ether (Remark: These results could not be repeated in later experiments).
R. S. Kennedy then presented information about the special measurement technique of the
interferometer [49d].

E. R. Hedrick [49e] and afterwards P. S. Epstein [49f] were covering in their presenta-
tions additional theoretical aspects. The focus was directed to the difficulties which occur
when a mirror is moved relative to potential ether at rest. A detailed interpretation of the
work of A. Righi [50] concerning this subject was presented, although much older publica-
tions are existing (e.g. [51,52]). (Remark: Because of the sudden death of the Italian physi-
cist A. Righi only very few and fragmentary records were available. These were summarized
and edited by |. Stein S. ]. from the observatory of the Vatican [50]). E. R. Hedrick presented
alist of 15 publications, which are dealing with theoretical interference-problems concern-
ing the Michelson-Morley-Experiment [49e].

It is noteworthy that some of the results of the cited authors differ significantly. A. Righi
expressed the opinion that the Michelson-Morley-Experiment, because of the angular meas-
urement of the mirror through the ether, could not reveal any result; E. R. Hedrick however
concluded that these effects exist but could be neglected.

Without further going into detalil, it can be stated, that in all cases only the shifting of the
mirror in relation to the ether is considered but not the movement of the whole system with
the interferometer. H. A. Lorentz made a statement in the discussion, that the presented
calculations regarding a moved mirror showed deviations to his results and encouraged an
additional survey [49g]. A consideration of phase velocity was not taken into account. H. A.
Lorentz died in the year after the conference and no reports exist, whether he ever again
dealt with the problem. This is also valid for other authors and no statement of the partici-
pants concerning this matter is available.

9.2 Kennedy-Thorndike-Experiment

In this experiment performed by R. ]. Kennedy and E. M. Thorndike also, like in the Michel-
son-Morley experiment, an interferometer as testing equipment was used. The chosen set-
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9. New interpretation of experimental results

up is different from the Michelson-Morley-Experiment mainly using measuring arms with
different length in the design of the interferometer. In addition, the very stable construction
and the extreme accuracy of the temperature control made it possible to conduct long-term
measurements. The measuring device was surrounded by a water system that made it pos-
sible to keep the temperature deviations at a level lower than 1/1000 °C. With this equip-
ment experiments were conducted that lasted weeks or even months.

In principle the experiment follows the idea, that the measurement device is not moved
or tilted but that the deviations in direction to the ether are supposed to be executed by the
rotation of the earth and the circulation around the sun, and thus tilting and also accelera-
tions are caused by the movements of the earth [16]. In the literature interpretations exist,
where the rotation of the device relates to the Michelson-Morley experiment and only the
acceleration is referred to as the original Kennedy-Thorndike experiment [54]. Because of
the general situation, that both effects (rotation, acceleration) are always connected to each
other, they shall be discussed here together as well.

During this experiment and in following trials with an extraordinary increase of the pre-
cision — like for the Michelson-Morley-Experiment — a null-result was achieved.

In the following it shall be demonstrated first that the interpretation by the authors [16]
in the year 1932 because of some conceptual shortcomings was not correct. Because of this
reason actual considerations follow modified approaches like presented for example by D.
Giulini [19]. It shall be demonstrated, however, that these new concepts also contain weak
points and that it is possible to overcome this problem by a modified interpretation. This
will now be discussed in detail and afterwards a final examination will be presented.

9.2.1 Interpretation according to the original publication

A system S is considered, where a light beam during time dt is traveling the distance ds
[16]. Then it applies

ds = cdt (9.20)

If now a system S’ is introduced which is moving relative to S with a velocity of v then
this leads to

c2(dt")? = (ds')? + v2(dt")? + 2vds’'dt'cos’ (9.21)

where 6’ is the angle between the radiation of the light and the moving direction. For 8’ =
0 it applies

cdt' = ds' +vdt’ (9.22)
If the results derived by the Michelson-Morley-Experiment are considered, the following

relations in longitudinal direction (6 resp. 8’ = 0°) and further in transverse direction
(6 resp. 8’ = 90°) will be found.
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9.2 Kennedy-Thorndike-Experiment

Moved system S’ System at rest S
dr = % dt’ ds
6" = 0° =T 6 =0° =T oy
c(1-2) re(1-7)
' d
' =90° dt' = d_sy 6 =90° dt' = —S)/
C C

The integration according to [16] show the following result

! !
sj—S
’ A | 1
G-t =

(9.23)

Here conceptual problems become apparent, because only the path in direction to the
reflecting mirror is considered, but not the way back. For the distance to the mirror in mov-
ing direction and back different values will appear. Further it is assumed, that spatial con-
traction and time dilatation are exactly the same, what is not possible at this stage of the
interpretation without further assumptions. Therefore, the interpretation of the original
publication shall be stopped here and thus switched to modern descriptions of the experi-
ment.

9.2.2 Concept according to actual publications

In recent publications (e.g. [19]) the presentation of the experiment is different. It is only
possible to derive the equation

(Sn SL)

ty—t, = (9.24)

where the constant B will be measured later, for example by using the Ives-Stilwell-exper-
iment (see chapter 9.3), and then shows a value of B = 1.

The real problem concerning the interpretation of the Kennedy-Thorndike-experiment
using this concept is the principle of evaluation. Hereby the situation occurs that according
to equation

(Sn Sl)

AN = f-B——— (9.25)
with f as frequency a dependency is established between the number of oscillations of a
light beam going and coming the way the from a light source to an interferometer and the
connected frequency. If the different length of the measuring arms is taken into account,
however, it is clear at first sight that a light beam, which is split and sent out in different
directions obviously after reflection does not rejoin at the same place, and that a certain
delay will be observed. In the following an alternative interpretation of the experiment will
be derived where this condition is respected.
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9. New interpretation of experimental results

9.2.3 New interpretation of the experiment

As already stated, one of the most important conditions of the experimental set-up is the
fact, that measuring arms with different lengths are used. Because of this situation it makes
no sense to compare the total amount of oscillations of the light beams between these arms.
The concept of constant phase velocity of light discussed in chapter 8 opens a different pos-
sibility on the apparent effects of interference. When an interaction between light pulses is
observed and a comparison at an interferometer is conducted it becomes clear, that the
pulse, which is running the way of going and coming at the shorter measuring arm must be
considered as delayed compared to the other one.

When the lengths of the measuring arms are defined as L. (long) and Lg (short) then the
time for the delay T, until the transmitting of a pulse in a system at rest is

2Lc 2Lg 2Lc(1-k
To — c B — C( A) (930)
c c c

with

=1
defined as the constant for the ratio of the arm lengths. The total time for going and coming
of a light beam is therefore

ka (9.31)

_2Le(i=ke) _ 2Lcky
- c c
2L

T, = 9.33
== (9:33)

5 (9.32)

where Eq. (9.32) and Eq. (9.33) are obviously equal. If now the experimental set-up is mov-
ing with measuring arms longitudinal and transverse to the moving direction, and for the
arm in longitudinal direction a spatial reduction of y derived by the results of the Michel-
son-Morley experiment is valid, then the following calculations will be derived for the dif-
ferent situations

2L.(1-k 2Lk
Tip=Tip =a ol A)+b <2y (9.34)

Tic =Tic =b—vy (9.35)

where a is an initially unknown constant for the correction of the starting time of the signal
at the shorter arm. The additional constant b is introduced because the result of the Michel-
son-Morley experiment shows that just the ratio between the contraction in longitudinal
and transverse direction can be derived but not the exact dimension.

Now equations Eq. (9.34) and Eq. (9.35) are set equal

2L 2L-(1—k 2Lk
~—“y=a c(17ka) |}, ZLcks (9.36)
C C C
2L 2L-(1—k
bTC(l—kA)y=a¥ (9.37)
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Fig. 9.3:  Kennedy-Thorndike experiment: Rotation
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Fig. 9.4: Kennedy-Thorndike experiment: Acceleration
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with
s=V (9.38)

The calculation shows that a zero result for the measurements is only possible when the
ratio between the constant for the starting time of the shorter measuring arm and the factor
for the spatial contraction are exactly equal to the constant y of the Lorentz Equations. To-
day we know, derived by additional experiments concerning time dilatation (e.g. by Ives-
Stilwell, see chapter 9.3), that b = 1. During the time of the first execution of the experiment
in the year 1932, however, this was not the case.

It is possible to illustrate the experimental set-up as presented in Fig. 9.3 and Fig. 9.4,
were for the relation between the lengths of the measuring arms a ratio of 1/3 was chosen.
At first the behavior during a rotation is presented (Fig. 9.3) afterwards the situation for
acceleration (Fig. 9.4). In reality, it will be generally the case that both situations cannot be
separated and will appear together, so that the effects will superimpose each other. Light
pulses are transmitted and reflected at mirrors B and C; the denomination C;, C,,B; and B}
shows, whether the reflection will be in longitudinal or in transverse direction relative to
the movement of the system.

The coordinates of the relevant points were calculated and are presented in table 9.1.
The format x, y, t was chosen; in the direction of z no movement takes place and so those
values were not included (this means z = 0). For the relation between longitudinal and
transverse direction the spatial contraction was considered by the factor of y according to
the results of the Michelson-Morley experiment.

Coordinate x y t
LC LC
C" v 0 v
r(1-¢) re(1-3)
L L
C, YocV L¢ Yie
c c
2yLcv 2yL
Ay P (1~ ky) 0 C (1 ky)
c c
2yLcv Lck 2yL Lck
B Yc(l_kA)+ cka yc(l—kA)+ cka
S 7 ) I I )
c c
2yLcv Lcv 2yL L
B, Cl 1 -t + E%, Lcka k) + Tk,
c c c
A, 2yLcv 0 2yL¢
c c
Table 9.1: Presentation of coordinates according to Fig. 9.3
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9.2 Kennedy-Thorndike-Experiment

The values in Table 9.1 for A, can be derived according to the effective length of the beam
in 4 different ways which are all leading to the same results. This is presented in Table 9.2.
It was presented here, that a rotation of the apparatus and the comparison between a
moved system and a system at rest show the same results. The calculation reveals further
that correction factors for the starting time and for the spatial contraction are equal and
must be exactly y in both cases. This will be discussed further in more detail in the next
chapter.

The presentation for acceleration in Fig. 9.4 shows the same correlations already pre-
sented in chapters 4 and 5 and so there is no need for further evaluation. There are in prin-
ciple no discrepancies when transitions between systems with different velocities are ana-

lyzed.
Path
over: x t
L¢ L¢ L¢ N L¢
C" v\ v v v
r(1-3) r(1+3) re(t-g) re(1+3)
c Yev | Ylev vle |, Yie
+ c c c c
2vL-v Lqk L-k 2vL L-k L-k
B, YL¢ (1—k,) + CAv_ CAv yc(l—kA)+ CAv CAv
r(1-¢) v(1+3) re(1-2) ve(1+g)
2yLcv YLcv YLcv 2yL¢ YL¢ YL¢
B, C (1—ky+ . k, + . k, - (1_kA)+TkA+TkA

Table 9.2: Calculations of value A, using paths over the positions C;,C,, By and B, .
All calculations reveal the same resullt.

9.2.4 Evaluation of results

When the results of the experiments of Michelson-Morley and Kennedy-Thorndike with the
apparent zero results are viewed closely it becomes clear, that a final definition of the con-
stants a and b is not possible without further information and a statement about the validity
of the Lorentz equations will remain incomplete. Usually the Ives-Stilwell-experiment will
be used for this purpose, which is described shortly in chapter 9.3. It is in addition also
possible to use other simple possibilities to validate the results.

If for example the assumption is made thata = 1 and thus b = 1/y, this would mean that
a moving system is not subject to any time dilatation at all, but on the other hand the spatial
contraction in moving direction would be of the factor y? and in addition in transverse di-
rection the factor y must be taken.

Tests concerning effects like these are not complex and could be subject to several dif-
ferent experiments. This would be possible for example for the exchange of signals between
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9. New interpretation of experimental results

moving observers (see chapter 2.1) or for the frequency measurements of moving bodies
(chapter 8). Beside the differences in the measurements, furthermore the principle of rela-
tivity will be violated, and different results must appear whether a situation is monitored
by an observer at absolute rest or from a moving system. The deviations are not only valid
for this example but for all other configurations when the constants are not chosen as a =
yand b = 1.

The title of the publication from Kennedy and Thorndike was “Experimental Establish-
ment of the Relativity of Time”. Because of the dependencies between the constants a and
b expressed above it is today generally rejected, that the approach expressed in the head-
line was successful, see e.g. [19]. However, if in the year 1932 the authors would have car-
ried out a correct interpretation by using the principle of constant phase velocity, then al-
ready at that time the statement would have been possible. Independent from this, this ex-
periment with all the improvements in accuracy carried out in the meantime, is an im-
portant tool for the understanding of the nature of signal exchange between moving ob-
servers.

9.3 Further important experiments

There are many further pioneering experiments connected with the nature of light and ra-
diation. Those with high importance concerning the evaluations presented here will be dis-
cussed shortly in the following.

a) Rgmer-Experiment

This was the first experiment with the attempt to measure the speed of light. Most im-
portant was, that it was proved for the first time (in the year 1676!) that the speed of light
is limited. The detection was conducted by O. C. Rgmer measuring the occultation of the
Jupiter moon Io that occurs earlier when the planet is close to earth and later when the
distance is larger. With his measurement results C. Huygens in 1678 was able to calculate
the speed of light and he found a value of ca. 213.000 km/s which is approximately 71% of
the correct result.

b) Aberration of light

This experimental effect was established the first time by J. Bradley in the year 1725. He
discovered that the star Gamma Draconis showed a small deviation of its position in the sky
during the progress of a year and supposed that this was caused by the finiteness of the
speed of light. His measurements already achieved a precision of 2% (for further details see
also chapter 1.3).

c) Double star experiment

The examination of double star systems provided evidence for the first time that the speed
of light is independent of the speed of the object that is transmitting the signals. These con-
siderations were mainly carried out by W. de Sitter, who was able to verify by spectroscopic
examinations that the addition of the speeds of light and the emitting source would lead to
a violation of Kepler’s laws [55].
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d) lves-Stilwell-Experiment

This experiment is confirming directly that time is running more slowly for a moved ob-
server compared to a reference system [17,18]. To prove this the transversal Doppler Effect
of light was investigated using canal rays that were approaching or increasing the distance
to the installed measuring equipment. The values found are showing impressively the value
of the Lorentz-Factor y.

e) Trouton-Noble-Experiment

In this case a charged capacitor was taken, which could turn free around an axis. In case of
evidence of the ether it would tilt around this axis because of a reaction which would be
caused by the rotation of the earth. The basic principle of this experiment is comparable to
the Michelson-Morley-Experiment. Although electromagnetic effects are not part of the
considerations presented here the mentioning of this important experiment shall not be
missed [56].

If additional information is required further experiments can be found in other publica-
tions (e.g. [19,21,57,58]).

9.4 Final examination of the experiments

In the year 1949 H. P. Robertson was the first to establish a summarizing classification of
the different types of measurements and created a concept that is still in use today [59]. The
following measuring methods and the significance connected with these are defined:

1. Michelson-Morley:
The total time required for light to traverse a certain distance and return is inde-
pendent of its direction.

2. Kennedy-Thorndike
The total time required for light to traverse a closed path is independent of the ve-
locity of the system compared to an arbitrary reference system.

3. lIves-Stilwell

The frequency of a moving atomic source is reduced by the factor y compared to an
arbitrary reference system.

Modern presentations of the experiments are sometimes using slightly different inter-
pretations, but the description shown here is very close to the first classification by Robert-
son.

When the relations of the invariance of phase velocity presented before are considered,
it can be stated that the new improved interpretation of the experiments is leading to a
better understanding of the processes, but that the fundamental results of the experiments
are still valid. The Michelson-Morley and the Kennedy-Thorndike experiment are not able
to describe the situations appearing in moving systems in full detail. It is possible, however,
to use other simple experiments to validate the results (see chapter 9.2.4).

151



9. New interpretation of experimental results

The question remains, why the great importance of the phase invariance of light between
systems moving relative to each other was not in focus and is not part of the discussion till
now. The fundamental principle belongs to the standard knowledge of today’s physics, e.g.
[46a]. The effect of the movement of an experimental set-up was also discussed quite often
(see e.g. [49,50,51,52]). Further comprehensive theoretical examinations concerning the
“invariance of phase-velocity” exist [27]. Despite of the great importance of the discussed
matter for modern physics up to now no approach was made to combine these findings. It
seems to be highly likely, that the results presented here are caused mainly by the conse-
quent approach regarding the observation of a system at rest compared to moving systems
and following the resulting relations.

Finally, some examples shall be presented, how the precision of measurements was de-
veloping in the last decades.

e Inthe year 1960 the definition of the length of 1 meter was defined in the following
way using the wavelength: “The metre is the length equal to 1650763.73 wave-
lengths in vacuum of the radiation corresponding to the transition between the lev-
els 2p10 and 5d5 of the krypton 86 atom” [87].

e This definition was valid for many years and was then replaced by a new regulation
with the time as basis. Since 1967 the second has been defined as the duration of
9192631770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of cesium 133 atoms [88].

Without the principle of invariance of the phase velocity both definitions are not possi-
ble, because already smallest movements relative to reference systems containing one of
these experiments would have led to discrepancies in observations.

There is a further aspect referring to the invariance of phase velocity. This is the “fre-
quency comb”, where pulses of extreme shortness are produced with a femtolaser and then
reflected in a mirror-system to interfere. Thus, a standing wave is produced that is also re-
ferred to as “comb” (to background and historical development see e.g. [53]). It is interest-
ing that this technique is a “hybrid” type of generation of light; the extreme short pulses can
be interpreted in their collectivity as waves. Here a classical interpretation with the com-
parison of frequencies makes definitely no sense at all.
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10. Electromagnetism and Gravity

In the 19th century, electrical and magnetic effects were intensively researched. As already
described in chapter 1.4, the invention of the first functional battery by Alessandro Volta
made experimental investigations possible. The chapter also summarizes further details on
the key developments and the many people involved.

The most important result is that all electromagnetic processes can be summarized in
the representation of Maxwell's equations. These are listed in chapter 10.1, followed by a
formal comparison with the conditions concerning gravity. To understand these relation-
ships, a basic knowledge of vector calculus is required, the most important elements of
which are summarized briefly in Appendix E.

10.1 Maxwell’s equations

The system of Maxwell's equations consists of 4 laws. Their names and a brief explanation
are given below. The formulaic representation and the basic meanings are summarized in
Table 12.1. Table 12.2 shows the designation of the formula symbols and the associated
dimensions.

1. Gauss’s law
In the physical fields of electrostatics and electrodynamics, Gauss's law describes
the electrical flow through a closed surface. It is named after the mathematician
Carl Friedrich Gauss, who developed the integral theorem named after him for a
vector field.

2. Gauss’s law for magnetism
Analogous to the electric field, this describes the magnetic flux through a closed
surface.

3. Faraday’s law
The law of induction, discovered by Michael Faraday, describes the structure of

electric fields.

4. Ampére's law with Maxwell's addition
Based on André-Marie Ampeére's law, this describes the structure of a magnetic
field.
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10. Electromagnetism and Gravity

For a better understanding of the relationships, the 4 Maxwell equations in Table 10.1
have been arranged in such a way that the sequence from the static electric field via the
dynamic changes in electric and magnetic properties leads to the static magnetic field. The
coupling of the electric and magnetic field constants represents the connection between the
two parts. In the right half of the table, the respective meaning of the relationships has been
added in short words.

— = Pel . ]
() V-E= é Electric Field
B Q. Source: Electric Charge
411e,S2

Charges of the same type repel each other
2

The change of a magnetic field B causes

_, - 0B . N
(3) VxE= ~5 the build-up of an electric field E
t (in the form of a closed loop)
1 The field constants are coupled
EMlo = —

with the speed of light

- The flow of an electric current Jq
and the change of an electric field E
cause the build-up of a magnetic field B

2 V-B=0 Magnetic Field

=l
I

m x B Free of sources (closed loop)
2
_¢Ns

Ko = 1,2566 - 10 = Similar poles repel each other

Tab. 10.1: Maxwell's equations and their interpretation (definition of symbols in Table 10.3)
The numbers of the laws precede the respective formula.

10.2 Comparison between electric field and gravity

Due to the formal similarity between the electric field and the gravitational field, it was as-
sumed early on that Maxwell's equations should also apply here. Heaviside was the first to
put forward this thesis in 1895. Today, there is a general consensus that this assumption is
correct but only applies to the limit range of small masses and velocities [94]. For other
conditions, especially when processes with large masses, such as black holes, are
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10.2 Comparison between electric field and gravity

considered, other relationships apply and space curvature etc. must be taken into account,
as is the case in the general theory of relativity, for example.

There is a formal difference between the representations of the electric field and gravity.
Because the relationships for the electric field were derived for a homogeneous situation
(as it is the case in a capacitor, for example, with Q as charge and s as plate distance), but
gravitation for a spatial distribution (with m as mass, r as radius), the calculations for the
forces differ:

Force in electric fields Force in gravitational fields
- Q:Q, = m;m;
= .3 F=—-aG . 10.02
F et 0 (10.01) 7 To ( )

Since the following task is a comparison of the fields, it makes sense to standardize the
representation and convert one of the quantities accordingly. If the gravitational constant
is chosen for this, the result is

“ =

If this modified formula is used, a comparison results in the form shown in Table 10.2.
Further the Maxwell equations are presented here in a modified form, in which the mag-
netic field constant is not used and the coupling with the speed of light is considered instead
(see Tab 10.1). In this way, it is not necessary to redefine corresponding quantities for the
gravitational field. The resulting analogy to Maxwell's equations leads to the definition of a
system of equations whose physical meaning is generally interpreted today as "Gravitoelec-
tromagnetism (GEM)" [94].

Maxwell's equations for Maxwell's equations for
Electromagnetism Gravitoelectromagnetism
= B Pel — - pg
1 V-E=— E,=—=
(D . (1) Eg =
3y Txio-L 5 TxE, =0
X = —_—— X —_—
— - Ja 10E R j 1 OE
4) VxB= -=— -8 4’
) g g - C% 20t 4)  VxBg G'-c2 c? ot
(2) V-B=0 (2) V:Bg=0

Tab. 10.2: Application of Maxwell's equations to the gravitational field.
The numbers of the laws precede the respective formula.
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10. Electromagnetism and Gravity

[t is assumed here that the speed of light c and the propagation speed of gravity are the
same.

The equations shown correspond to each other with the difference that the prefixes for
equations 1 and 4 are different. For equations 1, this firstly has the simple meaning that
masses attract each other, while similar charges repel each other. With regard to equation
4, it follows in the same way that poles of the same direction in the GEM field do not repel
each other as in electromagnetism but attract each other.

In this context, there is the interesting question of whether there is an equivalent for
gravity for positive and negative charges. This could apply to the pair of matter/antimatter.
Of great importance for theoretical considerations is whether matter and antimatter at-
tract, repel or, as some theories predict, attract each other more weakly than pure matter.
There was a first breakthrough in this regard in 2023, when investigations at CERN on an-
tihydrogen atoms showed that they are attracted by the Earth's gravity [95]. This is one of
the most interesting current experiments, the accuracy of which is to be further increased
in order to clarify fundamental questions.

Physical Variable Dim. Physical Variable Dim.
= - N | = N , m
E | Electric field — | Eg | Gravitational field —
C S
= . Ns | 5 : - 1
B | Magnetic flux — | B | Gravitomagnetic field —
Cm S
M | Moment Nm | m | Magnetic dipole moment
S
5 . C 5 k
Jer | Electric current flow —— | Jg | Mass flow iR
m?s m?s
. : C . kg
per | Electrical charge density — | Pg | Mass density —
m? m?

Tab. 10.3: Definition of the used physical variables with dimensions.
For the definition and application of the Nabla operator vV see Appendix E

Despite the formal similarity between the variables shown in Table 10.2 and Table 10.3,
there are substancial differences in their characteristics. This will first be considered for
the electric field and gravitational field. If the difference in the respective attractive forces
between a proton and an electron is calculated in a simple example, the formulae (10.01)
and (10.02) can be used. The values for the specific quantities are listed in Table10.4. If the
values are used, the result for this case is an extreme difference between the electric and
gravitational forces of attraction, namely by a factor of 2,27- 103!
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10.2 Comparison between electric field and gravity

Mass mp = 1,6726 - 10"27kg | Mass mg = 9,1094 - 10~3'kg
Proton Electron

Electr. Charge Qp = 1,6022 - 10~27C Electr. Charge Qp = —1,6022 - 10727C
Proton Electron

L m?3 i ’
Gravitational |~ _ ¢ ¢743.99-11__ | Electric g, = 8,8542 - 10~12

constant kg s? | constant Nm?

Tab. 10.4: Values of the physical quantities used for the calculations.

Note on Table 10.4: The values for g, are often given in the literature with the dimension
As/Vm. This can be easily converted using the power P in watts [W] and results with the
charge C (Coulomb) as As (Ampere-seconds)

kg m? Nm
=1 =1VA

1wW=1
s3 S

The difference between the electric field and the gravitational field lies not only in the
magnitude of the attractive force, but above all in the fact that electric charges compensate
each other in everyday life, i.e. every positive atomic nucleus is opposed by a negative elec-
tron. In addition, electric charges can be shielded. In the case of gravity, on the other hand,
all masses add up and, according to current knowledge, the effective attractive forces can-
not be influenced in any way.

Other important differences are that electric charges always occur as multiples of the
elementary charges, whereas gravity has no known smallest indivisible unit. In addition,
the kinetic energy of masses is dependent on the state of motion, whereas this does not
apply to electric charges. Furthermore, permeability effects are unknown for gravity.

Despite the small effects, the gravitational balance developed by the Englishman H. Cav-
endish [1731-1810] made it possible to determine density differences in the earth and cal-
culate the gravitational constant as early as 1798.

Direct experimental proof of the existence of gravitomagnetism in the form shown here
has not yet been achieved on the Earth's surface due to the extremely small effects that
occur. According to calculations by D. Giulini, a gyroscope set up at the North Pole would
cause a precession at a speed of 0.6 milliarcseconds per day; given the current experimental
conditions, this is still 1 to 2 orders of magnitude outside today’s detection limits [96].

In cosmic dimensions, on the other hand, larger effects occur, whereby the shape of such
a field can be determined by calculations. Fig. 10.1 shows the characteristics of a gravito-
magnetic dipole field in a graphical representation, evaluated at points at an angular dis-
tance of 30°, which lie on a circle around the center [96]. In the center is the rotating star,
whose angular momentum is symbolized by an upward-pointing arrow (vector). It gener-
ates the dipole field.
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10. Electromagnetism and Gravity

Fig. 10.1: Expression of a gravitomagnetic dipole field generated by a rotating star in the
center [96].

Experimental proof was only possible with the launch of the Gravity Probe B into space
in 2004, with which the interactions between 4 counter-rotating gyroscopes and the rotat-
ing Earth were investigated. After lengthy and complicated evaluations due to interference
effects that occurred, results were published in 2011 that were obtained as part of investi-
gations to verify the general theory of relativity [97]. These are the effects of spacetime
curvature and the Lense-Thirring effect. For details, please refer to further literature [96,
97].

Finally, another interesting aspect should be considered. For years there have been in-
vestigations into the amplification of gravitomagnetic effects, similar to those observed
when the permeability of magnetic fields is increased (e.g. by feeding an iron core into a
magnetic coil). Such evidence would have enormous implications for the foundations of the
theory of general relativity and is therefore subject to special observation. In one of the
experiments, for example, a large quantity of rotating liquid helium was used in a super-
conducting Nb tube, and a gyroscope was placed in it. However, after initial positive results
for increasing the gravitomagnetic effect, it became apparent that these could not be repro-
duced [98]. None of the experiments carried out so far have been successful and therefore
no effects on the theory are recognizable.
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11. Limits of the Theory of Special
Relativity

[t was already demonstrated at lengths that an impressive number of examples exist, which
are conforming to the Theory of Special Relativity. This was shown e.g. for kinematic con-
siderations of moving observers, further it was proved for the processes during clock
transport and also for the relations between mass, momentum, force, energy and for elastic
or non-elastic collisions of moved bodies and further the relativistic observation of rocket
acceleration. It was shown for a large number of configurations that using the Lorentz-
Transformation no differences can be found for a system at rest or for moving observers
and that no possibility exists to decide inside a system whether it is moving or at rest. This
is in accordance with the postulates of the Theory of Special Relativity which stipulates that
all observers are considered as equal and so no evidence could be found that the principles
of relativity are not valid.

All these examples share the basis that the transport of signals is occurring with the
speed of light. However, when superluminal velocities are considered, which were discov-
ered during tunneling processes, it can be shown that - provided that also information are
transported with superluminal speed (a concept which is still controversially discussed) -
the appearing effects are not in accordance with Special Relativity. This will be reviewed in
detail. Finally, the situation concerning synchronization after acceleration will be discussed
and it will be shown that in this case conflicts will appear.

11.1 Superluminal effects during tunneling processes and their signifi-
cance

Optical examinations with prisms were conducted already since a very long time. It is well
known that Newton, Huygens, and many other scientists focused their work on the funda-
mental relations.

With the development of modern research methods, the examination of effects based on
quantum mechanics started. Fritz Goos (1883-1968) and Hilda Hanchen (1919-2013) were
the first to find that a linear polarized light-wave during the transition from a medium with
a higher to a lower optical thickness is not reflected at the boundary layer but at a virtual
surface with an orientation parallel to it situated inside the medium with the lower optical
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11. Limits of the Theory of Special Relativity

thickness. It is not possible to explain this observation with a standard model and quantum
mechanics are used instead. The investigations were made during the 2nd world war in
Berlin and published partly not before 1947 [60,61].

Further examinations revealed that optical boundaries generate tunneling effects, which
are independent of their thicknesses [62]. This led to intensive discussions concerning the
appearing of superluminal velocities.

11.1.1 Tunneling effects

Tunneling effects and connected measurements of velocities of electromagnetic waves dur-
ing passing of an optical boundary were already part of numerous examinations. For a bet-
ter understanding a comprehensive survey about the investigations using prisms and other
optical devices carried out with waves of different frequencies, published by H. G. Winful, is
recommended [63].

Out of the multitude of possibilities an example shall be chosen, where double prisms
are used for experiments. A typical experimental set-up is presented as shown in Fig. 11.1.

A
B
D
L: |0
E b
d

b e

Fig. 11.1: Experimental set-up for measuring of tunneling effects (after [64])

An electromagnetic wave is reaching point A of a prism and is transmitted into the body.
If an appropriate angle is taken (see e.g. [64]) the wave will be reflected at point B. When
another identical prism is situated opposite to it, a tunneling effect will be observed which
can only be explained using quantum mechanics. In this case the paths BC and CD will be
passed without delay. The largest part of the wave will reach point E, a much smaller part
is detected at F. The exit of both will be exactly at the same time. Experiments of this type
allow the use of set-ups with large dimensions, though the intensity of the beam on the way
DF is strongly dependent on the distance b of the prisms. Experiments with d = 280 mm
were already performed and the corresponding effects could be observed. Because of the
multitude of possible experiments, it is referred for further details to publications with a
general survey [63,64].

At present there is no consensus concerning the interpretation of the observed results
at all. Very often the argument is used that superluminal velocities occur, but that it is
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11.1 Superluminal effects during tunneling processes and their significance

impossible during these experiments to transport information faster than light. The reason
for this is that the results of the measurements are interpreted not as the velocity of a single
pulse but as an effect caused by the group velocity of a signal. Complex information (e.g.
speech) can only be transported by a wave-packet and the velocity of this is supposed to be
the speed of light. Because of the importance of this argument in the following a short in-
troduction concerning this matter shall be presented before a final investigation is made.

To describe the effect of group velocity in a simple way in publications dealing with this
matter some analogies are found like the comparison between fly and elephant, the inter-
pretation of a tortoise race or the consideration of the behavior of a very long train [63,65].
Specially the last example is very suitable to understand the circumstances and shall be
discussed shortly:

A train needs for the travel between 2 points a defined time span. If this train is con-
sidered as extremely long, then a simple definition of departure and arrival time is no
longer suitable and differences will occur, whether the locomotive, the middle of the
train or the end is observed. If in a second tour a train with the same length travels
with the same speed the same distance, and during the trip wagons are uncoupled
than the middle and of the train, which is consequently moving forward during the trip,
is arriving earlier than in the example discussed before. However, independent of this
the locomotives of both trains are reaching the destination at the same time. Following
this interpretation, the velocity of the middle of the train (the group velocity) is faster
than the speed of the locomotive.

Transferred to the discussed example it is obvious, that during the tunneling of the wave
no even damping occurs but that the end of the wave-packet must be perpetually cut off. In
this case the group velocity is faster than light although this is not valid for the front and so
in this case no violation of the Theory of Relativity would occur.

The authors dealing with superluminal velocities measured at prisms and other optical
devices are using quite different interpretations for the results. Beside the argument con-
cerning group velocities described before this covers a total denial of superluminal effects
because of complete misinterpretation of the experimental results [63], assumed contami-
nation effects which demands an infinite size of the prisms when a reasonable signal trans-
fer isrequired [66] or the final discussion is left completely open [67,68]. Some authors still
today have the opinion that it is possible during these experiments to transport information
with a speed faster than light [65,69]. The main reason for this is the observation, that a
tunneled wave after amplification has the same shape compared to a reflected wave and
that it shows no cut off like it must be assumed when the above-mentioned example of
group velocity would be valid.

However, for clearly documented evidence it is not necessary to transport complex in-
formation, but a single pulse would be sufficient (like using the Morse alphabet). Consider-
ing this, the thesis that measurements are not possible because of lack of information
transport, is assessed as not plausible. If the distinct detection of a transmitted pulse with
superluminal velocity would be possible, then this result would cause severe consequences
for Special Relativity which will be discussed in the following.
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11. Limits of the Theory of Special Relativity

11.1.2 Significance of superluminal velocities for Special Relativity

Whereas all considerations discussed so far have led to the perception that observers dur-
ing the exchange of signals in a system at rest or when moving will find the same measuring
results, this will definitely not be the case when information is transmitted using superlu-
minal velocities. This can be derived easily when the situation presented in Fig. 11.2 is an-
alyzed.

v=20 v =0,5¢c

.
(@]
-1 0 1 -1 l 0 ¥1 1 2 3
% % X ——
Fig. 11.2: Differences between a system at rest and a moving observer when information is

transmitted with superluminal velocity.

On the left-hand side as usual a system at absolute rest is presented. The transmission of
signals is carried out with superluminal velocity v; between observer B to the points A and
C. Immediately at arrival a responding light signal (v = c) is triggered and sent back to B.
Because the experimental set-up is symmetrical the arrival at B will be at the same time.

On the right-hand side the same situation is presented for a moving system. Because ob-
servers A and C have different positions, the light signal will arrive at different times at B.
The time span is depending on the superluminal velocity (values for vy = 2c, 4c and oo are
shown) and also on the speed of the system v (in this case values of v¢ = 0 and 0,5¢ were
chosen). This diagram also includes the values for the time difference 4t,. that would ap-
pear when a superluminal velocity of vy = 4c would be achieved.

The time span relevant for different superluminal velocities can easily be derived using
simple geometric considerations as presented in Fig. 11.3.
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Fig. 11.3: Geometric dependencies of used dimensions for vy = 2¢
The following general dependencies apply

¢ C_f =SS o (11.01)

anq = — = — anff = —=— XVg = YV .
X v . E = YVUs

The cases for the signal transmission in moving direction and opposite to it must be treated
separately. It applies

Signal opposite to the Signal in
moving direction moving direction
Lo x4+ ¢ (11.02)
14 14
a a
B Xvp = ;vs — XVg B XV = ;vs + xvg (11.03)
f=— ty = — (11.04)
Py (uptvs) ° 7 y(vp—vs) '

To calculate the entire time for the signal exchange the part for the way back must be added.
Thus, the total time for the path B-A—B is:

a

tr(C) =t +t, = + 11.05
e 7 oy (11.09)
The path B-»C—B leads to
a a

y(vg—vs) * y(c+vs)

To discuss the influence of the signal velocity on the measuring effect finally the difference
must be determined

a a
tr =tr(C) —t7(4) = + - - 11.07
! r r y(we+vs)  y(c—vs) y(wp—vs) y(ct+vs) ( )
and be compared with vy — 0. Hence
tr

In Fig 10.4 the results for different velocities for the signal and the used reference sys-
tems are presented. Generally, it can be stated that the speed of the system has only limited
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11. Limits of the Theory of Special Relativity

influence on the results and a noteworthy effect appears at remarkably high values. Further
it becomes clear that the signal velocity of v; = 2c is already reaching half values which are
calculated for vy — oco. The relations show, that it is not necessary to suppose signal veloci-
ties of extreme magnitude because the sensitivity of the measurement is extraordinarily

strong.
100%
80%
System velocity Vs
60%
-1 km/s
= ~ = 150000 km/s
40% —— 250000 km/s
20%
0%
0 2 4 6 , 8 10
Signal velocity — ~ ——>
C
Fig. 11.4: Expected measuring effect t, in relation to signal velocity vy and

system velocity vg

Further additional considerations concerning the existence of superluminal velocities
exist, where it is assumed that in this case the principle of causality would be violated [63].
Other publications are denying effects like this [64,65].

In general, the violation of the principle of causality would stand for the fact, that an in-
coming signal would be received earlier than the outgoing signal. This would mean that a
negative time must be assumed, for which no experimental evidence exists. It is clear, how-
ever, that inside a system with high velocity compared to a system at rest (as shown at the
right-hand side of Fig. 11.2) the incoming signal will arrive earlier (case B - A — B) or later
(case B — C — B) as expected according to the synchronization procedure before. In this
case no violation of the principle of causality will occur because the signal measured is ear-
lier or later (depending on the speed of the system) than expected due to synchronization
but in no case before the start of the procedure.

It shall be mentioned that the existence of superluminal velocities for the transport of
signals would lead to severe conflicts with the principle of relativity which cannot be solved.
Differences in measurements between systems would occur, which travel at different
speed. An undisputed measuring effect would provide evidence that a system of absolute
rest must exist. In chapter 13.1 a possible experiment to prove this will be presented and
the dimensions of values which can be expected will be discussed in detail.
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11.2 Synchronization after acceleration

In the past many scientists tried to detect the one-way speed of light in a moved system in
a direct way. Concerning this problem different concepts were taken into consideration;
one of these is the “slow clock transport”. The principal idea in this case is that in a moved
laboratory a clock is slowly transported from one end (e.g. the back end) to the other side
and then compared with a second clock at that place which was synchronized before. It was
already shown, that during this transport, irrespective of the chosen speed, the synchroni-
zation remains unchanged, and a zero result will be achieved (see also chapter 5).

Another possible alternative, which was first considered by E. Dewan and M. Beran [70]
and later reviewed in detail by J. S. Bell [71] and also by D. ]. Miller [72] and F. Fernflores
[73] is the investigation of changes in systems before and after acceleration. In this case
observers, which are transporting synchronized clocks, are accelerated homogenous in a
way, that they show the same speed compared to each other before and after. It is required
that the acceleration for all observers shall be the same; further preconditions are not nec-
essary.

Fig. 11.5: Exchange of signals before and after an acceleration (v = 0,5¢)
a) Left: System at rest to moved system
b) Right: Moved system to system at rest
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11. Limits of the Theory of Special Relativity

At first the situation shall be examined, when the observers are lined up in direction of
acceleration. The configuration of this experimental set-up is presented in Fig. 11.5.

The left-hand side is showing the case, that in a system at rest the observers A and B first
synchronize their clocks and then start at the same time with acceleration. Concerning this
it was determined before that A is starting directly after receiving a signal from B, but B is
first calculating the starting time and takes At, for his start of acceleration (see diagram).
The time At, is exactly half of the time At,, that a signal is taking for travelling the distance
between B and A and then back. The acceleration is running homogenously until the points
C and D, which are fixed to each other, are met (A is contacting C, B reaches D). Here accel-
eration is stopped, and a signal is transmitted to the other observer.

A and B will now find that

1. the distance between each other has (subjectively) increased to ya,
2. time At; is larger and At, is smaller compared to At,

The issue presented in point 1 is also named “Bell’s Spaceship Paradox”. J. S. Bell sup-
posed the existence of a thread between these spaceships and assumed, that this would also
be contracted.

In a further investigation a moved system is considered, in which the participants A and
B are (from their point of view) subject to the same conditions (right side of Fig. 11.5). In
this case an observer at rest will find, that At; is larger compared to the value monitored
before. For this reason, A will start acceleration later than B, because he will start At, =
Aty /2 after receiving the signal from A. Therefore, participant A will reach C later than B is
reaching D. After the end of this trial, the distance and the times will be checked again and
it will be proved, that all values are the same compared to the case looked at before. In the
following the calculations of the space- and time-coordinates are presented in detail.

a) From a system at rest to a moved system

In this case the calculation is easy. Because of the accelerations running parallel it is obvi-
ous, that (from the point of view of an observer at rest) the distance a will be constant in
the moved system as well. Furthermore, the following calculations apply

2a
Aty = — (11.11)
a
Aty = Aty == (11.12)
At ‘ (11.13)
3= TN :
c(1-¢)
At ‘ (11.14)
4= TN :
c (1 + E)

b) From a moved system to a system at rest

In this case some additional calculations are necessary.
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2ay
Aty = —— (11.15)
a ay v
At = ————— =" (1+= (11.16)
o
,_ Y
Aty = — (11.17)
2a
Atg = Aty —Atg +1, =—( ~D + 0 (11.18)
a v
Aty = AL+ AL — Aty + 6, =—(2y +y-—2) + 15, (11.19)
2a
x(By) = Atg-v = (7 -0+ t2> v (11.20)
, , a a v a
x(A) = Aty -v+—=(=(2r +y==-2)+ ;) v +- (11.21)
y ¢ c 14
A a v a (2a
Ax(B_§> = (E(2y+yz—2)+t2)v+;—(7(y—1)+t2)v
=222 11.22
PR y—ay (11.22)
ay= Pae—ae = —_In (11.23)
3= B — A — v\ - 3 '
‘ re(1-¢) 7
Aty = ay+At’ Atp = ¢ = 1At (11.24)
4 = A~ Alp — - Blg :
¢ yc <1+%) Y

These calculations show, that a, At; and At, in a moved system and a system at rest are
connected by y and that the observers A and B from their point of view cannot decide after
the end of the trial whether they changed their position from a system at rest to a moved
system or vice versa.

However, concerning the behavior of “Bell’s thread”, which is situated between the
spaceships, initially a difference can be observed in the considerations between the cases
a) and b). While in a) the distance and caused by this the strain on the thread increases
constantly, the case b) will lead to a considerable change in the beginning of the experiment.
This is caused by the fact, that observer B starts before A with the acceleration and there-
fore uneven strain occurs. However, this effect is only appearing seemingly and not real
because the thread has a limited rigidity. Like already discussed in connection with the trig-
gering of engines after synchronization in chapter 4.3, the strain in the thread will be trans-
ported with limited velocity and so all differences will disappear.

The validity of this argument shall be demonstrated in the following by using a simple
example. The beginning of the experiment relates to the fact that in a system of absolute
rest both spaceships are starting at the same time. If no total rigidity of the thread is as-
sumed, but the transport of tension with arbitrary velocity is considered, then a thin and
almost massless thread will behave like a rope and this is resulting in the fact, that a loop
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11. Limits of the Theory of Special Relativity

will be formed near the second observer. This would cause an extremely complicated situ-
ation and so a simple model is considered here instead were

1. the force will be induced into the thread not only by traction (by observer B, see Fig.
10.5) but also by compression (observer A) into a stable thread (no rope),
2. abuckling or bending of the thread will not occur.

For the start of the spaceships from the state of absolute rest it is obvious, because of
symmetry conditions, that any arbitrary velocity will lead to the situation that traction and
compression will reach the middle within the same time. For the moving system, the con-
ditions already discussed in chapters 4.1 and 4.3 are valid. The relativistic addition of ve-
locities in combination with appearing synchronization differences will also cause the effect
that traction and compression will appear in the middle simultaneously. Thus, for the ob-
servers no differences will be measurable.

In publication concerning this matter different perceptions can be found, whether the
thread will be contracted or not after acceleration or, in simple words, whether it is break-
ing or not. (This discussion for obvious reason contains the precondition that the thread is
of infinite small mass and has no influence on the behavior of the spaceships). The calcula-
tions presented here lead to the clear opinion that the thread is strained, which means it
will break. This is simply derived out of the fact that the acceleration phases for both space-
ships can also be performed and monitored separately and in this case, when the spaceships
act autonomously, the same results must appear.

Before closing the discussion, the additional issue shall be reviewed, that the observers
are not lined up in acceleration direction but transverse to it. In this case the quite simple
effect occurs, that during an exchange of signals after acceleration the distance between the
observers is increased by the factor y compared to the situation at rest. This must be valid
because of geometrical reasons; the observer at rest will find that the signal is following a
triangle with a side length larger by factor y compared to its height. This effect is compen-
sated exactly by the time-dilatation and so in this case no change in synchronization is ob-
served.

Summing up the discussion two points are worth mentioning. First the chosen experi-
mental conditions are causing tensions between two observers, which are independently
accelerated under the same conditions, and this could be part of experimental observations.
Obviously in this case differences in measurement results can be expected, dependent on
the situation whether the observers are considered as point-shaped or spatially expanded.
Second the calculations show that in case of clocks lined up in the direction of acceleration
differences in synchronization will occur; this is valid for independent observers and in ad-
dition for extended spatial bodies. This effect will not be found if the observers are arranged
transverse to acceleration direction. This is required by Special Relativity because of the
“Relativity of Simultaneity” and represents a fundamental test regarding the principles of
the theory. Details concerning this are discussed in chapter 13.2.
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The Theory of Special Relativity postulated by A. Einstein in combination with the transfor-
mation equations derived by Larmor, Lorentz and Poincaré and further the relativistic in-
crease of mass makes it possible to describe all conceivable relations between moving bod-
ies in arbitrary inertial systems without contradictions. To prove this a wide selection of
examples concerning this issue was already discussed in detail in the chapters presented
before.

However, this conceptis not sufficient to describe all observed cosmological cases. At the
beginning of the second half of the 20th century it was found that a cosmic microwave back-
ground radiation exists, which is isotropic and constant in all directions. Therefore, based
on the “Ether-theories” already developed at the end of the 19th century, new attempts
were made to bring special relativity in accordance with a state of absolute rest. However,
none of these theories were able to show results without severe discrepancies to experi-
mental findings. The most important theories will be discussed briefly in the following. In
addition, the Einstein synchronization already discussed in chapter 3.4. will be evaluated
again.

Furthermore, it is proved that by using light pulses for a signal exchange between two
observers moving arbitrarily to each other, additionally a superordinate system of absolute
rest can be incorporated. With the use of the Lorentz transformation as only precondition
this system can be integrated without contradiction. This is done first for the case that two
observers are on a straight line in orientation to the system at rest, then for arbitrary con-
stellations.

12.1 Alternative theories

In the following theories shall be presented, which are not in accordance with the calculus
of the Lorentz-Transformation (LT). They were developed to avoid the principle of “relativ-
ity of simultaneously”, which is integral part of LT. The main difference is the introduction
of an absolute time which is concurrent valid in any arbitrary inertial system. Although all
these theories in their initial form are not in compliance with experimental results, they are
historically important and, because of the basic approach concerning violations of LT, are
still basis for current research programs.
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12.1.1 Simple addition of velocities

At the early beginning of discussion concerning speed of light and “ether-drift” it was gen-
erally assumed, that the velocity of an observer (together with the measuring device carried
with him) and the speed of light must be simply added [12c]. Also, the theoretical approach
connected with the Michelson-Morley-Experiment is based on this assumption, and for the
calculation of light beams coming and going to mirrors the value was either higher or lower
than the speed of light c.

Already in the year 1913, however, the examination of double star systems by W. de Sit-
ter provided evidence, that the speed of light is independent of the speed of the object that
is transmitting the signals [55]. It was now proven for the first time that this assumption is
not in accordance with the facts.

12.1.2 Theory of ,Neo-Lorentzianism*“

Following a similar idea of H. Ives and developed further by J. S. Prokhovnik [74] it is as-
sumed that in all parts of the universe a reference system S exists, which is at absolute rest.
When a different inertial system is moving relative to it, the only related attribute valid for
this system is, that space is contracting according to

Xy =S (12.01)

Consequently, for the coming and going of a light signal inside this system the following
different velocities will appear
c1=Cc+uy (12.02)

Cy =C—1Uy (12.03)

The characteristics of time can be calculated by the consideration of a closed loop for a
signal
Xa XA_XS(C—UA+C+UA)_2XS

C1 Cz_ y(c+us)(c—uy) Coc

ty = Y = vts (12.04)

This means that time dilatation is only a seemingly effect which is not real. Effects con-
nected with this theory should be found easily using e.g. synchronization experiments and,
because this is not the case, the theory must be rejected. However, the involved persons,
mainly Herbert E. Ives (1882-1953), are still today of historical interest. He was all his life
in strict opposition to Einstein and, apart from his different theoretical approach, tried hard
to discredit him in any possible way. He denied his contribution to Special Relativity and
even tried to show that the equation

E = mc? (6.17)
was not originally developed by Einstein [75]. Nevertheless, he provided evidence with the
Ives-Stilwell-experiment (co-working with G. R. Stilwell) that time-dilatation for moved

bodies exists [17,18] and thus supported, surely without intention, the validity of the Lo-
rentz-equations.
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12.1.3 RMS-Test theory

The development of another alternative theory started with a proposal by H. Robertson
[59] and was finalized by R. Mansouri and R. Sexl [24] and is today usually referred to as
Robertson-Mansouri-Sexl- or RMS-Theory. In this case it is assumed, that a system of abso-
lute rest (called “ether system”) exists. For the notation of this ether-system capital letters
and for any arbitrary initial reference system small letters are used for calculation. The fol-
lowing general transformation equations are valid:

t=aTl + &x (12.10)
x =b(X —vT) (12.11)

where the factors a and b can be determined by measurements (e.g. Michelson-Morley- and
Kennedy-Thorndike-experiments) and € out of synchronization effects as

1 1
—=bh=— £E=—v (12.12)
a DN 2
1-(2)
Hence
T
t=——wvx (12.13)
14
x=yX —vT) (12.14)

Equation (12.14) is obviously corresponding to the Lorentz-Transformation according
to Eq. (1.08). Eq. (12.13) can be transformed to

T
b=y —v= yT(1—v?) —vx =yT —yTv? —vx (12.15)

If Eq. (12.11) is converted, then

x X
T=— 14 (12.16)
with
y X
t=yT—y vyvz—vxzyT—va+vx—vx (12.17)
and
t=y(T —vX) (12.18)

This means that the calculations follow exactly the Lorentz-Transformation. The RMS-
Theory now predicts that during passing of a moving system a comparison of clocks inside
both systems shows the result

At = —vx (12.19)

Eq. (12.13) is transforming to
T
t=— 12.20
” ( )
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A graphic presentation leads to the diagram shown in Fig. 12.1.

|
1
¥ X —>»

Fig. 12.1: Space-time diagram following Eq. (12.18)
(according to [24])

It is obvious that in this case during a synchronization performed with light signals dif-
ferences inside the moving system should occur; however, no experimental evidence could
be provided up to now [54,75]. Although the theory shows severe shortcomings, it is further
developed until today [54]. The reason is that new approaches using quantum gravitation
resp. string theory are suggesting violations of the Lorentz-Transformation. In combination
with the equation

y=d-Y z=d-Z (12.21)

now effort is made to find small differences to the equations given by the Lorentz-Transfor-
mation
1
"2

%:b:[1—(§)2] d=1 (12.22)

The intention is that with increasing accuracy of experiments following the methods of
Michelson-Morley, Kennedy-Thorndike, and Ives-Stilwell these differences will be detected
and that it will be possible to integrate the results into a generally valid overall picture.
Examples for new measurements with highest precision are given e.g. [76,77,78,79], how-
ever, up to now no violations of the Lorentz-Invariance could be detected.

12.1.4 Further alternatives

In the last years many alternative theories were developed, which are demanding varia-
tions of the Lorentz-Equations. These approaches are usually connected with a further de-
velopment of the “Theory of General Relativity”, trying to find a general unifying theory
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(GUT), which can possibly bridge the gap to quantum mechanics. These new theories are
generally of high complexity, but despite of fierce struggle it was not possible to find a rea-
sonable formalism during the last decades. Here the question is allowed, why such an effort
is made and how this can be justified. To answer this, a remarkable statement shall be cited
out of a publication by C. M. Will [64]. This is in principle dealing with the position of Gen-
eral Relativity, but because further developments of this theory are mainly connected with
the search for violations of the Lorentz-Invariance, it is also valid for the relations discussed
before:

"We find that general relativity has held up under extensive experimental scrutiny. The
question then arises, why bother to continue to test it? One reason is that gravity is a fun-
damental interaction of nature, and as such requires the most solid empirical underpinning
we can provide. Another is that all attempts to quantize gravity and to unify it with the other
forces suggest that the standard general relativity of Einstein is not likely to be the last
word. Furthermore, the predictions of general relativity are fixed; the theory contains no
adjustable constants so nothing can be changed. Thus, every test of the theory is either a
potentially deadly test or a possible probe for new physics. Although it is remarkable that
this theory, born 80 years ago out of almost pure thought, has managed to survive every
test, the possibility of finding a discrepancy will continue to drive experiments for years to
come.”

11.2 Interpretation of Einstein-synchronization

In chapter 3.4 the Einstein synchronization was already discussed shortly. Because of the
paramount importance it shall be investigated again and a close look at this topic will be
taken. In a first step the theoretically appearing synchronization differences for an observer
atrest and in a moved system are established.

In the following space-time-diagram the synchronization differences A4S and A4S’ experi-
enced by an observer at rest A in view of a moved observer B are presented (Fig. 12.2). The
diagram is standardized (which means a scaling of At = Ax = 1). In a diagram scaled this
way, light pulses show a graphic orientation of 45° to t and x axis. The velocity used for B
in this diagram is v = x/t = 0,5c¢.

The cases appear, that:

a) Ais sending a signal which is reflected by B,

b) Bis sending a signal which is reflected by A.

The equations necessary for the calculation of the synchronization differences are com-
piled in Tab. 11.1. For A the interpretation of diagram a) is simple and because of the ap-
pearing symmetry Aty = At, = At is valid.

The situation of part b) is different and the calculation more complex. Observer A is mon-
itoring in his view, that the signal will be sent later from B, because time is running slower
by factor y, but that it is arriving earlier compared to the signal sent by him. The latter is
caused by the effect, that B is increasing distance to A during the transmission of the signal
(for exact definition and modes for calculation see chapter 2.).

The synchronization difference for A can be calculated as follows
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1
17y
AS = Atg 5 (12.30)
T c
B B
A A ”
3 —
At At
] 2 _ 2
T AS' v
2 ——— ———— v — —————— —_— - ———
o 48 ’
A At
At' !
At | B 0
1
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1 — 0 —_ By
N
At '
s | | Ats
a) b)
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Fig. 12.2: Definition of synchronization differences A4S resp. A4S’
Atg At = yAtg
Aty = At v Aty = At 7
o = 4dis o = Atlsy ~
e(1-2) ‘
v v (1 + %)
At, = Atg 5 At = Atgy ——N
c(1-2) c(1-¢)
Aty + At , . Aty + At
A4S = Atg + [%] — [At§ + At)] AS' = At + lMl — [Atg + At,]
1
1-= y—1
— )4 = At
= Atg —v S 1_Y
C C
Tab. 12.1: Equations for the calculation of 4S resp. A4S’
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In view of the moving observer B in b) a similar situation appears. In this case also the signal
will arrive too early with

y—1
v

c

AS' = At (12.31)
Because time is running slower for the moving observer the subjective values for both

are equal and it applies
AS' = yAS (12.32)

The Einstein-Synchronization now specifies the following:

At time tg resp. tg a signal will be transmitted by observers A and B. When the signals are
received by B resp. A, the clocks are considered as synchronized, when the following con-
ditions apply:

t—1lo

t, =ts+
1 S 2

(12.33)

and
t;—tg

t; = tg+——

> (12.34)

For system a), the validity of the determination results directly from the representation
in the diagram and there are no differences to the calculations carried out. For b), however,
there are serious changes.

An essential statement is first that At; is hereby uniquely determined and the division
between the single times At and 4t; does not play any role. Together with the statement
that the speed of light is the same in all inertial systems, in this way the synchronization
difference becomes a virtual quantity which cannot be determined from the moving system.
Since this value would be measurable for a resting observer, however, at the transmission
of impulses with superluminal velocities, there must be no information transmission faster
than the light and also no system of absolute rest on the basis of these determinations. Here-
with, a central statement of the special relativity theory is described.

So, it becomes clear that the Einstein synchronization is a definition and not covered by
an observation.

The use of the Einstein synchronization has beside the possibility for the calculation of
the Lorentz equations still another meaning. As already described in detail, from the point
of view of an observer at rest it is not possible to describe the course of oscillation of an
electromagnetic wave (e.g. light) without contradiction without using the principle of con-
stant phase velocity in a moving system.

To avoid this, it is a simple means to use the definition of the Einstein synchronization in
such a way that oscillation considerations are permitted in principle only within the respec-
tive inertial system. If one proceeds according to this principle, it follows that a state of
absolute rest cannot be inserted; this leads to apparent contradictions, and then the princi-
ple, that a system of absolute rest can exist, must be rejected as erroneous. This will be an
important consideration in a final study of the speed of light in chapter 13.1.
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In the following, another important aspect on the subject of the speed of light will be
dealt with. The statement: "The speed of light is the same in all inertial frames" must be
considered and interpreted carefully.

However, if several test participants from different inertial systems moving against each
other observe the same event, e.g. the signal exchange between different spatially separated
points, different observations must occur. If the speed of light of the own system is taken as
a basis for measurements and if the times and distances necessary for the signal exchange
are determined for the way there and back, they come to different results. Path and time
are not divided symmetrically. This effect is caused by the "relativity of simultaneity".

Fig. 12.3:  Schematic presentation of a signal in a laboratory L between E and A from the point
of view of an inertial system S moving relative to it (v = 0,5c¢).
a) Correct: ¢ = const. referred to S.
b) Not correct: t; = t, referred to S

To make this clear, the situation is shown in fig. 12.3. While the situation is always clear
for an observer at rest (the outward and return paths are of equal length and the individual
times are also equal), this does not apply to an observer from an inertial system S moving
relative to the lab.

The determination of the Einstein synchronization, i.e. at the outward and return path
for the signal exchange between two points (e.g. the ends of a laboratory A and E) time and
path are in each case divided to the half, is valid only subjectively for the system L which is
in rest to the laboratory. If from another inertial system S moving relative to it this deter-
mination would also apply and the times t; = t, would be equal, the situation would arise
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as shown in the right part of the diagram with signal velocities larger or smaller than c as
well as measurable synchronization differences. Moreover, according to these considera-
tions, a situation where the path is constant in both directions cannot even theoretically
occur because the lab end moves away from the original point immediately after the signal
is emitted and is at a different location on the return path. Instead, the situation as shown
in the left partial picture applies. This means that the determination of a reference system
can always only be subjective.

12.3 Integration of a system at absolute rest into the Lorentz-Equations

The approaches to combine a system of absolute rest with the Lorentz-equations presented
in chapter 11.1 were obviously not successful. In the following it will be examined whether
it is possible for two observers moving in arbitrary directions against each other to inte-
grate an additional superior system which is at absolute rest. In this case the use of the
Lorentz equations must lead to a consistent connection without discrepancies. First a sim-
ple comparison reveals the fact, that this must be possible because the discussed equations
can be considered as a mathematical group. The implementation of the Lorentz equations
in a system A— B can therefore easily being carried out using A— S— B, where S could be
a system with a basis at absolute rest.

Because of the importance of this proposition the validity of this correlation will be pre-
sented here in detail. To show this, the possible constellations between the observers will
be treated separately in the following.

1. Observers A and B are moving on a straight line in relation to S

In the following the experimental relation shall be examined in an analytical way, where
the system at rest S and an arbitrary reference system 1 with observer A, which is moving
in relation to it with v, and the investigated system 2 with observer B (moving with v,
compared to the reference system) are lined up and v, < v, applies. To simplify the calcu-
lation the values of the velocities shall be replaced by their quotient to the speed of light c.

The Lorentz equations between Reference System 1 and the investigated System 2 are
given by

x; =y1(%y — vity) (12.40)

ty = y1(t; — v1x1) (12.41)

where x; and t; are coordinates of the Reference System 1 and x, and t, coordinates of the
investigated System 2, which is traveling with speed v; compared to system 1. If a system
which is at absolute rest is introduced, then system 1 will generally show a movement com-
pared to this. In view of the system at rest the following relations apply

x; = Yo(xo — Voto) (12.42)
t1 = ¥o(to — VoXo) (12.43)
X, = ¥2(xg — v2t0) (12.44)
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ty = y2(to — v2xp) (12.45)

where v, is the speed between system at rest and Reference System 1, whereas v, repre-
sents the speed between the system at rest and system 2. Furthermore, the equation for

relativistic addition of velocities applies
Vg + 1y

= — 12.46
v 1+ vy ( )

Equations Eq. (12.42) and (12.43) are leading to the following relationship for the coor-
dinates x, and ¢
xO = )/O(xl + votl) (124‘7)

tO = YO(tl + onl) (124‘8)

In combination with (12.44) and (12.45) this yields

x5 = V2 (Yo (1 + voty) — v2¥o(ty + vox1)) (12.49)
x5 = V2¥o((1 = vov)xy — (v, — vo)ty) (12.50)
ty = ¥2(Yo(ty + vox1) — v2vo (31 + voty)) (12.51)
ta = ¥2¥o((1 — vov)ty — (v — v9)x1) (12.52)

The equations (12.40) and (12.41) shall be identical with equations (12.50) resp.
(12.51). To prove this a comparison of coefficients is carried out and the following equa-

tions apply
(1240) Py (1250) tl: V1V1 = }/2)/0(172 - vo) (1254)

Obviously, the equations (12.53) and (12.55) as well as (12.54) and (12.56) are identical.
Because of

= 2% 12.57
Eqg. (12.54) can be replaced by Eq. (12.53) since
(V2 — vo)y1 = ¥2Vo (V2 — Vo) (1 — vov3) (12.58)

[t is now proved that all 4 equations are identical. To show the validity of the complete sys-
tem it is necessary to validate only one of these equations.
If now both sides of the Eq. (12.54) are squared and the respective values for y are in-

serted, it follows

U12 (v2 — vy )?

A-v) (dA-vD)-(1-vd)

(12.59)
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and

(1 =19 )?vf = (v, — vp)? (12.60)

If for v, the equation (12.46) is used, then

2 2

Vo + V4 ) ) ( Vo + Vg >
1——- =|——- 12.61
( 1+vy1y Vo) V1 1+ vy Yo ( )

If this equation is expanded completely, then 20 terms will occur which will add up to
zero. It was thus shown for this case that the integration of a system at rest will not lead to
any violations or to mathematical inconsistencies by using the Lorentz equations. Modified
conditions taking v, > v; into consideration lead to the same result, because in any case
only linear conditions are present which can be combined without restrictions.

When an arbitrary dependency between the combinations of velocities for the move-
ment of observers in different directions is considered, however, the calculation will be
more difficult. In this case the observers will not contact each other but approaching to a
minimum before they increase the distance again. It was already shown in chapter 2.1.2,
that for any observer in a system at rest (A) or in a moved system (B) there is no difference
in their observation of the situation and that it is not possible for both of them to decide
with measurements during a signal exchange, whether they are moving or at rest. If a sys-
tem of absolute rest is integrated, which is different from zero to an observer A which was
stipulated to be as at rest before, then the calculation will be more complex, but the situa-
tion can be simplified considerably if a suitable point of origin for the calculation is defined.

For simple calculation the fact is used that the direction vectors of both observers are
passing along a straight line. If the vectors are moving along these lines the correlation be-
tween them are changing as a linear quantity, which means in a mathematical sense a con-
stant is added which can be subtracted later after the calculation is finalized. Two different
cases must be dealt with:

2. The straight lines of the direction vectors are intersecting

For this purpose, the fact is used that if a system at rest is assumed then no further require-
ments concerning the point of origin are necessary from which the examination would have
to start. This means that out of the unlimited possibilities the point of origin can be defined
in a way that A is distancing to it and is part of the directional vector; this line is defined as
corresponding to the x-axis. Further the vectors of both observers are moved in such a way
that they are intersecting. These are the conditions to determine the point of origin as zero-
coordinates of x, y, t in view of the system at rest S, the values for the z axis are always zero
due to the definition of the coordinates. In this case the correlations must follow the Lorentz
equations.

For verification the following experiment shall be discussed: Starting from observer A
observer B is departing with an arbitrary angle in relation to the x-axis. After a certain time
At this observer is emitting a signal. The related coordinates will be determined by observer
A and in the system at rest S. When these are identical after use of the Lorentz equations
then the system at rest can be integrated without discrepancies.
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The following calculations apply:

Observer A finds that the signals transmitted by observer B distancing with the velocity v,
are arriving with the delay

tl - ylAt (12.62)

The connected coordinates are
X, = vitcos a (12.63)
y, = vitisin a' (12.64)

In view of system S the velocity of observer B is calculated according to Eq. (4.20), see also
chapter 4.1:

V(g + v + 2vyv;cosa’) — (vov;sina’)? (12.65)
v, = |
2 1+ vyv cosa’

where in his view the velocity of A is equal to v,. The angle & measured by S is following
equation Eq. (7.43)
= t sin « (12.66)
a = arctan .
I Vo
+ —_
Yo (cosa 171)

(For details see chapter 7.2). Analogous to the coordinates found before it is

X, = Vytycosa (12.68)
Vo, = vztzsina (1269)

Finally, the coordinates are calculated which can be found using the Lorentz equations and
it applies

t; = Yo(ty — vox3) (12.70)

x1 = Yo(x; — voty) (12.71)

The following correlations must apply:

t; =t (12.72)
X1 =Xy (12.73)
Y2=W (12.74)

Eq. (12.74) shows that the values in y direction are the same in all systems, what is a direct
requirement of the Lorentz transformation.
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Tab. 12.2:

12.3 Integration of a system at absolute rest into the Lorentz-Equations

-n--n---

1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701

0,577350
0,557678
0,500000
0,408248
0,288675
0,149429
0,000000
-0,149429
-0,288675
-0,408248
-0,500000
-0,557678
-0,577350

1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701

0,577350
0,557678
0,500000
0,408248
0,288675
0,149429
0,000000
-0,149429
-0,288675
-0,408248
-0,500000
-0,557678
-0,577350

1,005038
1,005038
1,005038
1,005038
1,005038

0,100504
0,097079
0,087039
0,071067
0,050252
1,005038 0,026012
1,005038 0,000000
1,005038 -0,026012
1,005038 -0,050252
1,005038 -0,071067
1,005038 -0,087039
1,005038 -0,097079
1,005038 -0,100504

0,000000
0,149429
0,288675
0,408248
0,500000
0,557678
0,577350
0,557678
0,500000
0,408248
0,288675
0,149429
0,000000

0,000000
0,149429
0,288675
0,408248
0,500000
0,557678
0,577350
0,557678
0,500000
0,408248
0,288675
0,149429

0,571429
0,569508
0,563786
0,554386
0,541551
0,525691
0,507445
0,487753

12,45513
25,01756
37,79756
50,91089
64,48031
78,63457
93,50218

0,467905]109,19583
0,449528|125,78294
0,434472|143,24177
0,424533]161,41618

0,421053

0,800000
0,796896
0,787340
0,770588
0,745356
0,709783
0,661438
0,597477
0,515079
0,412289
0,289259
0,149449

0,00000

0,00000

6,50446
13,06431
19,73390
26,56505
33,60502
40,89339
48,45800
56,30993
64,43855
72,80788
81,35612

1,218544
1,216566
1,210770
1,201548
1,189531
1,175536
1,160518
1,145500
1,131505
1,119487
1,110266
1,104469
1,102492

1,666667
1,655309
1,622008
1,569036
1,500000
1,419606
1,333333
1,247060
1,166667
1,097631
1,044658
1,011358

0,696311
0,676539
0,618571
0,526357
0,406181
0,266234
0,116052
-0,034130
-0,174078
-0,294253
-0,386467
-0,444435
-0,464207

1,333333
1,310617
1,244017
1,138071
1,000000
0,839213
0,666667
0,494121
0,333333
0,195262
0,089316
0,022716

0,000000
0,149429
0,288675
0,408248
0,500000
0,557678
0,577350
0,557678
0,500000
0,408248
0,288675
0,149429
0,000000

0,000000
0,149429
0,288675
0,408248
0,500000
0,557678
0,577350
0,557678
0,500000
0,408248
0,288675
0,149429

0,000000
0,026012
0,050252
0,071067
0,087039
0,097079
0,100504
0,097079
0,087039
0,071067
0,050252
0,026012
0,000000

0,571429
0,569508
0,563786
0,554386
0,541551
0,525691
0,507445
0,487753
0,467905
0,449528
0,434472
0,424533
0,421053

0,00000
2,15163
4,22175
6,12440
7,76517
9,03827
9,82643
10,00607
9,46232
8,11836
5,97964
3,18024
0,00000

1,218544
1,216566
1,210770
1,201548
1,189531
1,175536
1,160518
1,145500
1,131505
1,119487
1,110266
1,104469
1,102492

0,696311
0,692356
0,680763
0,662320
0,638285
0,610295
0,580259
0,550222
0,522233
0,498198
0,479755
0,468161
0,464207

0,000000
0,026012
0,050252
0,071067
0,087039
0,097079
0,100504
0,097079
0,087039
0,071067
0,050252
0,026012
0,000000

1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701

0,577350
0,557678
0,500000
0,408248
0,288675
0,149429
0,000000
-0,149429
-0,288675
-0,408248
-0,500000
-0,557678
-0,577350

1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701
1,154701

0,577350
0,557678
0,500000
0,408248
0,288675
0,149429
0,000000
-0,149429
-0,288675
-0,408248
-0,500000
-0,557678
-0,577350

1,005038
1,005038
1,005038
1,005038
1,005038

0,100504
0,097079
0,087039
0,071067
0,050252
1,005038 0,026012
1,005038 0,000000
1,005038 -0,026012
1,005038 -0,050252
1,005038 -0,071067
1,005038 -0,087039
1,005038 -0,097079
1,005038 -0,100504

Comparison of calculations using Lorentz-Transformation. Values marked grey:

Approximation (otherwise division by zero); Presentation in frames: 180 °+angle
Equations for t; — Eq. (12.33) to x; — Eq. (12.42) see text.

An analytical solution of these equations is complex, a direct numerical comparison not.
In tab. 12.2 the results for the calculation of different angles between A and B and varying
velocities are presented. No differences occur and Eq. (12.72), (12.73) and (12.74) are un-
restrictedly valid.
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12. Conclusions and proposals for modification

3. The straight lines of the direction vectors are not intersecting

In the case where the direction vectors of observers A and B are not intersecting, this means
in the terminology of analytical geometry, that the straight lines are “out of square”. For the
solution of this problem first the position must be determined where the distance between
the straight lines for both observers reach a minimum. In this case, here (and only here) the
angle of the connecting line is matching the value of 90° in relation to the straight lines for
both observers.

This connecting line is now selected as basis for the z-axis, which played no role in the
interpretation up to now. The intersection point with the x-axis is now defined as origin of
the coordinate system and the direction of the y-axis is perpendicular to both. When ob-
server B has reached the minimum distance to the center of origin with distance z,,;, on
the z-axis then x = y = 0 applies. Now the fact is used that the values in z-direction do not
change during Lorentz transformation and that therefore a projection by factor z,,;, is pos-
sible. The situation appearing now is identical to the case, where the direction vectors
showed intersection. So, in a final statement it can be noticed, that it was possible to prove
that a system of absolute rest can be integrated in any arbitrary inertial system without
violation of the Lorentz equations or showing any other discrepancies.
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13. Possible experiments

In the following it shall be discussed, which possibilities exist to clarify the situation created
by the survey presented in this elaboration. For this purpose, the set-up of possible experi-
ments is introduced, and an approach will be made to evaluate output data on the basis of
realistic input. The proposals for these experiments are based on the considerations pre-
sented in chapter 10, were major subjects of the theory of Special Relativity were discussed.

A new approach to the subject is, when during quantum mechanical tunneling experi-
ments it is assumed that information - considered as a simple pulse - could be transported
with superluminal velocity. This would only be possible, when in contrast to the well-
known preconditions of Special Relativity a system at absolute rest is assumed as general
frame.

Further an experiment will be proposed to clarify, whether differences in the synchroni-
zation within a system in motion before and after acceleration really exist. With this exper-
iment it could be possible to find distinct evidence about the statements concerning Rela-
tivity of Simultaneity as already discussed in chapter 11.3, which is classified as not valid
by some new theories. Further an experiment is described that could measure the relativ-
istic mass increase of a non-elastic collision in an indirect way.

13.1 Measurement of tunneling in different spatial directions

It was already presented in chapter 10.1 that transport of information with superluminal
velocities and Special Relativity are leading to a severe conflict. If such an effect could be
verified it would be possible to solve the appearing discrepancies by assuming a state of
absolute rest in the universe as general frame. In the following an experiment will be de-
scribed, which would allow to detect a relative motion relative to a resting frame using
quantum mechanical tunneling and the connected superluminal velocity of a pulse
transport.

First the principle and limits of the experimental set-up shall be discussed in detail. As
already presented in chapter 10.1 the principle to conduct measurements is that a pulse is
induced into a double-prism and afterwards the reflected and the tunneled pulses are com-
pared relating to their transit time. The reflected beam is leaving the prism with almost
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13. Possible experiments

unchanged intensity and in contrast the intensity of the tunneled beam is much smaller. It
is therefore part of the experiment to amplify the tunneled beam with an extremely high
intensity.

Starting an analysis, the measured values must first be amplified to the same size, i.e.
they have to be normalized. One of the most important difficulties during the evaluation of
these normalized values of reflected and tunneled pulses is the fact that the results are not
obeying the form of sharp rectangular pulses but appear as bell-shaped Gaussian distribu-
tion curves and must be interpreted in a correct way. As an example, for this effect in Fig.
13.1 experimental values published in the literature for a reflected and a tunneled beam
after normalization are presented [64]. To show the difficulty for evaluation the “original”
value of the tunneled pulse - already with high amplification - was added.

Tunneling pulse, / Reflected pulse
. I/
normalized ~—
0,8 /
I
>
=
%) 0,6
-
Q
e
£
0,4
0,2
Tunneling pulse
o -
-4 -3 -2 -1 0 1 2 3 4
Time [nm] —>
Fig. 13.1: Published data [64] of normalized values during tunneling experiments

Presentation of reflected and tunneled pulses
“Original” tunneling pulse (already with high amplification) was added.

According to G. Nimtz [64] the evaluation of these experiments showed values for the
reflected beam v; = 0.665c and for the tunneled beam v; = 4.6c. Although measurements
like these, which were verified during several other experiments, are not generally ques-
tioned, it is argued in many cases that in fact superluminal velocities occur, but it is not
possible to transport information faster than light during these trials. The general back-
ground was already discussed in chapter 10.1. Independently of considerations concerning
Special Relativity, the appearing measuring effects are of general interest, and it would be
worth finding out whether a single pulse, which can also be taken as small part of infor-
mation, is travelling faster than light or not.
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13.1 Measurement of tunneling in different spatial directions

Because of the experimental challenges an unambiguous verification is very difficult. The
function profile is generally expressed by

exp [_ (t —kAt)Z]

(t) = 13.01

! N (1500

where for normalization the original values relate to the maximum of the function at point
fmax = f(t = At) (13.02)

In this relation k describes the width of the bell-shaped curve (which is appearing
smaller for increasing values of k) and At the distance of the maximum of the function com-
pared to the initial value t = 0.

In the past already several experiments using double prisms were carried out. The larg-
est dimensional set-up used a measuring distance of approximately 280mm. As already dis-
cussed, a superluminal transport of information is only possible when the existence of a
system at absolute rest is assumed. It is well known that our solar system is moving with a
speed of about 369km /s against the isotropic cosmic background radiation. When it is sup-
posed that the latter is connected to a frame of absolute rest, then it could be possible to
detect a measuring effect using an apparatus with a double prism and taking measurements
in different spatial directions.

However, the effects to be expected are exceedingly small. To show this, based on the
considerations in chapter 10.1 the expected values are calculated and presented in Tab.
13.1. The calculations for the measuring effects are valid for a distance of 280mm and a
signal velocity of 4.6¢ as taken from [64]. Inserting these values in Eq. (10.07) the calcula-
tion will give the results presented in Tab. 13.1 for the orientation in moving direction (t; +
t,) and opposite to it (t3 + t4). [t is instantly clear that the resulting differences in time are
quite small and approximately 2-3 orders of magnitude smaller than the differences using
the original experiment.

a 0,28m

t, = = . —10
L= Y(vp +v5)  7(4,6 + 0,00123)c 2,02844-107s

t, = a = HAbT 9,34482-10710
2= Y(c—vs)  y(1+0,00123)c ’ S
a 0,28m
t 2,02953 - 1010

3T y(ve —vs) - y(4,6 —0,00123)c

a 0,28m

t, = = . —10
*~Y(c+vs)  y(1+0,00123)c 9,32186- 107%s

Eq.(10.07): tr=t;+t,—ts—1t, 2,19-10"%%s

Tab.13.1: Maximum of expected values using prisms according to Fig. 10.1
with a = 280 mm; vy = 4.6¢; vg = 369 km/s
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13. Possible experiments

To increase the informational value of an experiment it is therefore necessary to adjust
one of the parameters. This could be achieved by a tight decrease of the length of the pulse,
i.e. using a femtolaser. However, this approach would be limited by the absorption capabil-
ity of the beam at the surface of the prism and by the increasing complexity of the measure-
ment technique. Further it is theoretically possible to enlarge the distance of the measuring
device to increase the value of At; in this case it must be respected that an extreme reduc-
tion of the tunneling effect will appear.

An experimental set-up on basis of the discussed parameters is therefore not reasonable
and has to be optimized considerably by suitable modifications. To respect this, the pro-
posal presented in Fig. 13.2 shall be brought into discussion. In this case instead of the typ-
ically used single beam and the comparison between reflected and tunneled pulse a second
beam is symmetrically passing the device. For examination only the tunneled parts of the
pulses are amplified and compared with each other. Using this concept all problems with
the interpretation of the experiment as discussed before, where the comparison between
reflected and tunneled pulses was necessary, will be avoided.

Transmitting
antenna /—
2

Receiving
// antenna
/ \
/ \
\
// \
\
/ \
1/ ST .
4 56 o
Modulator d Detector
'\l ’ ’ ]
17\ 4 6J/5 /9
\ /
\ //
\\ /
. /
\ /
\ /
\ o Receiving
( antenna
Transmitting
antenna
Fig. 13.2: Possible experimental set-up for the measurement of tunneling effects in different

spatial directions.

Using this set-up, the experiment will start when the modulator is sending signal S and
S’ to the transmitting antennas situated at opposite directions. The generated pulses will
pass the device according to the presentation of Fig. 13.2.
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13.1 Measurement of tunneling in different spatial directions

For a reasonable evaluation, the use of differential analysis should be preferred. In this
case the apparatus must be gauged in an arbitrary direction in such a way that the tunneled
pulses of both prisms are exactly matching; measurements of a time-difference will in this
case show by definition a zero-result. When in a second step the apparatus is turned and an
effect like discussed before exists, then between both prisms a time difference for the pass-
ing pulses will appear. The height will be dependent on the direction to the state of absolute
rest, the velocity of the signal and on the total length of the used apparatus.

0,002
0,001
g
@
c
@
)
= 0
(-
o
a
[
=
&
+  -0,001
=
-0,002
-4 -3 2 -1 0 1 2 3 4
Time [nm] ———
Fig. 13.3: Expected values for an apparatus with a length of 280 mm,

vs = 369 km/s and vy = 4.6¢

To amplify the signals, the enlargement of the prisms or the distance between them is no
suitable option, because in these cases the measuring effects will be considerably reduced.
However, it is possible to detect the signals of the prisms and after amplification to transmit
these into a secondary set-up to repeat the measurements. The converting of the signals
will most probably result in small differences of the measured time which will have an in-
fluence on the related values. However, these effects are not detrimental for the experiment
and can be neglected because in principle only differences between both parts are meas-
ured.

It is noticeable that the expected values are exceedingly small, but that the proposed ex-
periment has a realistic chance to provide reliable data. Particularly important is the me-
chanical stability of the set-up. This must be placed on a turning table to realize measure-
ments in different spatial directions. Further on if a positive result could be achieved, the
differences between values measured during the realization over a day and the connected
change of the position of earth to a system of absolute rest will appear.
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13. Possible experiments

With the presented experiment it could be possible to provide evidence about basic
physical aspects. Either a positive effect will be detected and then the already discussed
consequences for Special Relativity must be considered, or, if it is not the case, the possibil-
ity of superluminal information transport during tunneling experiments is finally answered
In a negative way.

13.2 Measurement of synchronization differences

As already described in chapter 10.2 the Lorentz Transformation is causing differences in
synchronization because of the relativity of simultaneously for systems with different ve-
locities. There are possibilities for measurements, when between two clocks, which are
placed in a certain distance in a laboratory, synchronization is realized first, the lab is then
accelerated in direction of their orientation and finally the procedure is repeated. In this
case according to laws of the Lorentz Transformation synchronization differences at both
clocks must appear.

In Fig. 13.4 the relations discussed before are presented. To ensure proper graphical re-
production exceedingly high velocities were chosen (v = 0,5¢ + 0,25¢, this is correspond-
ing to values of v; = 0,667c and v, = 0,286¢ when the correlations for relativistic addition
of velocities are used).

When ¢, is the time for a signal running between positions A and B in a system at rest
then for the left part of the diagram the following measuring effects will be achieved:

to ;L to
V1 C Y2 C
t t
tga = —Ovl thy = 0 7 (13.11)
y1(1+?) y2<1+c)
and
Atyp = thg — tap = Fo —— - i (13.12)
n(1-2) n(i-2)
t t
Atpy = thy — tpa = 0 T 0 7 (13.13)
r(1+2) n(+3)
Because of
a
= — 13.14
c=¢ (13.14)
this leads for v, ,v, < c to
alv; —v
Aty = % (13.15)
and
- alv, —vq]
Mtgy = — (13.16)
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13.2 Measurement of synchronization differences

Further the difference to the situation in chapter 10.2 is that in this case not 2 independ-
ent observers perform the test, but 2 clocks in just one integrated laboratory.

aly: aly
© A v =0,286¢ | / v=0667c)
w
{ ’:’:t;qy 2 ‘:4"
I <
m
3]
~
L)
SA A
e b =
a/ 1 2 3 a/ 2 3 4
Y1 X Yz X 5
Fig. 13.4: Space-time-diagram for systems after changing velocities

Left:  Reducing speed
Right: Increasing speed

For the right-hand side of the diagram the same relations apply, with the difference that
y1 and y, are changed. For the measurement of these differences the following experiment
is proposed:

a) Experimental set-up

For the experiment 2 clocks are placed in a distance a at the positions A and B. In a moving
system (see Fig. 13.4) the distance changes to a/y. After the exchange of signals for each
clock a synchronization procedure is carried out. It is important that the signals are not
reflected to a central station for comparison because — as it is the case for the Michelson-
Morley or Kennedy-Thorndike-Experiment — a null result would appear. Afterwards the la-
boratory is accelerated in orientation direction of the clocks and after another exchange of
signals the synchronizations are repeated. Following this procedure, then because of the
Lorentz Transformation a synchronization difference between the positions before and af-
ter acceleration must appear which reads Aty for clock A and At,p for clock B.
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13. Possible experiments

When an experiment like proposed before is conducted it would make sense to consider
the differences between Atz and Atg, (in this case one of the values will be positive, the
other negative). First this will result in the fact that the measuring value is doubled, second
distortions caused by deviations in the length of the device (i.e. by temperature changes or
effects due to acceleration) of the dimension At are eliminated because effects of increas-
ing or reducing length would have the same influence. In this case the following equation is
obtained:

2alv, — v,]

At = Atyp + Atg — (Atgy + Atg) = (13.17)

c2

The result is depending on the distance between the clocks a and the velocities v; and v,
only.

b) Estimations of the size of possible generated results

The best and most accurate method to perform a measurement like this would be to place
the whole experimental device in a rocket and drive it to space, but without doubt the effort
in this case would be extremely high. On the other hand, the speed differences that could be
realized would be also high and so standard 87Rb-clocks, which are already in use for the
GPS satellite navigation system with a standard deviation of approx. 3 - 107125 could create
very reasonable results.

When terrestrial experiments are considered, the requirements concerning accuracy
would increase significantly. An experiment like this could be e.g. conducted using an air-
plane. A synchronization procedure at the ground and a comparison with data after the
start is useless, however, because differences in the height above ground would lead to a
distortion of the values. Instead, measurements after the start using a constant height are
proposed. Reasonable values are e.g. differences between 300 km/h and 900 km/h. The
experiment should be repeated in several directions relative to the rotation of the earth to
eliminate distortions (i.e. by the Sagnac-effect).

When a difference of 600 km/h for the velocities and a length of 30m for the set-up is
assumed, then values of approximately 1,1 - 107!3s will be obtained according to Eq.
(13.17). An experiment like this could reveal reasonable data, because using advanced
atomic clocks measurements in the range of 10~1”s are possible. This is of course not a
simple operation and needs careful verification processes, because it must be shown first,
that the clocks needed for the experiment are sufficiently stable for the use in an accelerated
system.

In alternative considerations the use of a train or magnetic levitation train transporting
the experiment could be possible. Because of lower speed differences the measuring sensi-
tivity would be reduced but the necessary budget is smaller. In an alternative experimental
set-up, the complete equipment could be placed in a container, tested on the ground and
then loaded into a plane. If a usual commercial 40 feet container is used values of approxi-
mately 5 - 10~1*s could be expected which are, with the limitations already discussed, also
sufficient to create a significant result.

At this stage of the discussion, it is possible to make the objection that in principle meas-
urements like these are not feasible inside the gravity field of earth. As a counterargument
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13.3 Measurement of velocity after non-elastic collision

it can be stated, however, that important experiments with a positive and meaningful result
were executed in this way. In particular the trials of ]. C. Haefele and R. E. Keating [81,82]
shall be mentioned. In this case high precision atomic clocks were transported by plane
around the earth and their values were compared afterwards with reference clocks which
were not transported. The flight in direction of earth’s rotation showed, that the trans-
ported clocks run slow and in opposite direction they were faster than the clocks on the
ground. The results were in good compliance with the values predicted by the theory. So,
with these experiments it was possible to identify a condition of rest not including the ro-
tation of the earth.

However, if a terrestrial measurement is not possible then the use of a rocket is the only
alternative left for the execution of the proposed experiment.

If any of these experiments whether on ground, in air or in space will show a positive
result, experimental evidence is provided, that the “Relativity of Simultaneously”, which is
a necessary condition when the Lorentz-Transformation is valid, reveals the expected dif-
ferences in local time after acceleration. It shall be pointed out again that this experiment
must generate values possible to measure. This is in contradiction to many other experi-
ments where the theory of Special Relativity is predicting a zero result. This experiment
could therefore deliver the final answer, whether the proposed Relativity of Simultane-
ously, which is a major and necessary part of the Lorentz-Transformation, does really exist.

13.3 Measurement of velocity after non-elastic collision

In chapter 7.1 it was already demonstrated that an increase of mass must appear during
non-elastic collision to avoid conflicts with the laws of conservation for momentum and
energy. When this is the case the speed of a combined body after collision can be easily
derived by using the relativistic addition of velocities. If this would not be the case, or partly
not, then the measurement of the speed of a joined body after non-elastic collision would
provide interesting new information.

To verify this, the following experiment is proposed: Mass m, is accelerated to the ex-
actly defined speed v,. When it is hitting a mass at rest m;, both objects form a composite
body, and the resulting velocity is subject to exact measurement. This experiment could
verify that during a nonelastic collision the potential energy of m, is completely trans-
formed into mass. Although this conversion is verified on microscopical scale, however, for
objects with large dimensions it could be possible that during deceleration a part of the
energy is transformed into thermal energy and carried out of the system by radiation and
not be available for reduction of the speed (concerning radiation see also chapter 7.2). This
behavior would violate the principles of relativity and could be measured.

Example:

An object with mass m, is considered, which is at absolute rest ( v; = 0), an identically sec-
ond mass (i.e. m, = m;) is hitting it with velocity v,, both objects are joining and moving
on with the speed v;.

According to the discussions in chapter 7.1 the following values for the different concepts
can be calculated:
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13. Possible experiments

a) Nonrelativistic

In this case the Galilei-Transformation is valid

v = (13.20)

b) Relativistic

This requires a transformation analog to Eq. (7.04) which leads to

2U3R

v, = ——R (13.21)
1+ (vﬁ)
c
2v35C2
v, — Z’: = —¢? (13.22)
and finally
VR_C_ <y (13.23)
c v, |vi '

An examination of this equation shows that positive results of the square root are leading
to values v;z > ¢ and therefore cannot be permitted because of plausibility reasons. If this
square root in Eq. (13.23) is solved by Taylor expansion (for v, = 0) then the result

¢’ 1= v 13.24
v3 v, 2c 8¢c3 (13.24)

appears. Values of higher order can be neglected. Eq. (13.23) is changing accordingly to

173R C CZ UZ v%
e — e | — = = — 4 — 1325
c v, V3 2c¢  8c3 ( )

In table 13.2 calculated results for impact-velocities between 1 and 100.000 km/s are
shown. To allow a better comparison, only the differences to the non-relativistic case 4v
according to Eq. (13.26) are presented. The value of Av is always positive, i.e. the calculation
of v3p is leading in all cases to results higher than that of vs.

Av = U3R - 7.73 (1326)
1 10 100 1000 10.000 100.000
1,39110712 1,391107° 1,39110°° 1,3911073 1,392 1,474 103
Tab. 13.2: Calculation of differences for end velocity after nonelastic collision.

Initial value: Galilei-Transformation Eq. (12.20). Velocities in km/s.
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13.3 Measurement of velocity after non-elastic collision

The results for velocities v, > 1000 km/s related to the relativistic approach were cal-
culated using the basic equation Eq. (13.23). For smaller values, the precision of a standard
computer with 15 digits accuracy is no longer useful, and Eq. (13.25) must be used instead.
This equation, however, must be extended with higher order terms using velocities of more
than 10.000 km/s, so, a combination of both approaches was chosen.

For the realization of the proposed experiment, it would be reasonable to use a massive
and compact body for the moving part, e.g. a sphere. For the not moving object it is proposed
to use a ring with high plasticity. The ring should have an inner diameter slightly smaller
than the diameter of the sphere. A set-up like this should allow precision measurements of
the velocity directly on the surface of the sphere and would avoid problems which appear,
when a plate or a deformable foil, which is wrapping around the sphere during the execu-
tion of the experiment, is used instead for the body at rest. Because of the expected small
effects, the experiment must be conducted using a vacuum.

An evaluation of the expected results clearly shows that with increasing velocity by one
order of magnitude the measuring effect will be boosted by 3 orders (with other words:
factor 10 compared to factor 1000). It is therefore reasonable to increase the speed as much
as possible. On the other hand, the demands concerning the precision of the required test-
ing equipment will rise considerably with increasing speed so that it is necessary to find a
reasonable compromise. When for example the value of 1 km/s is chosen, which is corre-
sponding to the speed of a projectile of firearms, then according to the calculations pre-
sented here, a result of 10™° s per meter of the measuring length would appear. It should
be possible to detect values like this with a suitable experimental set-up.

For experiments like this an exact monitoring would be essential. It could for example
happen, that because of the high accelerations at the start of the sphere and also during
deceleration of the connected body the applied stresses on the material will be quite high
and so vibrations could occur which could affect the results of the measurements. In this
case maybe the use of composite materials with a soft inner core is necessary. The experi-
ment must be conducted in different spatial directions. Although as pointed out in chapter
7.1 it is not likely that the result will differ from the relativistic addition of the velocities,
this experiment is a reasonable addition to provide evidence about the relativistic increase
of mass for non-elastic collisions on a macroscopic scale.

Finally, the question may be raised why an experiment like this should be performed at
all, when theoretical considerations conclude that the result must be in accordance with the
relation of relativistic addition of velocities. However, as already shown in chapter 11.3 ef-
fort is made since many years to provide evidence that Lorentz invariance can be violated
and thus expand the theoretical basis. An experiment like it is presented here could there-
fore extend the range of possibilities in an interesting way.
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14. Final evaluation of Special Relativity

At the end of the presented investigations, the various presentations of special relativity
(SRT) available in the literature are discussed and evaluated in brief form. For this purpose,
first the two central preconditions "principle of relativity" and "constancy of the speed of
light" are examined. To represent the occurring range used in the literature, the possible
representations were divided into "objective observation criterion” and "axiom". In recent
publications very often the axiomatic approach is chosen. The earlier presentations, e.g. of
Einstein, were mostly using the objective observation concept.

The common interpretation of the SRT today includes the aspect that there can be no
system of absolute rest. The chains of reasoning used in the literature concerning this mat-
ter are quoted and evaluated. It is shown that none of these approaches can deliver a gen-
erally valid proof.

Einstein has chosen a top-down approach for the formulation of the SRT. For this pur-
pose, the principle of relativity and the constant speed of light were defined as basics and
the Lorentz transformation and later also the relativistic mass increase were derived from
them. Now, with an "Extended Lorentz theory", a bottom-up concept is presented where
the relativity principle is the result. The validity was proved by a multitude of examples.

With free choice of the base system, both approaches are completely equivalent. How-
ever, the Theory of Special Relativity has the disadvantage that it excludes the existence of
a system of absolute rest in principle, but this can be integrated without problems into the
extended Lorentz concept by a simple choice of the base system. From today's point of view,
it seems reasonable to use for it the system which is the basis for the uniform cosmic back-
ground radiation in the universe. However, since up to now no experimental proof has suc-
ceeded, a decision cannot be made at present. In the context of this elaboration a proposal
was made, how an experiment could be arranged, which makes a clear decision possible
concerning the different approaches (chapter 13.1).

14.1 Principles of SRT and their presentation in the literature

[t is quite surprising that until today there is no uniform formulation of the two central
conditions "principle of relativity" and "constancy of the speed of light". Every author of a
publication about the SRT chooses his own approach for this (only in individual cases, no
presentation is made at all and without comment the Lorentz equations are used [89]). In
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14.1 Principles of SRT and their presentation in the literature

order to represent the occurring bandwidth, the possible formulations were divided into
"objective observation criterion"” and "axiom" (Tab. 14.1). In more recent publications, the
axiomatic approach is rather (but not exclusively) chosen.

Objective observation criterion Axiom of Special Relativity

1. The execution of any physical experi- 1. Principle of Relativity:
ment leads to the same result in all iner- All inertial systems are equivalent.
tial systems.

2. Measurements of the speed of light in 2. Constant speed of light:
different spatial directions lead to the The speed of light in different spatial
same result in all inertial systems. directions are the same in all inertial

systems.

Tab. 14.1: Currently common representations of the basics of Special Relativity

To show the differences, individual examples are presented in the following. The princi-
ple of relativity is defined in its original form by Einstein as follows [12]:

“Principle of Relativity: The laws by which the states of physical systems undergo change
are not affected, whether these changes of state be referred to the one or the other of
two systems in uniform translatory motion relative to each other.”

This is therefore a formulation that can be assigned to an objective observation criterion.
Some other authors also use the reference to measurements, although the representation
can be completely different [27]:

“Postulate I: It is impossible to measure, or detect, the unaccelerated translatory motion
of a system through free space or through any ether-like medium which might be as-
sumed to pervade it.”

This is different with the constancy of the speed of light. For this exist only few cases with
the reference to measurements, e.g. M. Born with the following formulation [26a]:

“The principle of the constancy of the speed of light: In all inertial systems, the speed of
light, measured with physically identical rods and clocks, has the same value.”

In almost all other cases, the reference to measurement methods is not mentioned and the
form as an axiom is used. Einstein himself used a more complicated form of representation
which describes a measuring method but makes a clear assignment difficult:

“Principle of constancy of the speed of light: Every light ray moves in the "resting" coor-
dinate system with a certain speed V, independent of whether this light ray is emitted by
aresting or a moving body. Here is

lightpath

velocity = ——
y time period

where "time period" is to be understood in the sense of the definition of § 1.”
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14. Final evaluation of Special Relativity

The overall situation can be simplified as follows:

e Objective observation: No difference can be determined. The facts are verified by
experiments.
e Axiom: In principle, there is no difference.

The interpretations associated with these representations are significant in the following
and will therefore be evaluated in detail. The discussion starts with the constancy of the
speed of light.

14.2 Constant Speed of light in every inertial system

First the possibilities to measure the speed of light shall be presented and discussed on a
principal basis. The options for measurements can be characterized first by direct and in-
direct procedures (Tab. 14.2). Whereas direct measurements create quantifiable values, the
indirect approach only allows the comparison between values measured in different spatial
directions.

1. Direct 2. Indirect

Use of time measurements Comparison of oscillations
1la) Measurements using light pulses 2a) Measurement of frequency
Measurement of time differences at sender/ | Comparison of frequency at sender/receiver
receiver between emitting and receiving a between emitting and receiving a signal after
signal after reflection at a mirror. reflection at a mirror.
1b) Measurements using moved clocks 2b) Oscillation measurements
Two or more identical clocks shall be syn- Analysis of light signals between sender/re-
chronized. After the transport to reference ceiver and mirror as reference (Number of
objects light signals are exchanged and time | oscillations referring to travelling distance
iS measured. going and coming after reflection).

Tab. 14.2: Possibilities for measurements of the speed of light

In case when direct measurements are chosen, it is essential that the distance between
emitter and reference object must be known exactly. It makes no difference, whether the
reference object is at rest relative to the sender or moving. First the possibility exists that
the time difference between emitting and receiving a light signal after reflection at a mirror
is measured (1a). In addition, identical clocks can be synchronized and transported to de-
fined reference points, then signals can be exchanged followed by time measurements (1b).
The disadvantage of this procedure is, however, that for test evaluation it must be recog-
nized that moving clocks are subject to time dilatation and that this effect must be consid-
ered during test evaluation.

With the indirect methods, only possibly existing differences between the light velocities
in different spatial directions can be determined. The distance to a reference object might
be unknown but must remain constant during the measurement. First, the comparison of
frequencies between outgoing and incoming signals is possible (2a). Furthermore,
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14.2 Constant Speed of light in every inertial system

oscillation measurements have often been performed in the past, comparing the number of
oscillations on the way to and from a mirror (2b). Here, the use of measurement providing
interference patterns is particularly suitable, such as it is the case in the Michelson-Morley
experiment.

The methods were all examined in the context of this elaboration, namely 1a) in chap. 2,
then 1b) in chap. 5 as well as 2a) and 2b) in chap. 8. It is important for the interpretation of
experiments of the type 2b) that here the phase velocity of light must be used for the eval-
uation. In the past, this was not done in a sufficient way, so that new and consistent results
became visible in a new interpretation of the Michelson-Morley and Kennedy Thorndike
experiments, taking this effect into account. If this effect is not respected, false conclusions
are drawn.

In the following, another important aspect about the speed of light will be dealt with. The
statement: "The speed of light is the same in all inertial systems" must be considered and
interpreted carefully. Equal speed of light means:

In every inertial system the speed of light can be chosen in such a way that the own sys-
tem serves as basis. All conditions of the theory of special relativity are then valid without
restrictions. The following relation was defined by Einstein for a base system called "rest-
ing" by him, related to another arbitrarily moved system [12a]:

1
E(TO + Tz) =T (360)

This condition, today also called “Einstein synchronization”, means that the times for a
signal exchange between two points are divided exactly in half for the way there and back
(for details see chapter 3.4 and 12.2). This statement is independent of whether the refer-
ence object is at rest with respect to the origin or is in motion. Together with the statement
that the speed of light is constant in all directions, the distances must also be the same.

The situation is different when the system emitting the signal itself is moving. Let's con-
sider the simple case that the origin of the signal and the reference object have the same
velocity. Also, here it is possible that the light velocity of the origin is taken as resting and
the same conditions apply as already derived. The same procedure is possible for a signal
exchange likewise for any other system from its subjective view.

However, if several test participants from different inertial systems moving against each
other observe the same event, e.g. the signal exchange between different spatially separated
points, different observations must occur. If the speed of light of the own system is taken as
a basis for measurements and if the times and distances necessary for the signal exchange
are determined for the way there and back, different results appear. Distance and time are
not divided symmetrically. This effect is caused by the "relativity of simultaneity".

This fact has already been presented in detail in chapter 12.2. At this point it shall be
shown additionally that the data taken from this diagram correspond exactly to the results
of the Lorentz transformation. For this purpose, first in Fig. 14.1 the left side of Fig. 12.3 is
shown again, which represents the correct signal course from the point of view of the mov-
ing system S.

The determination of the Einstein synchronization for the outgoing and returning path
for the signal exchange between two points (e.g. the ends of a laboratory A and E), which
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14. Final evaluation of Special Relativity

means time and path are in each case divided to the half, is valid only subjectively for the
system L which is at rest to the laboratory. If from another moving inertial system S this
determination would also apply and the times t; = t, would be equal, the situation would
arise as shown in the right part of the diagram 12.3 with signal velocities larger or smaller
than c as well as measurable synchronization differences. Moreover, according to these con-
siderations, a situation where the path is constant in both directions cannot even theoreti-
cally occur because the lab end moves away from the original point immediately after the
signal is emitted and is at a different location on the return path. Instead, the situation as
shown in the left part of the diagram applies. This means that the determination of a refer-
ence system can always only be subjective.

Ep a Apl 2
; ¥ —>

Fig. 14.1:  Schematic presentation of a signal in a laboratory L between E and A from the point
of view of an inertial system S moving relative to it (v = 0,5¢).

Table 14.3 shows the coordinates for displacement and time taken from Fig. 14.1. The
values subjectively valid for the moving system were calculated by using the Lorentz equa-
tions. It is immediately recognizable that in this normalized representation the value of the
speed of light is c in all cases; for the reference system this results immediately from the
position of the signal course in the diagram (45° to x and t), for x’ and t' from the relations
between path and time.

X t x' t'
E, 0 0 0 0
Ay 1,73205081 1,73205081 1 1
E, 1,15470054 2,30940108 0 2

Tab. 14.3: Determination of the coordinates of E,, A; and E, from Fig. 13.1
The values of x’ and t’ were calculated using the Lorentz-Transformation.
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14.3 Principle of relativity

In summary, the following is valid: If the same event is considered from different inertial
systems, this leads subjectively to the situation that in all cases the definition of the own
speed of light is possible as a basis. The connection between the systems is given by the
Lorentz equations, furthermore the principle of the relativity of simultaneity is valid.

14.3 Principle of relativity

For a better understanding of the specifics of this point, it is useful to consider the historical
development first. As a main issue to mention here is the conviction, which lasted until the
20th century, that light, because of the wave properties attributed to it, requires a carrier
medium for propagation, which was called "ether". This was a general consensus for centu-
ries, although there were great differences in the understanding of the structure of this
ether.

Until the Michelson-Morley experiment was carried out in 1887, the idea existed that
this ether penetrates everything and shows similarities in its properties with air and sound
waves transported in it. Derived from various experimental results, however, there were
different opinions about whether ether is influenced by matter and is carried with it com-
pletely, partially, or not at all. (Further details of these experiments and subsequent discus-
sions are presented in chapter 1.3).

However, there was a general understanding that when passing through ether, there
must be an effect caused by an occurring "ether wind". On the basis of these considerations,
the Michelson-Morley experiment was carried out, which, however, gave a null result. This
result led to a multiplicity of considerations, which brought however over nearly two dec-
ades no breakthrough. It is reported that Lord Kelvin spoke on the subject of "ether" during
the international physics congress in Paris in 1900. He said at that time: "The only cloud in
the clear sky of the theory was the null result of the Michelson-Morley experiment” [49h].
He as well as many other physicists of his time shared the opinion that the experiment
should be repeated with higher accuracy and then would bring the expected positive result;
however, none of these attempts were successful.

A first solution appeared when Hendrik A. Lorentz developed the equations later named
after him, which allowed a contradiction-free calculation of the correlations. The key point
was the introduction of different local times and an effect which was later called "relativity
of simultaneity” by Einstein. It was essential in the development that these relations had a
similar structure as the previously developed Maxwell equations for electromagnetism. Lo-
rentz was convinced that the ether, which he still considered necessary, must have these
properties.

Einstein revolutionized the view on this problem. In 1905, he first showed that light
propagation does not need a medium but can be understood as emission of "discontinuous
energy quanta" [48]. Until then, the idea of their existence had not existed, but only the
nature of light as a wave and the existence of a transport medium connected with it was in
the focus. With this approach, Einstein was able to reduce the fundamentals of the theory
he presented to the two principles already discussed. The dualism between corpuscle and
wave, which is evident for physics today, was not yet known at that time; it was formulated
for the first time in 1924 by Louis de Broglie.
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14. Final evaluation of Special Relativity

The principle of relativity formulated by Einstein also requires a precise interpretation.
First, this can be divided into the following detailed statements:

a) Ifidentical experiments are carried out by different observers in reference systems
moving uniformly relative to each other, the results will be the same.

b) An observer can describe results of any experiment in another inertial system that
shows a constant relative movement using only the Lorentz transformation equa-
tions and the relativistic increase of mass. In particular, the observation of the time
sequence of events is the same in all cases.

c) All systems moving uniformly relative to each other are equivalent and there is no
absolute "system at rest".

The statement a) will now be defined as “principle of identity”, b) as “principle of equivalent
observations” and c) as “principle of complete equivalence of all inertial systems”. While
points a) and b) are today backed up by multiple test results, this must be considered in a
differentiated manner for point c). This will be done in the following. From the literature,
several argumentations are known to support the statement of point c), namely:

1. The results of the Michelson-Morley experiment show that there can be no system of
absolute rest.

This becomes clear e.g. in the formulation of Kneubiihl [46c] with the evaluation of the Mi-
chelson-Morley experiment:

“The Galilei transformation is not valid for the light! The concept of a "resting" universe
is not tenable.”

While the first sentence is correct without doubt (the Lorentz transformations are valid as
known) the conclusion in the second sentence cannot be derived from it. If the principle of
constancy of the phase velocity of light is taken as a basis, the integration of a system of
absolute rest is possible without contradictions, which has already been presented in detail
in chapter 8. Therefore, contrary to the author's opinion, the Michelson-Morley experiment
does not provide evidence for this thesis.

Furthermore, there exists another argument:

2. What is not measurable does not exist.
This view is held, for example, by Born [26b]. The formulation he uses is:

“If two observers moving relative to each other have the same right to say that they are
resting in the ether, there can be no ether.”

The term “ether” is to be understood here as a synonym for a system of absolute rest, whose
existence is completely rejected based on the available knowledge. Einstein himself has said
the following about the topic ether and Theory of Relativity in his inaugural speech as vis-
iting professor in Leiden in 1920 (for explanation: the systems Kand K1 are inertial systems
moving relatively to each other) [86]:

“Now the anxious question arises: Why should I distinguish the system K, to which the
systems K1 are physically completely equivalent, in the theory in favor to the latter by
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14.3 Principle of relativity

the assumption that ether rests relative to it? Such an asymmetry of the theoretical build-
ing, to which no asymmetry of the system of experiences corresponds, is unbearable for
the theoretical physicist. It seems to me that the physical equivalence of K and K1 with
the assumption that ether is resting relative to K, but is moving relative to K1, is not ex-
actly incorrect from the logical point of view, but nevertheless unacceptable.”

The ether concept was not completely rejected by him. In the following explanations he
even pointed out that it is necessary for General Relativity; however, he contradicts the idea
that it is a system of absolute rest and was of the opinion that ether must exist for every
inertial system.

From this representation another argument becomes recognizable, which can be formu-
lated as follows:

3. The Theory of Relativity is preferable to the ether theory according to "Ockham's
principle”.

"Ockham's principle" is the basic approach to a problem and is named after William of Ock-
ham (1287-1347) and concerns the "law of parsimony". In short, it describes a problem-
solving procedure according to which, when several possible explanations are available, the
simplest theory is always to be preferred to all others. The simplest theory has the fewest
variables and hypotheses. The application of this principle is also called "Occam's razor*
because it cuts off everything superfluous and allows only one sufficient explanation.

If the theories on this fundamental basis are compared with each other, then the Theory
of Relativity contains 2 basic assumptions, the ether theory on the other hand needs, with
the condition of a state of absolute rest (which cannot be proved experimentally at present)
a further one. According to the general concept that a theory should be based on as few
assumptions as possible, the Theory of Special Relativity is therefore preferable.

The topic ether versus relativity principle was subject of long and controversial discus-
sions at the beginning of the 20th century. Especially because of the considerations pre-
sented here, the controversy was clearly decided in favor of Special Relativity and there
were no serious objections against it for many decades.

This did not change before the beginning of the second half of the 20th century with the
discovery of the uniform cosmic background radiation. Latest measurements with extreme
precision showed, that our sun is moving relative to it with a velocity of 369.1 km/s. The
maximum deviation of the measurements is actually 0.9 km/s, i.e. 0.25% [23]. Various ap-
proaches have been developed to reconcile this measurement result with SRT. However,
these were all connected with the consideration to cancel the "relativity of simultaneity”
and to introduce a state of absolute rest on this basis. None of these theories were able to
show results without severe discrepancies to experimental findings. Major characteristic
for all formulated theories was that the simple concept of the invariant phase velocity of
light had found no entrance into the considerations and consequently the following inter-
pretations could not be useful.

The Theory of Special Relativity says so far nothing about the cosmic background radia-
tion. But if this phenomenon is also considered, the fact would have to be added that an
unspecified coincidence has led to the uniform alignment of this radiation. Here the view of
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a coincidental givenness is possible; this theory is represented e.g. by Johann Rafelski in
"Relativity Matters" (2017). Thereby the cosmic background radiation is ascribed the status
of an appearing "beacon" to which one can refer [93].

If now the two competing theories are compared again, it becomes clear that Ockham's
principle cannot be effective here because of the same number of fundamental assump-
tions, since Special Relativity needs an additional hypothesis by the appearance of the cos-
mic background radiation. This is not necessary for the ether theory. So, based on these
considerations it is not possible to decide which of the theories is preferable. Only an un-
ambiguous experiment could provide clarity.

As already mentioned, in this compilation the basic approach was applied that all phe-
nomena are considered from the point of view of a stationary and a moving observer. How-
ever, none of the calculations performed showed any difference. These are the following
topics, for which the relevant chapter is given in this elaboration:

Exchange of signals between point-shaped observers (2.1)
Exchange of signals inside moving bodies (2.2)

Exchange of signals and correlation of angles (2.3)

Signal exchange in any spatial direction (2.4)

Experiments with transparent media in motion (4.2)

Triggering of engines after synchronization (4.3)

Exchange of signals between observers with spatial geometry (4.4)
Clock transport t (5.1)

Twin paradox (5.2)

Relativistic mass increase and energy (6.1)

Spring paradox (6.2)

Relativistic elastic collision (6.3)

Exchange of signals in systems with constant acceleration (6.4.1)
Relativistic rocket equation (6.4.2)

Relativistic non-elastic collisions (7.1)

Analysis of disintegration into 2 particles (7.2.1)

Disintegration into 2 photons (7.2.2)

N 2 2 2 2 2 2 e A A A A

Invariance of phase velocity during transition between different inertial systems (8.)

In summary, there is only one reason to prefer the Theory of Special Relativity to the ap-
proach of Lorentz. This is the fact that SRT generally covers all conceivable physical exper-
iments, while the Lorentz transformation only describes the signal exchange between dif-
ferent inertial systems. To guarantee a general validity, therefore, an addition must be
made, which is given by the solution of the Einstein equation regarding kinetic energy. This
will be shown in the following chapter.

14.4 Alternative presentation: Extended Lorentz-Theory

As already explained in chapter 1.6, Einstein had chosen a top-down approach for the The-
ory of Special Relativity. For this purpose, the principle of relativity and the constant speed
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of light were defined as basics and the Lorentz transformation and later also the relativistic
mass increase were derived from them. For the formulation of the principle of relativity, a
similar variant must be chosen as by Einstein himself, namely the representation as objec-
tive observation criterion. Also, the statement about the velocity of light can be made in this
way, but here it is better to use the constancy of the phase velocity of light. The proposal for
a contradiction-free and unambiguous formulation of the principles of the SRT reads ac-
cordingly:

1. The execution of any physical experiments leads to the same results in all inertial
systems.

2. The phase velocity of the light is invariant in all inertial systems and its speed is equal
to the value of the velocity of light measurable in every inertial frame.

However, the investigations presented here have also shown that a bottom-up approach
with an extended Lorentz theory is also possible. In this case, the necessary physical basic
laws are defined, and the relativity principle can then be derived from them. This approach
reads as follows:

1. From the unlimited number of existing inertial systems, one is selected as base sys-
tem and marked with index 0.

2. In this basic system, measurements of the speed of light show the same value c in all
directions.

3. The properties of all other inertial systems are defined by their relative velocity v to
the base system, and the following relations are valid for time ¢, displacement x and
mass m

v
a) t=V(t0_ C_ZXO)' x =y(xg — vty)

b) m =ym,

with: y =

v

2

First some formal remarks: The equations under a) are the Lorentz transformation (related
to the basic system with index 0). In order to unify the formulas, the traditional represen-
tation with t" and x’ was not used here (see. chapter 1.6). Equation b) describes the relativ-
istic mass increase and contains the Einstein equation for the kinetic energy (see also chap-
ters 1.6 and 6.1)

Ekin = moc?(y — 1) (6.14)

In this representation, special relativity and the extended Lorentz approach are mathe-
matically completely equivalent. However, the Theory of Special Relativity excludes with
usual interpretation the existence of a system of absolute rest, which can be integrated in
the extended Lorentz approach by simple choice of the basic system without further as-
sumptions or restrictions. From today's point of view, it seems to be reasonable to use for
this the system which is the basis for the uniform cosmic background radiation. However,
since up to now no experimental proof has succeeded, a decision cannot be made at present.
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From today's point of view, the only possibility for an experimental proof of a system of
absolute rest is the realization of experiments with superluminal velocities. Today there are
investigations within quantum mechanics, e.g. in tunneling experiments, where superlumi-
nal effects have been detected. Regarding the interpretation of the results, however, there
are still big differences. On the one hand it is assumed that despite superluminal effects
were detected, no information is transmitted faster than light and therefore the validity of
Special Relativity need not be questioned, on the other hand it is assumed that a simple
signal transmission, e.g. by a pulse, can indeed be faster than light. In the context of this
elaboration a proposal was made, how an experiment could be arranged, which allows a
clear decision concerning the different approaches (chapter 13.1).

Further experiments were also presented, which should experimentally confirm other
interesting aspects such as the "relativity of simultaneity” and "mass increase after a non-
elastic impact".

If these experiments would be carried out, important fundamental questions of physics
could be investigated and possibly finally decided. There is certainly some effort involved,
but compared to today's costs for experiments, this should be bearable. It is hoped that
teams of researchers will be found to undertake the experiments.

In conclusion, it is remarkable that even more than a century after the formulation of the
Theory of Special Relativity, new aspects still become apparent when intensively examined.
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Annex

The attachments presented in the following were utilized in those cases when calculations
could not be provided in a closed analytical way, and it was necessary to use numerical
calculations.

For every calculation first the mathematical foundations are presented and based on this
the used formula for the program. For the execution Microsoft Excel© was used. In every
case in addition the original codes are provided to allow a simple confirmation when re-
quested.

To every evaluation, examples with selected reasonable basic conditions are added.

Annex Title Page
A Relativistic elastic collision 206
B Exchange of signals during and after acceleration 218
C Relativistic rocket equation 228
D Calculation of momentum for relativistic non-elastic collision 239
E Brief introduction to vector calculus 246
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Annex A: Relativistic elastic collision

In this attachment the necessary calculations for the elastic collision are presented (see also
chapter 6.3). For this purpose, the equations

P = Myy1V1 + MpY2V; = MyY3V3 + MyY4Vs (A.01)

E,
o) = —Dmy+ = Dmy = (3 — Dmy + (y, — Dmy (A.02)

are used. Eq. (A.02) is transformed to

C_Z_(Y3_1)m1+1 A.03
Ya = m, (A.03)
with
1
vy=xc- |[1-——= (A.04)
Vs

Further Eq. (A.03) and Eq. (A.04) are inserted in Eq. (A.01)
1
~21'/2

+1 (A.05)

E
C—S - (3 —1my

m;

Ey
f(v3) =myyzv3 ¢ <c_2 —(y3—1my + mz) 1-

This relation is depending solely on the defined values for v; and v,. Using the principle
of bisection, the values for v; and in a second step also v, can now be determined (for com-
parisons of different calculation methods see annex D). First the appropriate starting values
(v34)o and (v3_), must be identified for which the following conditions apply:

f(vsi)o>p (A.06)

fws-)o <p (A.07)
In the interval [(v;_)o; (V34)0] the function f (v3) must be continuous and differentiable
and further f'(v;) # 0isrequired. This means, that in the chosen interval minima and max-
ima are not allowed, because otherwise no exact solution exists. Now the mean value is
determined using
_ (w34)0 + (v3-)o

(v3)1 = > (A.08)

and f(v3), is calculated according to Eq. (A.05). The following equations apply:
(v34)1 = (W31

fws)1>p = (A.09)
_ (v3-)1 = (W3-)o
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(v34)1 = (v34)0
fwsi<p = (A.10)
_ (v3-)1 = (V3)1

The calculation is repeated with increasing index 1 to K until the required accuracy is
achieved. Caused by the appearance of the indication + in the relations Eq. (A.04) and Eq.
(A.05), which is caused by the determination of the square root, the calculation of v, pro-
vides 2 different results, which must be interpreted using plausibility considerations ac-
cording to the applicable situation.

If a simple spreadsheet is used for the calculation (cf. Chap. A.2), the input parameters
are limited due to the previously discussed boundary conditions. For the calculations, the
starting conditions must be chosen so that the values for v; are positive in all cases. It is
also assumed that, through appropriate index selection, the values of v; are always greater
than v, and the values for the calculated momentum in Eq. (A.01) are p > 0. If the actual
default values deviate from these prerequisites, adjustments are necessary whose defini-
tion is shown below.

A.1  Program flow of the calculation process

In the following it is described which process steps a program must execute in order to
carry out the necessary calculations (cf. Fig. A.1). To ensure an unrestricted selection of the
output parameters, their determination is first carried out via the subprogram "Parameter
Input" and after completion of the calculations the reconversion is carried out by means of
the subprogram "Parameter Output” (Fig. A.2).

The specification of the input-parameters is determined by the following criteria:

1. For the consideration of the velocities of objects with mass m; and m, the precondi-
tion v; > v, is necessary. The reason for this is, that the calculation starts with the
determination of v5 (of the object with mass m, after collision); values with v; < v,
would represent a situation that object m, is moving faster than m; and this would
mean that the incident could not take place.

2. Further the general conditions v; > 0 and p > 0 must apply. These preconditions
are necessary to guarantee an undisturbed execution of the program because the
presence of the square root in the formula would otherwise lead to interpretation
problems. In the case discussed here, only positive values must be obeyed instead of
plus and minus as possible results.

The definition of these preconditions for the execution are severe restrictions at first
sight, but they are representing no limit for the calculations. This is the case because several
possibilities exist to modify the starting conditions as

1. The algebraic sign for velocities v; and v, can be determined as desired, under the
condition that they are changed simultaneously.
2. The index between v;; m; and v,; m, can be changed.
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When an appropriate combination of these conditions is used, this will cover all possible
situations. To show this, first the case v; > 0 shall be discussed. Instead of the theoretically
possible 23 = 8 combinations defined by the 3 starting conditions v, > 0, v; > v, and p >
0 only 4 alternatives are remaining. This can be explained by discussing the following situ-

ations:

e Forcase v, > 0 in combination with v; > 0 the resulting total momentum is always
positive and so it is not necessary to consider it further. A negative momentum can
only occur when the velocities show different algebraic signs (or are both negative).

e The discussed case v; > 0 in combination with v, < 0 is obviously always leading

Annex A: Relativistic elastic collision

to the result v; > v,.

These cases can be excluded from further considerations. The remaining variants can be

summarized as follows:

Condition 1 Condition 2 Action Code
v, >0 v, > v, No action necessary F1
vy, >0 v < Uy Change of index F2
v, <0 p>0 No action necessary F1
v, <0 p<O0 Change of index and algebraic sign F4

Tab. A.1: Input-parameter depending on starting conditions for v; > 0

For the situation v; < 0 the determination follows the same procedure with the only dif-
ference, that first a general change of the algebraic sign is necessary. It must be obeyed that
in this case the algebraic sign of the momentum is changing also. Finally, the following cases

apply:

Condition 1 Condition 2 Action Code
vy, >0 p>0 Change of index and algebraic sign F4
vy, >0 p<O0 Change algebraic sign F3
v, <0 v, <y Change of index F2
v, <0 v < Uy Change algebraic sign F3

Tab. A.2: Input-parameter depending on starting conditions for v; < 0

The values obtained in this way shall be named V;, V,, M;, M, and can be used for further
calculations. Following this procedure all possible combinations of appearing masses and
velocities can be addressed. After finishing the calculations, the results for V3, V,, M;, M,
must be converted into the needed values using a reverse scheme reapplying the code de-
fined during the Input-process.
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It shall be mentioned that according to the transformation described above the results
for V, always show positive values and only after a transformation, which may be necessary
according to the preconditions, shifting to a negative result is possible. This is important
because the values are calculated according to Eq. (A.04) and, thus, concerning the square
root with

1
Vy=+ [1-= (A.11)

only the positive result must be used.

The values determined in this way allow the initial values for (V5 ), and (V5_), required
for the calculations to be established in a straightforward manner. It can be easily shown
that for all cases the conditions (V5,), = V; as well as (V5_), = —V; fulfill the requirements
and always lead to usable results.

For the further calculations here (as in the other cases) the method of bisection was cho-
sen. For the definition of the parameter for the termination of the calculations the possibil-
ity is given here that the values of (v3)k_; and (v3)g or (v,)k—,and (v,4)k are compared with
each other and with equality the calculation process is terminated. However, if one of these
queries is chosen, the situation may arise that - if the values are close to zero - the other has
not yet been calculated exactly. To avoid this problem the fact was used that from a number
of approx. 60 iteration steps with the available accuracy of 15 digits the possible limit accu-
racy is reached (see discussion in appendix D). To avoid any problem a fixed number of 80
iteration steps to stop the process was defined.

All necessary process steps are represented with the help of program flow charts,
namely in Fig. A.1 for the general flow and in Fig. A.2 for the described subprograms. Sub-
sequently, a VBA program code created for the calculations (Fig. A.3) as well as the assign-
ment of the formula characters used (Tab. A.3) is reproduced.

In the following, a simple spreadsheet calculation program is shown in chapter A.2,
which can be used to perform the same calculations. However, the already mentioned
boundary conditions v; > v,, v; > 0 and p > 0 must be observed or, if necessary, manually
adjusted.

As already mentioned in chapter 6.3, the results from VBA program and spreadsheet are
not completely identical, although they follow exactly the same calculation scheme. While
this does not matter for large values, deviations are noticeable for very small values of v;.
These are caused by rounding errors during the calculation, which have different effects on
the different procedures. However, this does not affect the general statement that in elastic
relativistic impact no effects can occur which allow measurements to identify a system at
absolute rest.

If cases with very low velocities shall be investigated numerically in more detail, com-
puter systems with higher accuracy must be used to get reliable results.
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‘ Start )

Y

my, vy
m,, v,

Y

— =My YU+ MY

Y

Subroutine 1:
Parameter Input

Eo

c2

p
c = M,y Vi + May, Vs

= (1 — DM + (2 — 1M,

V) = Va e + (Vzo)r—s

2

1

P, EO: Vs, Uy

Vr12, V143, Op

(V3+);(= (V3);(
(V3_);(= (V3—)k—1

Fig. A.1:
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6y = Vr12/Vraz — 1

A

Subroutine 2:
Parameter Output

Va0 )e= (Va4 )i—1
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Subroutine 1:
Parameter Input

F3 F4 3 F2 F4 F1 F2 F1
—
Fi: Vi=v, s Mi=m, F2. Vi=wy; Mi=m,
Vo=w, 3 M; =m; Vo=wv, ;0 M, =m,
F3: Vi==v; My=my Fa. Vi==v;: My =m,
Vo==vy; My=m, Vs vy Ma=my

Fig. A.2:

Subroutine 2:
Parameter Output

vy =Vy . m =M,

vy =V, my; =M,

vy =—V;: m =M,

vy ==Vy i my =M,

l', Return

vy ==V, ; m =M,

vy ==Vy; m, =M,

Subroutines for process in Fig. A.1

211



Annex A: Relativistic elastic collision

Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code
U4 vl Uy v2 vCq vel
vCq vc2 VU3 v3 vC3 vc3

VC3_ vc3m VC34 vc3p Uy v4
VCy vcd mq ml mcy mcl
vr( vy, v,) vtl2 vr(vy, V3) vt43 6y Dv
my m2 mcy mc?2 Do PO
p pcO Ey EO Va Ga4
Tab. A.3: Formula symbols and referring VBA-Codes
Sub A ()
Dim vl1, v2, wvcl, vc2, v3, vc3, vc3m, vc3p, v4, vc4d, vtl2, vt43, Dv, ml,
mcl, m2, mc2, pO0, pcO, EO, Ga4, Gav, K As Double
Dim F, Fl1, F2, F3, F4 As String
'Input
vl = 0.3
v2 = -0.1
ml =1
m2 = 3
'Start calculation
If vl = v2 Then
Debug.Print "Calculation not possible: vl = v2"
GoTo Outl:
End If
p0 = vl *ml / (1L - vl ~2) ~0.5+v2 *m2 / (1 -v2 "~ 2) "~ 0.5

'Subroutine 1
If vl > 0 Then

GoTo Pl:
End If
If v2 > 0 Then
GoTo P2:
End If
If vl > v2 Then
F = "F4"
Else
F = "F3"
End If
GoTo Defl:
P2:
If p0O > 0 Then
F = "FZ"
Else
F = "F3"
End If
GoTo Defl:
Pl:

If v2 > 0 Then
GoTo P3:
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End If
If pO > 0 Then
F = "F1"
Else
F = "F4"
End If
GoTo Defl:
P3:
If vl > v2 Then
F = "F1"
Else
F = "F2"
End If
GoTo Defl:
Defl:
If F = "F1" Then
vel = vl
vc2 = v2
mcl = ml
mc2 = m2
End If
If F = "F2" Then
vcl = v2
vc2 = vl
mcl = m2
mc2 = ml
End If
If F = "F3" Then
vecl = -vl
vc2 = -v2
mcl = ml
mc2 = m2
End If
If F = "F4" Then
vcl = -v2
vc2 = -vl
mcl = m2
mc2 = ml
End If
'End Subroutine 1
'Calculation
pcO = vel * mel / (1 - vel ~ 2) ~ 0.5 + ve2 * me2 / (1 - ve2 ~ 2) ~ 0.5
EO = mcl * ((1L - vcl ~ 2) ~ -0.5 - 1) + mc2 * ((1L - vc2 ~ 2) ~ -0.5 - 1)
vce3m = -vcel 'Values for start
ve3p = vel
K =20
Do
K=K+ 1
ve3d = (ve3m + ve3p) / 2
Gad = (EO - ((1 - ve3 ~ 2) ~ -0.5 - 1) * mcl) / mec2 + 1
ved = (1 -1/ Gad ~ 2) ~ 0.5
If (ve3 *mecl / (1 - ve3 ~ 2) ~ 0.5 4+ ved *me2 / (1L - vecd ~ 2) *
0.5) > pcO Then
vc3p = ve3
Else
ve3m = ve3
End If
Loop Until K = 80
'Subroutine 2
If F = "F1" Then
v3 = vc3
v4d = vcid
ml = mcl
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m2 = mc2
End If
If F = "F2" Then
v3 = vc4
vd = vc3
ml = mc2
m2 = mcl
End If
If F = "F3" Then
v3 = -vc3
vd = -vcd
ml = mcl
m2 = mc2
End If
If F = "F4" Then
v3 = -vc4d
v4d = -vc3
ml = mc2
m2 = mcl
End If
'End Subroutine 2
vtl2 = (vl - v2) / (1 - vl * v2)
vt43 = (v4d - v3) / (1 - v4 * v3)
Dv = (vtl2 / vt43) -1
'Presentation of results: Calculated values in view of observer at rest
Debug.Print "F =", F
Debug.Print "v3 =", v3
Debug.Print "v4 =", v4
Debug.Print "vtl2 =", vtl2
Debug.Print "vt43 =", vt43
Debug.Print "Dv =", Dv
Outl:
End Sub
Fig. A.3: VBA Program-Code for the calculation process presented in Fig. A.1 and A.2

A.2 Spreadsheet calculation

The following equations are used for calculation:

P MyY1V; + MyY,V; Eq
Po=== — =1 —Dmy+ (@, — Dm,

c c c

8-

(W3)r  (V34)g—1 + (V3 )1 2 \Is i

= Ve = +1

c 2-cC m,

Va _ 1— l (Remark: Because of appropriate selection of basic conditions,
c vE only positive results of the square root must be considered.

(V31 )k _ (V3) (V3_) _ (V3-)g—1
= and =

Determination: f(v3); > p:=
c c c
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v V34 )k V3 v
Determination: f(v;); < p:= ( 3c+)k = Ws+)in and (s = ws )

c Cc Cc

(v3_) v (v34) v
Useful starting values: For 320 - ?1 and for —+22 = ?1
Values in the fields for results (blue color):
Vs _ (V3) k=80 Vs _ (V4)k=s0
c c c c
vr( vy, V) 1= vr( vy, v3) _ Uy — V3
c 1— —Lr2 c 1— =
vr (v, V)
Oy =—m—=—1
v (Vg V3)
As examples for my; = 2; m, = 1 the cases v; = 0,5¢ and v, = —0,5c as well as
v; = 0,00001c¢ and v, = 0 are shown.
Codes for calculation:
Coordinate Code
B3 = B1*D1*(1-B1A2)A-0,5+B2*D2*(1-B2/2)A-0,5
D3 = D1%*((1-B1/2)A-0,5-1)+D2*((1-B2/2)A-0,5-1)
BS = (E7+F7)/2
cs = (D$3-((1-B8"2)7-0,5-1)*D$1)/DS2+1
D8 = (1-1/C872)70,5
E8 = IF((B8*DS1*(1-B8A2)A-0,5+D8*DS2*(1-D8A2)A-0,5)>BS3;E7;B8)
F8 = |IF((B8*DS1*(1-B8*2)"-0,5+D8*DS2*(1-D8"2)"-0,5)>BS3;B8;F7)
G9 = IF(B9=B8;"x";"")
H9 = IF(D9=D8;"x";"")
F1 = B87
F2 = D87
F3 = (B1-B2)/(1-B1*B2)
F4 = (F2-F1)/(1-F2*F1)
F5 = F3/F4-1

Codes B8 to G8 to be copied as far as B87 to G87.

The status queries in columns G and H are used to determine whether the values for v; and
v, still differ. For v5 there are only slight deviations (Fig. A.4: step 51, Fig. A.5: step 52), v,
shows strongly different behavior depending on the initial values; in these examples there
are no further changes from step 49 (with interruptions), resp. already from step 19.
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-vllc- 0,5 va/c= -0,209677419354839
B/ -0,5 my= 1 v,/c= 0,709302325581396
EXoo/c= 05773502692 E,/c*= 0,4641016151 vy /c (vy, v,)= 0,800000000000000
vr/c (v, v3)= 0,800000000000000

8= 0,0E+00

k vs/c Va V4/cC vs_/c Va/c St.
0 -0,5 0,5 3 4
1 0,000000000000000 1,46410161513776 0,730406495763757 -0,500000000000000 0,000000000000000
2 -0,250000000000000 1,39851049716047 0,699076919847366 -0,250000000000000 0,000000000000000
3 -0,125000000000000 1,44829109242188 0,723362051517259 -0,250000000000000 -0,125000000000000
4 -0,187500000000000 1,42799037361527 0,713863539464603 -0,250000000000000 -0,187500000000000
5 -0,218750000000000 1,41446124643264 0,707230579852351 -0,218750000000000 -0,187500000000000
6 -0,203125000000000 1,42151952770374 0,710722406262171 -0,218750000000000 -0,203125000000000
7 -0,210937500000000 1,41806486850481 0,709022002845605 -0,210937500000000 -0,203 125000000000
8  -0,207031250000000 1,41981068269019 0,709883363160283 -0,210937500000000 -0,20703 1250000000
9 -0,208984375000000 1,41894241344356 0,709455499378042 -0,210937500000000 -0,208984375000000
10 -0,209960937500000 1,41850480254676 0,709239458600344 -0,209960937500000 -0,208984375000000
11 -0,209472656250000 1,41872389812336 0,709347655434525 -0,209960937500000 -0,209472656250000
12 -0,209716796875000 1,41861442290016 0,709293601181963 -0,209716796875000 -0,209472656250000
13 -0,209594726562500 1,41866917864890 0,709320639342717 -0,209716796875000 -0,209594726562500
14 -0,209655761718750 1,41864180530934 0,709307123021790 -0,209716796875000 -0,209655761718750
15 -0,209686279296875 1,41862811523852 0,709300362791843 -0,209686279296875 -0,209655761718750
16 -0,209671020507812 1,41863496055736 0,709303743079295 -0,209686279296875 -0,209671020507812
17 -0,209678649902344 1,41863153796880 0,709302052978691 -0,209678649902344 -0,209671020507812
18 -0,209674835205078 1,41863324928079 0,709302898039773 -0,209678649902344 -0,209674835205078
19 -0,209676742553711 1,41863239362922 0,709302475511927 -0,209678649902344 -0,209676742553711
20 -0,209677696228027 1,41863196580012 0,709302264245983 -0,209677696228027 -0,209676742553711

40 -0,209677419355103 1,41863209000868 0,709302325581337 -0,209677419355103 -0,209677419354193
41 -0,209677419354648 1,41863209000888 0,709302325581438 -0,209677419355103 -0,209677419354648
42 -0,209677419354875 1,41863209000878 0,709302325581387 -0,209677419354875 -0,209677419354648
43 -0,209677419354762 1,41863209000883 0,709302325581413 -0,209677419354875 -0,209677419354762
44 -0,209677419354819 1,41863209000880 0,709302325581400 -0,209677419354875 -0,209677419354819
45 -0,209677419354847 1,41863209000879 0,709302325581394 -0,209677419354847 -0,209677419354819
46 -0,209677419354833 1,41863209000880 0,709302325581397 -0,209677419354847 -0,209677419354833
47 -0,209677419354840 1,41863209000879 0,709302325581395 -0,209677419354840 -0,209677419354833
48 -0,209677419354836 1,41863209000880 0,709302325581396 -0,209677419354840 -0,209677419354836
49 -0,209677419354838 1,41863209000880 0,709302325581396 -0,209677419354840 -0,209677419354838
50 -0,209677419354839 1,41863209000880 0,709302325581396 -0,209677419354840 -0,209677419354839
51 -0,209677419354839 1,41863209000879 0,709302325581395 -0,209677419354839 -0,209677419354839
52 -0,209677419354839 1,41863209000879 0,709302325581395 -0,209677419354839 -0,209677419354839
53 -0,209677419354839 1,41863209000879 0,709302325581395 -0,209677419354839 -0,209677419354839
54 -0,209677419354839 1,41863209000879 0,709302325581395 -0,209677419354839 -0,209677419354839
-0,209677419354839 1,41863209000880 0,709302325581396 -0,209677419354839 -0,209677419354839

> XK X X X

()} njpniunnjunjunivnjinjnininle|lE|lEENININI I N IRINIRIERIRPIRPIRIPIPRPIRIFPRIE ~ W
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Results when using the spreadsheet calculation. v; = 0,5¢, v, = —0,5¢
Green fields: Input values. Steps between 20 and 40 hidden
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-vllc- 0,00001 v3/c=3,33333305742102E-06
B/ 0 my= 1 v,/c=1,33333338849358E-05
B} »o/c=2,00000000E-05 E,/c*=1,00000008E-10  vy/c (vy, v,)= 0,000010000000000
vy/c (vy, v3)= 0,000010000000828
5y= -8,3E-08
vs/c Va V4/cC vs_/c Va/c St.
-0,5 0,5 3 4

0,00000000000000E+00 1,00000000010000 1,41421362087937E-05 0,00000000000000E+00 1,00000000000000E-05
5,00000000000000E-06 1,00000000007500 1,22474492205951E-05 0,00000000000000E+00 5,00000000000000E-06
2,50000000000000E-06 1,00000000009375 1,36930563961891E-05 2,50000000000000E-06 5,00000000000000E-06
3,75000000000000E-06 1,00000000008594 1,31101090273823E-05 2,50000000000000E-06 3,75000000000000E-06
3,12500000000000E-06 1,00000000009023 1,34338740912243E-05 3,12500000000000E-06 3,75000000000000E-06
3,43750000000000E-06 1,00000000008818 1,32803375392606E-05 3,12500000000000E-06 3,43750000000000E-06
3,28125000000000E-06 1,00000000008923 1,33591548737510E-05 3,28125000000000E-06 3,43750000000000E-06
3,35937500000000E-06 1,00000000008871 1,33202712640041E-05 3,28125000000000E-06 3,35937500000000E-06

O 0 O~ N R W N R O R

3,32031250000000E-06 1,00000000008898 1,33398271082881E-05 3,32031250000000E-06 3,35937500000000E-06

iy
o

3,33984375000000E-06 1,00000000008885 1,33300694297534E-05 3,32031250000000E-06 3,33984375000000E-06

[y
[

3,33007812500000E-06 1,00000000008891 1,33349658128449E-05 3,33007812500000E-06 3,33984375000000E-06

[y
o]

3,33496093750000E-06 1,00000000008888 1,33325345004281E-05 3,33007812500000E-06 3,33496093750000E-06

[y
w

3,33251953125000E-06 1,00000000008889 1,33337335592179E-05 3,33251953125000E-06 3,33496093750000E-06

[y
=y

3,33374023437500E-06 1,00000000008889 1,33331340433020E-05 3,33251953125000E-06 3,33374023437500E-06
3,33312988281250E-06 1,00000000008889 1,33334338046295E-05 3,33312988281250E-06 3,33374023437500E-06

iy
=]

3,33343505859375E-06 1,00000000008889 1,33332672713907E-05 3,33312988281250E-06 3,33343505859375E-06
3,33328247070313E-06 1,00000000008889 1,33333671915836E-05 3,33328247070313E-06 3,33343505859375E-06
3,33335876464844E-06 1,00000000008889 1,33333338849358E-05 3,33328247070313E-06 3,33335876464844E-06
3,33332061767578E-06 1,00000000008889 1,33333338849358E-05 3,33332061767578E-06 3,33335876464844E-06 X
3,33333969116211E-06 1,00000000008889 1,33333338849358E-05 3,33332061767578E-06 3,33333969116211E-06

e e ]
w0 o~

]
(=]
=

40 3,33333305743509E-06 1,00000000008889 1,33333338849358E-05 3,33333305741690E-06 3,33333305743509E-06
41 3,33333305742599E-06 1,00000000008889 1,33333338849358E-05 3,33333305741690E-06 3,33333305742599E-06
42  3,33333305742144E-06 1,00000000008889 1,33333338849358E-05 3,33333305741690E-06 3,33333305742144E-06
43 3,33333305741917E-06 1,00000000008889 1,33333338849358E-05 3,33333305741917E-06 3,33333305742144E-06
44 3,33333305742031E-06 1,00000000008889 1,33333338849358E-05 3,33333305742031E-06 3,33333305742144E-06
45 3,33333305742087E-06 1,00000000008889 1,33333338849358E-05 3,33333305742087E-06 3,33333305742144E-06
46  3,33333305742116E-06 1,00000000008889 1,33333338849358E-05 3,33333305742087E-06 3,33333305742116E-06
47 3,33333305742102E-06 1,00000000008889 1,33333338849358E-05 3,33333305742087E-06 3,33333305742102E-06
48 3,33333305742095E-06 1,00000000008889 1,33333338849358E-05 3,33333305742095E-06 3,33333305742102E-06
49  3,33333305742098E-06 1,00000000008889 1,33333338849358E-05 3,33333305742098E-06 3,33333305742102E-06
50 3,33333305742100E-06 1,00000000008889 1,33333338849358E-05 3,33333305742100E-06 3,33333305742102E-06
51 3,33333305742101E-06 1,00000000008889 1,33333338849358E-05 3,33333305742101E-06 3,33333305742102E-06
52 3,33333305742101E-06 1,00000000008889 1,33333338849358E-05 3,33333305742101E-06 3,33333305742102E-06
53 3,33333305742101E-06 1,00000000008889 1,33333338849358E-05 3,33333305742101E-06 3,33333305742102E-06
54 3,33333305742102E-06 1,00000000008889 1,33333338849358E-05 3,33333305742102E-06 3,33333305742102E-06
55 3,33333305742102E-06 1,00000000008889 1,33333338849358E-05 3,33333305742102E-06 3,33333305742102E-06

>

[=)] njitnjnninnjunjonjnjuniniibs|AIRAPENININININ INININIRPIRPIRPIRPIRIRIPRIER|IFEIE ~ W
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=

w
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%]
- - S A T . T T

>

Fig. A.5: Representation as in Fig. A.4. v; = 0,00001c,v, =0
Values for v, already unchanged as of iteration step 19

217
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ter acceleration

In this annex it is shown that the reception of signals from an accelerated system by an
observer at rest at the beginning of the acceleration phase and by an observer in uniform
motion leads to the same results. The analytic relations valid here were already derived in
chapter 6.4.1 in the equations (6.60) to (6.80). However, there is also a numerical method
for the solution of this problem, which will be presented in the following. There are ad-
vantages and disadvantages between the analytical and the numerical method, which be-
come visible in a comparison, also with comparable results of the numerical method from
Annex C.

B.1 Numerical solution

The following general correlation between velocity and acceleration within the moving sys-
tem S apply
Av = a(w) - At(v) = ag - Atg (B.01)

The values of ag and At are constant by definition. A numerical solution requires the mul-
tiple calculation of different steps; for this, first the relativistic velocity addition is used,
then the determination of the increase of time and distance follows for each case.

1st step:
_ v+ Av vy +ashts
Vi = voAv VoasAts (B.02)
1+ 2 1+—7—
2nd step:
v)+yw
At, = Atg M (B.03)
3rd step: N
v+ v
Ax; = Atyvy + —— Aty (B.04)

It should be noted that the functions for y(v) and v(4v) are not linear and thus the for-
mation of a mean value is only an approximation, and the error must be compensated by
choosing suitably small intervals for Ats. These steps are now to be repeated N times and
the single results added. In general, it applies

tN = Ats

N
Z y(vk) +2V(v1<_1) (B.05)
K=1
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Annex B: Exchange of signals during and after acceleration

N
Z Vg + Vg1 vK 1 (B.06)
K=1
with
Vg + Av Vg + aglts
Vg1 = — 5o~ Vo =~ — o~ (B.07)
14 vKAv 14 vKa_ZAtS

At any arbitrary time tg a signal from the accelerated system S shall be transmitted back
to observer A. In case of vy # 0 observer A is moving during signal propagation in view of
B either in direction to S or in the opposite way. Because ag and v, can be both positive
and/or negative, for the calculation different regulations are necessary (see also the com-
prehensive presentations in chapter 2.1). If first the situation is discussed that ag and v, are
both positive, then observer B will find the situation according to type “b” referring to Fig.
2.2 as

At = At (1+ ?) (B.08)

When as and v, show in different directions, however, the algebraic sign is changing in
equation Eqg. (B.08) according to situation of type “d” from Fig. 2.2.

In summary, the following combinations arise for the time between two pulses ty p per-
ceived by observer B due to the increasing distance, into which any positive or negative
values for the velocity v, can be inserted:

Xg — Vot
ag > 0: txr = "—;’,0" (B.09)
C (1 + ?)
Xg — Vot
as < 0: tir = l("—%oK)l (B.10)
c(1-3)
For v, = 0 both equations for any value of ag simplify to
x|
tK,R = 7 (B 11)

The total time from the start of the acceleration to the transmission and subsequent recep-
tion of the signal is then in all cases

tK,T = tK + tK,R (B 12)

Further, the signals received by observer A must be adjusted in view of B according to equa-
tion
ty +tkr

Y oo (B.13)

tgr(vo) =

to cover the effect, that for A in view of B the time is running slower by the factor y(v,)
according to the Lorentz-equations.
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Annex B: Exchange of signals during and after acceleration

With the relations presented here it is possible to determine the values for the reception
times of observers moving relative to each other. For this purpose, first the time intervals
are calculated, with which the accelerated system S transmits the signals. While these are
subjectively Atg within the system S, from a non-accelerated observer the values for the
time interval can be determined using the equations presented before. The calculation
scheme can also be used to define the distance of S when transmitting the signals. Thus, the
total times for the arrival of the signals can be determined for any arbitrarily moving ob-
server.

Fig. B.1 shows the program flow chart for the numerical calculation of vy, ty, tr and xy
according to the equations mentioned (the values for tx and xg are calculated throughout;
since only the last results are considered, these correspond to ty and xy). In addition, the
acceleration ay is determined for an observer moving relative to the system S; the value
deviates from the acceleration ag, which can be measured subjectively in S. As already
shown in chapter 6.4.1, the subjectively adjusted acceleration in S and the acceleration
measured by an external observer moving relative to it with the velocity v must differ by
the factor y3(v). Therefore, to verify this theoretically expected effect, the value y3ay was
also calculated from the data. The results show a very good agreement between as and
viay.

The used VBA program (Visual Basic) code is shown in Fig. B.1. In Tab. B.1 the formula
symbols taken for the calculation program are assigned to those used in the text. The pro-
gram was designed in such a way that the initial velocity v,, as well as the subjectively valid
acceleration ag and total duration of the experiment ts are to be specified. In addition, the
number of intended iteration steps N can be freely selected, which provides an important
influencing variable. With the VBA program, values up to N = 107 were investigated. These
calculations only make sense with such programs, since with a conventional spreadsheet
each iteration step requires separate program fields, and this would lead to enormous file
sizes.

Tab. B.2 shows in the parts a) to c) the results from calculations with the boundary con-
ditions ag = 10 m/s? and tg = 1000s. Values of v, =0, vy = 369 km/s and v, = 0.5c
were chosen as initial velocities. For all results, §-values were calculated according to the
scheme

Svy = v;&—(?l) _1 (B.14)
and compared, where K in this case represents a potency of 10 according to the specifica-
tions in the table.

The calculations performed show that within a range of about 102 to 10* the differences
between the results reach a minimum. This suggests that these zones have the largest con-
fidence range. This is primarily dependent on the chosen calculation system; Microsoft Ex-
cel© was used as the method here, which has an accuracy of 15 digits. If computer systems
with higher accuracy would be used, other results are to be expected. However, the overall
quality of the calculations can only be verified in the comparison between the analytical and
numerical methods, which will be carried out subsequently.
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Annex B: Exchange of signals during and after acceleration

¥
K=0 IH—G xp =20
At = to /N Py =g
.-“
K=K+1
k

Vg = (Vg1 + @ A1/ (14 vy - ag e d?’_..;l.l"q‘zj
by = by H( Vi +¥r—1)/2 - Alg

Xg =Xg-y + (Vg +vg-1)/2" (tg—tg-1)

b o — XK~ Vo bk ¥ n . lxs — v - tiel
KR ) F i a———
c(1+72) - c(1-%)
| . |
r
tr = (tx+tgr)/ Yo
ag= (Vg —Vg-y ) (¥g - dts)
n vi. by, by
Xi, g ¥ i ag
Fig. B.1: Flowchart of the calculation process
Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code
UO v0 aS a0 ts tS
At dts tx tK tx1 tKml
Xy XK 1% vK Vg_q vKml
Yk GakK YK-1 GaKml tK,R tKR
tr tT ay aK v3ag aKGa3
Tab. B.1:

Formula symbols and referring VBA-Codes
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Annex B: Exchange of signals during and after acceleration

Sub B ()
Dim ¢, v0, a0, aK, tS, dtS, tK, tKml, xK, vK, vKml, GaK, GaKml As Double
Dim aKGa3, tKR, tT, vT, K, N As Double
'Input
v0 = 299792.458 / 2 'Initial velocity in km/s
a0 = 10 'Acceleration in m/s?
N = 1000 'Number of iteration steps
tS = 1000 'Time for S between transmission of signals in s
'Start Calculation
c = 299792.458 'Speed of light in km/s
a0 = a0 / 1000 'Acceleration in km/s?
dts = tS / N
tK = 0
xK = 0
vK = vO0
For K= 1 To N
vKml = vK
tKml = tK
GaKml =1 / (1 - (vKml / ¢c) ~ 2) ~ 0.5
vK = (vK + a0 * dts) / (1 + vK * a0 * dtsS / ¢ ©~ 2)
Gak =1/ (1 - (VK / ¢c) ~2) ~ 0.5
tK = tK + (GaKml + GaK) / 2 * dtsS
xK = xK + (VK + vKml) / 2 * (tK - tKml)
If a0 > 0 Then
tKR = (xK - tK * v0) / ¢ / (1 + v0O / ¢)
Else
tKR = Abs((xK - tK * v0) / ¢ / (1 - v0O / <))
End If
tT = (tK + tKR) * (1 - (vO / ¢c) ~ 2) ~ 0.5
aK = (vK - vKml) / (GaK * dtS) * 1000
aKGa3 = aK * GaK ~ 3
vl = vK - vO0
Next K

'Results in view of an observer moving with v0 at beginning of trial

Debug.Print "vT", "vK", "tN", "xN", "aN", "aNGa3"
Debug.Print vT, vK, tT, xK, aK, aKGa3
End Sub
Fig. B.2:  VBA Program-Code for the calculation process presented in Fig. B1

Basically, it can be stated that all §-values are very low at vy, = 0 and then increase
slightly at higher numbers. In particular, the values for t;, which would be well suited for
experimental verification, hardly differ between the individual values of vy within a range
with constant acceleration ag. Also, between the different acceleration values the differ-
ences are so small that a systematic influence cannot be assumed, but the effects are due to
influences of the numerical calculation.

The deviations between the results for the selected iteration steps between 1 and 107
show that there are no systematic deviations. In the range of 103 the results show a high
stability and the smallest differences; therefore, they are particularly suitable for compara-
tive considerations.

The additional value of v, = 369 km/s was chosen because it corresponds to the velocity
of the sun with respect to the cosmic background radiation and therefore, if an effect would
show up in the calculations, it could be an appropriate basis for further considerations (see
also chapter 1.7).
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Annex B: Exchange of signals during and after acceleration

It is to be noted, however, that in none of these evaluations a noticeable difference be-
comes recognizable and thus the subjectively determined observations between differently

moving observers agree. This is also true for the high velocity of v, = 0,5c.

In addition, it should be mentioned that the values of ty, xy etc. used here were named
in this way exclusively because of the numerical calculation method and correspond to the
analytically determined data for t4 and x4, respectively. Accordingly, these values also refer
to the measurement results of the observer A moving with the same speed as S at the be-
ginning of an experiment.

(T S ST e [

z 10
3 102
4103
5 10*
6 10°
7 10°
8107

10,0000000000000
9,99999999632825
9,99999999629152
9,99999999629152
9,99999999629107
9,99999999628186
9,99999999612586
9,99999999923743

1000,00000027816 1000,01667848293 5000, 00000139081
1000,00000018637 1000,01667839113 5000,00000047288
1000,00000018545 1000,01667839021 5000,00000046369
1000,00000018545 1000,01667839020 5000,00000046369
1000,00000018544 1000,0166783%020 5000,00000046378
1000,00000018545 1000,01667839021 5000,00000046244
1000,00000018732 1000,01667839208 5000,00000044603
1000,00000024389 1000,01667844866 5000,00000204189

10, 00000001 11265
10,0000000011126
10,0000000001113
10,0000000000098
10,0000000000010
9,99999999991214
10,0000000000898
9,99999998587893

I N S N T

1/2
2/3
3/4
4/5
5/6
6/7
7/8

3,67-1071°
3,67-10712

0
4,49.-10°14
9,21-10713
1,56-1071

-3,11-

10-10

9,18

9,20

9,99
-9,99-
-1,87
-5,66

10~ 1
10~ 13

0
10-18
10—15
10712
10—11

9,18

9,20-
9,99-

-9,99-
-1,87 -
-5,66-

10~ 11
10~ 13
10-15

0
10—15
10—12
10-11

1,84 .

-1,80:
2,68
3,28

-3,19

. 1010
10~ 12

0
1014
10°13
10-12
10—10

1,00-107°

1,00-

1,01
8,88 -
8,88
-1,78-

10~ 10
10741
10—]3
10°12
10-11

1,42-107°

a) vy =0, as = 10m/s?, t; = 1000s

() ST e e

z 10
3102
4 103
5104
6 10°
7 10°
8107

1/2
2/3
3/4
4/5
5/6
6/7
7/8

378,999984439478
378,999984435807
378,999984435772
378,999984435760
378,999984435533
378,999984433259
378,999984411821
378,999984156412

1000,00077830515 1000,01667848259 374000,283305861
1000,00077821336 1000,01667839113 374000,283372686
1000,00077821244 1000,01667839021 374000,283373356
1000,00077821243 1000,01667839020 374000,283373357
1000,00077821243 1000,01667839020 374000,283373242
1000,00077821243 1000,01667839020 374000,283372125
1000,00077821244 1000,01667839018 374000,283362434
1000,00077821289 1000,01667839010 374000,283206699

10, 00000042 16944
10,0000000421697
10,0000000042204
10,0000000004517
9,99999595988323
10,0000000010201
9,99999998396706
10,0000000408106

T R S N

9,69
9,10-

3,09
6,01-
6,00-1
5,66-
6,74 -

1072

10~ 14
10714
20722
0—12
10-
10719

9,18 10711 9,15-1071! -1,79- 10710
9,20-10713 9,20- 10713 -1,79-10712
9,99.1071% 9,99 10718 2,66+ 10719
0 0 3,07-10713
0 0 2,99-10712
-9,99. 10715 2,00-10°14 2,59.10 1
-4,50- 10713 7,99- 10714 4,16- 10710
ts = 1000s

b) vy = 369 km/s, as = 10m/s?,

380 1078
3,79-107°
3,77-10710
5,68- 10711
-1,14-10710
1,71-107°
-5,68-1077
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3 102
4 103
5 10*
6 10°
7 108
8107

Annex B: Exchange of signals during and after acceleration

(T S TR R [

1154,71016786646 1000,01667841339
1154,71016776046 1000,01667839043
1154,71016775940 1000,01667839021
1154,71016775940 1000,01667839022
1154,71016775925 1000,01667838996
1154,71016775999 1000,01667839124
1154,71016774494 1000,01667836518
1154,71016792619 1000,01667867908

149903,728874916
149903,728874913
149903,728874913
149903,728874922
149903,728874803
149903,728875378
149903,728863738
149903,729001552

173091029,842051
173091029,861909
173091029,862108
173091029,862117
173091029,862026
173091029,862469
173091029,853446
173091029,962107

10, 0001667931727
10,0000166791061
10,0000016684019
10,0000002015203
9,99999992987018
10,0000022582798
9,99998285456124
10,0000216670928

S I S N

1/2 1,84-107 4 9,18. 10711 2,30- 10712 -1,15. 10710 1,50-107°
2/3 0 9,18. 10713 2,20-10713 -1,15- 10712 1,50-107%
3/4 -5,84-10714 0 9,99 10715 -5,20-1071# 1,47-1077
4/5 7,93-10713 1,30- 10713 2,60-10713 5,26-10713 2,72-1078
5/6 -3,84-10712 -6,41-10713 -1,28-10712 -2,56- 10712 -2,33-1077
6/7 7,77-10° 11 1,30 1071 2,61-10° 11 521:10°1 1,94-10°¢
7/8 -9,19- 10710 -1,57+ 10710 -3,14- 10710 -6,28:10710 -3,88-10°°
= 1000s

c) vy = 0.5¢, ag = 10m/s?,

Tab. B.2: Results for vy, ty, tr, xy and y3ay acc. to calculations of Program B
presented in Fig. B.2 as a function of the number of iteration steps N.
Values for vy in km/s, tr in's, xy in km and a in m/s?.

B.3 Improved accuracy by using a Taylor expansion

If the analytical calculations shown are to be carried out for very small values for time or
speed, larger differences result depending on the calculation accuracy. This concerns in par-
ticular equation (6.74) for the distance covered during an experiment

1
2 2 -1/ 2
X, = — (1——“) —lf=—@-1D

S

(6.74)

For small values for v, the effect arises that the value for y deviates only slightly from 1
and the final result becomes inaccurate because of the difference formation to 1. In the pre-
sent case, the spreadsheet program Microsoft Excel© was used which provides an accuracy
of 15 digits, and thus for values for v, below about 400 km/s, deviations occur which can
become very high for small values. In this case, instead of using Eq. (6.74), it is recom-
mended to use a Taylor expansion for y that contains "1" as the first value. This is:

2 4
lvy 3y,

(B. 15)

Taylor — elements

The following table B.3 shows the effect on the results for different test times ts or velocities
of v, using different approaches.
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I I T T T

1 0,0100000000000000 1,00000000000000 0,00399127477173885 0,0050000000000000 0,00500000000000000

10  0,0999999999939963 10,0000000000002 0,498909346467356 0,500000000000004 0,500000000000004
100 0,999999999996291 100,000000000185 50,0006947029584  50,0000000000463  50,0000000000463
1.000  9,99999999629117 1000,00000018544 5000,00161862472 5000,00000046360 5000,00000046360
10.000  99,9999962911666 10000,0001854417 500000,004207119 500000,004636038  500000,004636042
20.000  199,999970329337 20000,0014835334 2000000,07470196 2000000,07417642  2000000,07417667
40,000  399,999762634824 40000,0118682683 8000001,18686648 8000001,18681095  8000001,18682679
60.000  599,999198893243 60000,0400554100 18000006,0086520 18000006,0081306 18000006,0083111
80.000  799,998101082647 80000,0949461719 32000018,9903299 32000018,9882180  32000018,9892321
100.000 999,996291182986 100000,185441779 50000046,3602845 50000046,3565675 50000046,3604362
200,000 1999,97032986004 200001,483536709 200000741,768963 200000741,520219  200000741,767795

1.000.000 9996,29281639030 1000185,45199287 5000463621,38578 5000459757,50365 5000463617,62560

Tab. B.3: Values of v,, t, and x4 depending on ts acc. to different procedures

x4(1): Eq. (6.74)

x4(2): Eq. (B.15) Taylor elements 1-3

x4(3): Eq. (B.15) Taylor elements 1-4

Optimal values for x, marked in green. Results in km and s.

For tg values up to 20,000s, the calculation according to x,(3) using the first 4 Taylor ele-
ments has the highest accuracy, up to 1,000s the solution with x4 (2) is also sufficiently ac-
curate. For values from approx. 40,000s, Eq. (6.74) is preferable (or further Taylor elements
would have to be added).

B.4 Comparison of results of the different methods

Finally, the results calculated from the different methods will be compared. In addition to
the numerical and analytical methods presented here, the numerically obtained results
from Annex C based on the relativistic rocket equation have been added. While in the first
two calculations a constant acceleration is made a prerequisite, the same situation arises in
the relativistic rocket equation for the special case that the ejection of the propellant mass
is kept constant in relation to the remaining mass of the rocket.

Tab. B.4 shows the values determined according to the different methods vy = vy — v,
t, tr and xy for the initial velocities vy, = 0 as well as 369 km/s and 0.5c. The values listed
in A were calculated analytically using the equations Eq. (6.60) to (6.74). For the velocities
vy = 0 and 369 km/s the Taylor expansion was used as described in Tab. B3, details are
presented in the table. The values for B are the numerical results corresponding to Annex
B, and C are from Annex C, type “B1”. The comparison shows that the velocities v for A and
B agree very well, but this deviates somewhat for variant C, especially for higher initial val-
ues. Moreover, for A, slightly higher values for x, result in the range of small velocities. In
general, however, it can be said that the agreement of the results is good despite the com-
pletely different approaches.

Furthermore, for a comprehensive overlook the values for y3a, were added. It is shown
in all cases that they correspond very exactly to the value of ag subjectively valid for the
accelerated observer.
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=) 3 I I I N

[ A 60 0

Y (2) 9,99999999629117 1000.00000013544 5000,00000045361 10
N Diff. 9,99999999629117 1000,00000018544 1000,01667839020 5000,00000046361

I O T T R BT
ﬂlo? 9,99999999629152 1000,00000018545 1000,0166783%021 5000,00000046369 10,0000000001113
n103 9,99999999629152 1000,00000018545 1000,0166783%020 5000,00000046369 10,0000000000098
nlo4 9,99999999629107 1000,00000018544 1000,0166783%020 5000,00000046378 10,0000000000010

“105 9,999995999628186 1000,00000018545 1000,01667839021 5000,00000046244 9,99999999991214

I Y S S N N

ENi0z 352.101 -8,22-10718 -6,78- 10715 -1,69: 10724 -1,11.107H
ENi0® 352101 -8,22: 10715 0 -1,69 1014 -9,84.10°12
EXi0* 977-10718 0 0 -3,50- 1074 -9,65- 10714

ERi0s 931.1013 -8,22:10715 -6,78- 10718 2,34.10°13 8,79-10712

Iﬂ—
- 107 9,99999999608546 1000, 00000018545 1000,0166783%021 5000, 00000054144 9,99999999883114
103 9,99999939607074 1000,00000018544 1000,0166783%9020 5000,00000053831 9,993999995868366
104 9,99999599607296 1000,00000018544 1000,01667839020 5000,00000053928 9,99999999869584
10s 9,99999999610921 1000,00000018545 1000,01667839021 5000,00000055217 9,99999999845206

T I I N R TN

102 2,06-10711 -8,22-10°15 -6,78-10715 3,24-1077 1,17-10°10
10 2,20-10°%* 0 0 3,24-1077 1,32-1071
10 2,19-107 0 0 3,24-1077 1,30: 10710
105  1,82-1071 -8,22.10715 -6,78- 10715 3,24-1077 1,55-10710
o) 3 IR IV N N N
A K8 369 36900,0279516977 6808057,73563331
BN (2) 37899998443578 37900,0287299112 7182058,01900707 10

nDiff. 9,99998443578  1000,0007782135 1000,01667839124 374000,28337376

“ 10?2 9,99998443577  1000,0007782124 1000,01667839021 374000,28337336 10,0000000042204
“ 10 9,99998443576  1000,0007782124 1000,01667839020 374000,28337336  10,0000000004517
“ 10* 9,99998443553  1000,0007782124 1000,01667839020 374000,28337324 9,99999999988323

105 9,99998443326  1000,0007782124 1000,01667839020 374000,28337213 10,0000000010201

e e e

EMi0z  209-1071 1,04-10742 1,03:107%2 2,87:107%2 -4,22. 10 =
ﬂw? 517-10"%4 1,05 1012 1,04 10712 1,08- 1012 -4,52+10° 1
N0t  652-10718 1,05 10712 1,04- 10712 1,08: 10712 1,17-1071
ENi0s 6651012 1,05- 1072 1,04-10712 1,38:10713 -1,02-1071°

I T N R I B BT
107 9,99998435551  1000,0007782124 1000,01667839008 374000,28333340 9,99999992287606
10% 9,99998435367  1000,0007782124 1000,01667839007 374000,28333240 9,99999991716842
10* 9,99998435376  1000,0007782124 1000,01667839006 374000,28333254 9,99999991716842
- 10° 9,99998435645  1000,0007782124 1000,01667839007 374000,28333389  9,99999992496930

S S I B T

EHi102  212-101° 1,04- 1012 117-10712 5,74 - 10-10 7,71 10-"
EHi0° 217-1010 1,05- 10712 1,18+ 10712 1,10 10710 8,28:10°°
104 2,16-1071° 1,05: 1012 1,19.10712 1,10. 10719 8,28.107°
10°  2,09-10710 1,05-10712 1,18-10712 1,07:10719 7,50 10~°
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<) EX IV IO T R

- (1) 149896,229000000 17308525,6327320 1390379100217,26
- (2) 149903,728874913 17309680,3428997 1390552191247,12 10
- Diff.  7,499874913 1154,7101678  1000,01667838490  173091029,86

[ S R T R B

102 7,499874913 1154, 7101678 1000,01667839021 173091029 86 10, 0000016684019
u 10*  7,499874922 1154,7101678  1000,0166783%022  173091029,86 10,0000002015203
n 10  7,499874803 1154,7101678  1000,01667838996  173091029,86 9,99999992987018

105 7,499875378 1154,7101678  1000,01667839124  173091029,86 10,0000022582798

1 I s ) i sy v

ENi0z 4221078 -4,29 10'12 -5,31-10712 -7,33- 10’12 1,67+ 107
ENi0° 627101 -4,29 1042 -5,32-10712 -7,38-10°%7 -2,02:10°°
E¥i0*  730-10718 -4,16- 10712 -5,06- 10712 -6,85- 10712 7.01- 1077

ENi0c 3101012 -4,81. 10712 -6,34- 10712 -9,41. 10712 -2,26-1077

lﬂ

K3 107 7,499850523 1154,7101677  1000,01667833597 173091029 84  9,99996914760263
10°  7,499849967 1154,7101677  1000,01667833473  173091029,84  9,99996690196617
10*  7,499849989 1154,7101677  1000,01667833478  173091029,84  9,99996743452330
105  7,499850786 1154,7101677  1000,01667833657  173091029,84  9,99996654696513
I Y I T T N 2
102 3,25-10°¢ 2,28 10711 4,89.10711 1,01: 10710 3,09-10°¢

108 333.10°¢ 2,35-10°1 502-10" 1 1,04-10710 3,31:10°¢

104 332.10°° 2,34. 101 5,01-107° 1! 1,04.10°10 3,26-10°¢

10°  3,22-10°% 2,25 107! 4,83.10°1 9,99. 1011 3,35-10°6

Tab. B.4: Calculated values for vy, t4, tr, xy and y3ay using different procedures
A: Analytically acc. to calculation using Eq. (6.60) to (6.74)

B: Numerically acc. to VBA-Code from Fig. B.2

C: Numerically acc. to VBA-Code from Fig. C.2, Type “B1”

as = 10m/s?. Atg = 1.000s. Results in km and s.

a) vy = 0, results for x, calculated using Eq. (B. 15), x4(3) and x,4(2)
b) vy = 369 km/s, results for x4 calculated using Eq. (B.15), x4(3)

c) vy = 0.5c, results for x4 calculated using Eq. (6.74)
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Annex C: Relativistic rocket equation

For numerical calculation, the equations derived in chapter 6.4.2

Pk + Px = (Myg_1—Amy_1)VgYi + AMg_ VgV = Mg_1Vg_1Vk-1 (6.84)
and
Vi + V)
Vg = % (6.85)
1+=7"

are used. For the determination of vg, as already presented in other chapters, the method
of bisection was chosen (see also the comparison of different numerical calculation meth-
ods in annex D). The basis is the momentum calculation of the total system, consisting of
the momentum of the rocket py as well as that of the propulsion gas py with mass Amg_,
moving in the opposite direction, and the determination of the corresponding rocket veloc-
ity vg. Due to the law of conservation of momentum, the total value must be constant before
and after the velocity increase of the rocket including the consideration of mass ejection.

First, suitable starting values for (v,), and (v_), must be defined; it makes sense that
these values should be far apart since it must be ensured that the final result vk lies within
these limits. Thereupon a new index L is defined. Now the mean value

(vi)o + (v2)o

. (C.01)

(Vk)L=1 =

is formed and for the velocity calculated here the momentum is determined according to
equation (6.84). Then the following definitions must be used:

g () = )1
Pk + PK)L=1 > Mg_1Vk_1Vk-1 = (C.02)
()=o)
g (1)1 = (4o
Pk + Pr)L=1 < Mg_1Vg_1Yk-1 = (C.03)
()1 =),

This calculation is repeated with increasing index L until the results for v, and v_ are
equal. Thus, the velocity of the rocket, whose mass is now reduced by Amy_,, is determined
for this partial step. Subsequently, the next step is performed for K = 2 and so on.

The time that subjectively elapses inside the rocket between the emission of 2 signals is
by definition At,. For an external observer the view is different, and the value must be sup-
plemented according to
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and the distance covered is
AxK = AtKvK (C 05)

After adding all N single values, the final result is

N
K=1
N
xN = Z AtovK (C 07)
K=1

At any arbitrary time tg, a signal is sent back from the accelerated system S to the ob-
servers A and B. Observer A has moved with the same velocity as the rocket at the beginning
of the experiment and continues its path without acceleration, while B measures a velocity
v, with respect to A. From B's point of view, A is either moving in direction to S or in the
opposite way during signal propagation. In case of v, # 0 the values for acceleration ay and
velocity v, can each be positive or negative, so different arrangements must be made for
performing the calculations. This was already done in a similar form in Chap. 6.4.1 with the
equations Eq. (6.60) to (6.74), but there the acceleration of the rocket was kept constant
over the entire course of the experiment. In contrast, here the exit direction of the propul-
sion gas v’ represents the effect of precondition. If v’ > 0 then the acceleration is negative,
at v’ < 0itis positive. The equations used in section 6.4.1 must therefore be modified with
respect to the boundary conditions and read as follows here

Xg — Votg

v' <0 (ag>0): tkr = —F—5~ (C.08)
c (1 + %)
, lxx — votkl
v'>0 (ag<0): kR =~ oy (C.09)
c(1-3)
Thus, for the limiting case applies
x
Vg = 0: tK,R = % (C 10)
Generally follows
tK + tK,R
tr(K) =) (C.11)

In addition, for the determined final velocity vy, the following is specified for different sys-
tem velocities v, for better comparability of the calculations

UT = UN - UO (C 12)
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C.2 Specific specifications for the calculation

When defining the boundary conditions for the calculation, the ratio of outflowing mass per
time interval is relevant. In order to simplify the representation, here the outflow mass of
the rocket is normalized to 1 and the standard time interval, valid subjectively inside the
rocket, is set to At, = 1s. From this it follows, for example, for the case when 0.5% of the
rocket mass flows out per second for propulsion, that when 50% of the mass is ejected, a
total of 100 iteration steps have been performed. This case can be defined for the calcula-
tions using the form

Amg = Aty - 0,5% N/At, = 100 (C.13)

If, for example, the number of iteration steps is then increased by a factor of 10, the time
interval and the outflowing supporting mass are reduced by the same factor for the subse-
quent calculations.

The initial values of the velocities (v, ), -, and (v_),—, for the bisection should be chosen
far apart, but the mean value must be non-zero, otherwise there will be disturbances during
the calculation; (v, );—o = 0,9c and (v_),—o = —0,8c were chosen in this case.

C.3 Flowchart and VBA program code of the process

A flow chart (Fig. C.1) shows how the running program is designed. It is a process with two
nested iteration loops; the running indices have been labeled K and L. The representation
of the VBA program code (Fig. C.2) follows the flowchart representation. The VBA codes
used for the formula characters are shown in the following listing.

Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code
0 v0 v v0g At dto
vy vmax (vo), vmin (v4) =0 vmax0
(v2) =0 vmin0 ty tK ty_1 tKml

tr tT Xy %K tx R tKR
(vk)L vL Vk_1 vKml 7% vK
mg mK Am, dmO Amg dmK
Pk-1 pKml (Px + Pi)L pL vk vKg
(Vk)L-1 vLml (Wi vLg Ur vT
ay akK y3 Ga3 y3ag aKGa3

Tab. C.1: Formula symbols and referring VBA-Codes
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Annex C: Relativistic rocket equation

vy T, dby, A1y,
(v )o.(v)g, N

Linear: A
Proportional: B

F=A B?
L J
tg=p = Pk=0 |-';|
My_p =
Yx0 =0 =1

Amg = dmy

Ay = Amyg - Mg

Pr—1 = Mye_1Vg_1¥r-1

My = My_q — dmy

L T

(vl

Fig. C.1:

Flowchart of the calculation process

L=0 (v )p—n = (v)g
L =L+1
l (l".q.h_ = {.!‘p(t],l_ f!’-a.]']’_ = {.1'4.-}1'_—1.
_ (vl +iv dy () = (v ) (r_)p = (v
(rly= 3
; (vg), +vy
{pfl.'.]ﬂ.z (1-? ':I .pr :'T ]"I.
1 +—5—z—ﬁc‘-
n .
(px + Pr), = Mg ()i (ricdy + dmg (vgdy (Orgde
¥

' Xy —Vply

v = (gl vl fgg = 1oy

c (1 + c }

¥lvg) + y(vg-1) —p ¥
t;,:- — tl'{'—'l +.|ﬂf|-| L3 2 f-l p' =0 F.‘L’.R = (_-1"]{ il:lilr.?('.} K=K+1
r(l - —*}
Vg + Vg1 £
g = Xg—1 t TUK —tg_q n
tr = (ty + tx gl ¥o
l:'IK = {!’H - [’K_l:]ﬂtﬂ
I?T - t'x - ]?D
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Sub C ()
Dim v0, vOg, tS, dtS, dm0O, mF, vmax0, vminO, vmax, vmin, mK, tK As Double
Dim tKml, tKR, tT, xK, vK, vKml, dmK, pKml, pL, vL, vLml As Double
Dim N, K, L, vKg, vT, vLg, c, aK, Ga3, aKGa3 As Double
Dim F, Al, A2, Bl, B2 As String
'Input
F = "B1" 'Define Al, A2, Bl or B2
'A: Linear mass reduction, B: Prop. mass reduction
'l: Def. number of iteration steps, 2: Def. end mass
vl =0 'Initial velocity in km/s
vO0g = -4 'Initial velocity gas in km/s
dmO = 0.25 / 100 'Initial output mass in %/s
'Specific input Def. 1
tsS = 400 'Time until a signal is emitted
N = 1000 'Number of iteration steps
'Specific input Def. 2
dts =1 'Tteration time in s
mF = 10 / 100 'Mass at end of trial in %
'Start Calculation
If F = "A1" Or F = "A2" Or F = "B1" Or F = "B2" Then
GoTo Calc:
Else
Debug.Print "Input error: Chose Al, A2, Bl, or B2"
GoTo Outl:
End If
Calc:
If F = "A1" Or F = "B1" Then
dtS = tsS / N
End If
mK = 1 'Initial value mass
vmax0 = 0.9 'Initial value max. for calculation (in rel. to c)
vmin0O = -0.8 'Initial value min. for calculation (in rel. to c)
c = 299792.458 'speed of light in km/s
tKk = 0
XK = 0
vk = v0 / ¢
vO0g = vO0g / ¢
Mainloop:
K=K+ 1
If F = "A1" Or F = "A2" Then
dmK = dmO * dtS
Else
dmK = dm0 * dtS * mK
End If
pKml = mK * vK / (1 - vK ~ 2) ~ 0.5 '"Momentum rocket for K - 1
mK = mK - dmK 'Rest rocket mass for K
If mK <= 0 Then
K=K-1
mK = mK + dmK
Debug.Print "Rocket mass zero"
GoTo Out2:
End If
vmax = vmax0
vmin = vminO 'Reqg.: vminO unequal -vmaxO
L =0
Do
L=L+1
viml = vL
vl = (vmax + vmin) / 2
vLg = (vL + vO0g) / (1 + vL * v0q)
pL =mK * vL / (1 - vL ~ 2) ~ 0.5 + dmK * vLg / (1 - vLg ~ 2) ~ 0.5
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If pL > pKml Then

vmax = VL
Else: vmin = vL
End If
Loop Until vIml = vL
vKml = vK
vK = vL
vKg = vLg
tKml = tK
tK = tK + dts * (1 / (1 - vK ~2) ~ 0.5+ 1/ (1 - vKEml ~ 2) ~ 0.5) / 2
xK = xK + (VK 4+ vKml) / 2 * (tK - tKml) * c
aK = (vK - vKml) / (dtsS / (1 - ((VK + vKml) / 2) ~ 2) ~ 0.5) * ¢ * 1000
Ga3 = (1 / (1 - ((VK + vKml) / 2) ~ 2)) ~ 1.5

If vO0g > 0 Then
tKR = Abs(xK - v0 * tK) / ¢ / (1 - v0O / c)

Else: tKR = (xK - vO * tK) / ¢ / (1 + v0O / ¢)
End If
tT = (tK + tKR) * (1 - (vO / ¢c) ~ 2) ~ 0.5
vl = (VK * ¢ - vO0)
aKGa3 = aK * Ga3
If F = "A1I" Or F = "B1" Then

If K < N Then
GoTo Mainloop:

End If
End If
If F = "A2" Or F = "B2" Then

If mK > mF Then
GoTo Mainloop:

End If

End If
Oout2:
Results in view of an observer moving with v0 at beginning of trial
Debug.Print "vT =", vT 'velocity when signal is emitted in km/s
Debug.Print "tN =", tK 'Total time until a signal is emitted in s
Debug.Print "tT =", tT 'Total time for transmission of signal in s
Debug.Print "mN =", mK 'Rocket mass at emission in relation to 1
Debug.Print "xN =", xK 'Distance covered at emission of signal in km
Debug.Print "aN =", aK 'Acceleration in m/s?
Debug.Print "aNGa3 =", aKGa3 'Acceleration * Gamma ~ 3 in m/s?
Outl:
End Sub
Fig. C2: VBA Program-Code for the calculation process presented in Fig. C1

In the following tables Tab. C.2, C.3 and C.4 supplementary calculations are shown accord-
ing to Tab. 6.4 from Chap. 6.4.2. Instead of using the program "A1", the variant "A2" could
also have been selected. In this case, the desired final value of the rocket mass and the iter-
ation time are specified, and the number of iteration steps results from the calculation. Ex-
ample from Tab C2: Parameters "A1" tg = 100s, N = 1000 correspond to "A2" mp = 50%
and Atg = 0,1s. The calculated value for K is then N = 1001. The results are very similar,
but not completely identical. Since in this case the influence of the number of iteration steps
was in the foreground, calculation "A1" was chosen.

The values of t; are of particular interest for comparisons, since they would be accessible
for experimental testing due to the simple use of precision clocks. The results of t; obtained
here are shown separately in Tab. 6.6, Tab. 6.7 and Fig. 6.4, but do not show any systematic
differences, so that the principle of relativity is also observed here as in all other cases.
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e L ﬁ—_

2.67508561278727  100,000397329364 S00000000000000 119,116010675216 | 10 2.67508151022224  100,000397329361 S00000000000000  $7019,1440520908
xo' 2,76261372200990 100,000408141269 o.sooooooonowooo 122,357320955606 | 107 2,76260348280941 100,000408141256 o.soooooooooooooo 37022,3853647753
107 2,77158897232157 100,000409292747  0,500000000000055 122,702523336750 | 107 2,77158471909660 100,000409292744  0,500000000000055 37022,7305674122
10" 2,77243872482278 100,000405408534 0,500000000000055 122,737265091767 | 10' 2,77242447045512 100,000405408530 0,500000000000055 37022,7653052072
107 2,77257872237184  100,000406420246 0, 499995999996724 122,740721484222 | 10 2,77247447227356 100,000408320227  (,499395996996724 87022, 7687858304
10%  2,772587722247%3 100,000408422400 0,500000000081133 122,241089155569 | (0% 2,77258347644647 100,000409421377 0,500000000081133 37022,7691339111
10" 2,77258862465211 100,000409440862  0,499999999708066 122,741128020357 | 107 2,77258481950150 100,000409421716 0,499999999708066 37022, 7691906506
135 8,5931 1,4064: 10°2 34698 10° [ 53343 1,15%0-10°% 34709 - 107
1? 8,7528- 107 1.0812- 102 o 32413 | 107 87522, 1077 1,0812- 103 0 3.2413
107 897531077 11515 107 54956 1074 34520100 | 107 89752 1077 11515 107 549561014 3,4520. 107
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10* 85,9998 10 11612, )01 -3,3308- 1071 34764107 | 10° 85,0002 107 1,1997. 107" 13,3308 107 34766 1071
ot 599981074 21540, 107 4,4409- 107 1* 34786 1074 | 10t 92,0042 107 115003079 44409 101 34808 - 104
10’ 90240 1077 1.8462- 109 3,3307-1071° 348651077 | 107 13431 10" 3.3900 - 10°5° -3,3307 - 10-10 35,6740 103
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1o 89331107 1,4069, 107 3,6698-10°7 | 10" 8,943 107" 31511, |07 347091077
10w 899311074 14211 10749 34698 107% | 10V 89948 3071* 11369 1074 14706 107
104 89931 104 a 34698 10°% |10 8,9943-30-4 a 34706 - 107
10 29333 10°% 0 34639 10°1° | 0¥ g9961- 1072 0 34925 00°1°
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18- 2,77258572143102  100,0004059422556 122,741127708945 | 100 2,77258487581048 100,000405421305 37022,7691724768
2,67496628539311 100,000397329345 S00000000000000 200123.569407a64 | 10 2,67210782993243 100,000397329281  0,500000000000000 1000675.087202456
xo' 2,76245047724150 100,000408141251 o.sooooooonouoooo 200126,810789598 | 107 2,75953884190371 100,000408141179 [£,500000000000000 1000679,21513818
107 2,77146532579354  100,000409292729  0,500000000000055 200127,135995630 | 107 2,76850369436397 100,000409292656  0,500000000000055 1000679,56053264
10" 2,77235503944528 100,000405408516 0,500000000000055 200127,190742224 | 10" 2,76540745165457 100,000405408544  0,500000000000055 1000679,59525404
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10% 2,77245407682722 100,000408421380 0,500000000061133 200127,198569079 | (0% 2,7695015514562% 100,000409421342 0,500000000081133 1000679,5391325)
10" 2,77246734040796 100,000409422016 0,499999999708066 200127,194715347 | 107 2.76551415107033 100,0004094 23363  0,499999999708066 1000679,59971782
E 53385 11385.10°% aaraz-10° [HEE 30100 116391077 34913107
10! 87524 1077 1,0812-10-* 0 32404 | 107 87431, 1077 1,0812-10-* 0 3.2431
107 89748 - ta? 1,1515. 10°% 549561014 345281070 | 107 59653 1077 11515 10°% 54956€- 1014 345391071
1ot 899711074 1,1589. 1077 0 34743:10°7 | 100 8,987 1074 1,1589. 1077 0 347611077
10 9,007 107} 1,1600. 107" 32,3308 1074 34776107 | 10° 9,004 107} 1,1614. 107" 23,3309 107 34832 107"
ot 9.0204 - 10°* 116201079 4.,4809 0~ M 349371074 | 10* 9.0857 . 107 11830 107 44209 107 H 3551110
10/ 32635 10% 6,360 - 10°%° -3,3307 - 1010 1,4627-107* | 107 1,2600- 104 20210 - 10-*° -3,3307 - 10-4° 5,8485 1074
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10% 2,77245507572356  100,000409421509 200127,196607647 | 10% 2,76950255160742 100,000409421471 1000679,59917172
10%0° 2,77246507662341  100,00040842 1509 200127,194607677 | 10'7 2,76950255250842 10000040942 1471 1000679,59917176
101 2,77246507671339  100,000405421509 200127,193607680 | 101 2,76550255255852 100,000405421471 1000679,59917176
10% 2,772463507672239  100,000409421509 200127,194607681 | 10™ 2,76950255260753  100,000409421471 10006795901 7176
109 2,77246507672329  100,000405421509 700127,194607681 | 10" 7,76950255260843 100,000405421471 1000679,59917176
10%4 2,77245507672338  100,000406421509 200127,198607682 | |0M 2,76950255260851 100,000405421471 1000679,5381 7176
101 2,77246507672338  100,000405421509 C) 200127,198607681 | 101 2,76550255260853 100,000409421471 d) 1000679,5991717¢
100 2,77246507672339  100,000409421509 200127,134607681 | 10" 2.76550255260853 100,000406421471 1000672.5991 71176
Tab: C.2: Calculation of relativistic rocket velocity according to program
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Type: “Al”, vy = —4km/s,

Amg = 0.5%,

to = 100s

a)vy =0, b)vy =369 km/s, c)v, = 2000 km/s, d) v, = 10000 km/s




Annex C: Relativistic rocket equation

m
IS

10 7,84085772014737 1000,00912858441  0,100000000000000 2736, 750700612000 | 10 7,A4084554146182 1000,00912858434  0,100000000000000 371737.0522956670
107 9,05101119073233 1000,00983714045 0,099999999999999 2949,077033597790 | 107 9,05069707036665 1000,00983714038 0,099399399999999 371949,3567396240
107 9,19416709875657 1000,00991570438  0,0999999999999RY 2973 828794295530 | 107 9,194315274738003 1000,00991570490  0,0999993999999R9 371974,1105690550
10' 9,20872063626419 1000,00982810857 0,099999999999856 2576,348382001850 | 10" 3,20870626170680 1000,00952310849 0,0999399959I9856 371975,6301585470
10° 9.2100783717121%  1000,00992895150  0,099395999905360 2976, 600796650620 | 107 9,21016399816038 1000,00992895148  0,099395999995 368 371976 8825756170
10° 9,210324168509%6 1000,00892504%17  0,1000000000025ES 2976,6260426286520 | (0* 9,21030381878799 1000,00992503870  0,10000000000358% 371576,9078311300
10" 9,21033875458106 1000,00992885138  0,099999999922464 2076,628567816020 | 10" 9,21032474295856 1000,00992904306  0,099999995922464 371976,9105254150
BEl 107107 esio10 25108 10 IE 14507100 83757102 25111404
1! 1.2102 7,0826- 104 -8,0491 . 107 21283 107 [ 1¢ 1.2102 7,0826- 1074 -8,0491 . 107 2,133 107
107 14316 10! £,2565-107 -1,0700 - 1074 24752 10 | 107 14316 107! £,2565-107 -1,0700 - 1074 24752 10!
1o 14554107 80046 - 100 43,3300 . 1074 2519 | 100 14554107 8,4006- 10 4,3300 . 10" 2,519
10* 145771077 841931077 -1,4880 . 1073 25241107 | 10° 145771077 841991077 -1,4880 . 107 25242 107F
1ot 14580 . 1074 93670 1079 L7 e 25286 - 107 | 10t 14582 . 1074 8,4220- 1079 Ly e 25256 - 10°*
10’ 14586 - 10°* -1,9379- 1077 -§,7121 -10- 1 25251 10-% | 107 14923 10°% 1,3360 - 10" -§,7121 -10- 1 2,6943 - 103
10* 1A507 . 107" 85118 10" 25108 107 | 10* 14507 . 10" 8,3753. 10" 2511 o0t
10" 14507 1077 86175 107 25109 107" | 10" 14507 1077 83787 107 25111 107*
1w 14507 1070 86402 10717 25100 o~ |10\ 14507 10 8412810717 25111 Lot
104 14507 - 10°° 9,0949 - 10-H 25108 1077 | j0M 145071077 a 251111077
0= 1,4507 - 1070 0 25108 107F 102 1,4507 - 10720 0 25088 107"
104 14506 . 1071 0 22,5107 107" | 0¥ 14508 1074 0 2.5029. 107"
1004 14513 107 ¥ 0 25102 1074 | 1004 14513 107 ¥ 0 1]
108 1,4566 - 1043 Q 25001-107% | 108 1,4566 - 1043 a o
101 14211 107% a o |10 14211 10-% a 0
107 9,21003867546060 1000,00992505378 2976,626553565180 | 107 9,21002452694012  1000,00952504408 371976,9103422510
10" 9.21034012611567 1000,00992505464 2976,628804653010 | (0* 9,21032577765533 1000,00992902491 371976,9105933640
10% 9,21034027115117 1000,00992505473 2976,628829761790 | 10% 9,21032592272685 1000,00992904300 371976,9106184730
10'0 9,21034028568772 1000,00992005474 2976,628832272670 | 107 9,21037593723401 1000,00992504501 371976,9106200850
10 9,21034028711838  1000,00952505474 2976,628832523760 | 101 9,21032593862472  1000,00952904501 371976,9106212370
10" 9,21034028728345  1000,00992905474 2976,628832548870 | 10% 9,21032593882979 1000,00092504501 371976,9106212620
104 9,21034028729795  1000,00992505474 2976,628832551380 | 10M 9,21037593884430  1000,0095250450] 371975,9106212650
10M 9,21034028729940 1000,009592905474 2976,628832551630 | |0M 9,2103258388457%  1000,009529804%01 371976 9106212650
109 9,21014028729955  1000.00992905474 a) 2976,628832551650 | 1010 9,21032593084550 1000,00952902501 b) 371976,9106212650
100 9,21004028728656 1000,00992505474 2976,628832551660 | 100 9,21032593884591 1000,00992504301 371576,9106212650

10 7,84050712993752 1000,00912858406  0,100000000000000 2002781.31911852 | 10 7.83212547315452 1000,00912888264  0,100000000000000 10008306,1716827
107 9,05060515444427 1000,02983714003 [0,099999995999998 J002993,65017758 | 107 9,04097953464169 1000,02983713831 0,099999999999999 10008518,6162407
107 9,19373561457377 1000,00991570454  0,0999999999999R9 2003018.40248872 | 107 9,18392577772829 1000,00991570277  0,0999993999999R9 10006543,3817823
10' 3,20830843818162 1000,00982310813 D0,099999999939856 2003020,92213354 | 10" 3,19845309125533 1000,00982810738 0,099939999933856  10008545,9027777
10° 9,2097661858224% 1000,00992895115  0,099395999905360 2003021 17456373 | 10° 9,19991928023446 1000,00992894543  0,099395999995360  10008545,1553824
10° 9,20991210652369 1000,00892505852 0,100000C00002SES 2003021,19385815 | (0 9,20008556392400 1000,00892503452  0,100000000002585 10008545,1808763
10" 9.20992828275819 1000,00992904651  0,099999999922464 2003021,20324950 | 10" 9,20008899787535 1000,00992905726 0,099999999922464 10008546,1876819
n 1,509 107 837961077 25122 108 _ 14507 - 107 83954 . 102 2.5182 - 107
1! 1.2101 72,0826 104 £0891. 10710 21233100 | 107 1,2083 7,0826- 1074 -8,0491 . 1070 21284, 107
107 143151071 82565107 -10700 - 10- 44 2475210 | 107 14300 t0°! £,2564. 107 -1,0700 - 10774 24766 - 10!
1ot 1,4553 1077 BA045. 1070 -1,3300- 10 ** 2519 | 100 14537107 8,406 - 10 +4,3300-10° 4 25210
10* 14577107 8,4202- 1077 -1,A880 . 10" 2,5243.10°% | 10° 145621077 842151077 -1,4280 (073 25260 107
1ot 1,4592 - 104 84370, 107" 11217 oM 25294 107" | 10 146271074 4,4990 - 1079 117 o1 25498 107t
10’ 1.6376-10-% 1,0990 - 10-# -8,7121 - 10-4 3,3913-10% | 10/ 2.3438- 102 2,2740 - 10" -§,7121-10-4 6,8056 - 10-3
10" 1,4509 - {0°* £3735.107%° 25122.10°% | 10* 14507 . 10" §,3956. 10" 28182 1074
1o 145091077 23787107 25121070 | 10 14507 1077 23901 1071 25183 107"
10w 1,4508: 10* 84128 10712 25122.107% | 10\ 14507 1a® 84120 10717 25183 10
104 1,509 107 a 251221077 | 104 14507 - 1077 a 25146 1077
10 1430910718 0 25146 107% | 0™ 1,4507 - |00 0 28077107
1o 14%09 01 Q 25611 107" | 1o 14506 . 1071 0 0
1014 145131071 0 0 | 10 14513 . 1074 0 o
108 1.4566-10"H1 Q o | 10s 1,4566 . 1043 a o
101 1421120~ a o | 10 1,4211- 10734 a o
10 9,20892661571773  1000,009925043%0 2003021,20237030 | 107 9,20008007052062 1000,00952504292 10008546,1833545
1o 9.20992806663713 1000,00992904474 2003021.20262152 | 10* 9,20008152118030 1000,00992904376 10008546,1636464
10%  9,20992821172907 1000,00992504482 7003021,20264664 | 10% 9,20008166624627 1000,00992904354 10008545,1836716
10'0 9,20992822623527 1000,00992004433 200302).20264915 | 10'° 9,20008168075286 1000,00992004385 10008545,1836741
108 9,20592822768919  1000,00952504485 2003021,20264941 | 101 9.20008168220052 1000,00952908385 10008546,1836743
10% 9,20992822783423 1000,00092904483 2003021,20264943 | 10™ 9,20008168234859 1000,00092904385 10008546,1836744
104 9,20992822784873  1000,00992504483 7003071,20264943 | 10" 9,20008168236308 1000,00992504385 10008546,1836744
10M 9,20992822785024  1000,00952904483 2003021,20263343 | 10 9,20008158236455  1000,00992504385 10008545,1836744
1019 9,20552822785039 1000.00992904453 C) 2003021,20264943 | 101 9,20008168236463 1000,00992904385 d) 10008546,1836744
100 9.20992822785040 1000,00992504483 2003021,2026494% | 10! 9,20008168236471 1000,00092504185 10008546,1816744
Tab. C.3: Calculation of relativistic rocket velocity according to program

Type: “AL’, v) = —4km/s, Amg = 0.09%, t, = 1000s

a)vy =0, b)vy =369 km/s, c)v, = 2000 km/s, d) v, = 10000 km/s
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Annex C: Relativistic rocket equation

T . e N I T

196,021417688228 10002,2826214110  0,100000000000000 684187,711109235 | 10 196,020933328363 10002,2826210019  0,100000000000000 4374191.05576218
xo' 226,275235660056 10002,4597552575 0,09999939999999%  737269,299206788 | 107 226,274537774396 10002,4537547615 0,099999999399999 4427272,68489423
107 229,854130642931 10002 4804055720  0,0999999999999R9 743457,739724413 | 107 229,853518480855 10002 4804050836 0,09999939999989 4433460,62991467
10' 230,217968797944 10002,4825076705 0,099999995999856 744087,136710344 | 10' 230,217355174200 10002,4825071603 D0,099999999933856 4434050,52736042
107 230,254412155672 10002 4827182607 0,099995999998360 144150, 240353761 | 10 230,253798382818 10001 A827177511  (,099395996995360 £434143 63106899
10% 230,2520570831830 10002,4827393235 0,1000000000035H5 748156,551855839 | (0% 230,257443325741 10002,4827328142 0,100000C00002SES 44341%9,94267448
10" 250,258421713536 10002A827414388  0,099999999922464 748157,183283767 | 10"  230,257808300206 100024827400068 0,099999999922404 £434160,57500526
El o600 2,0988 - 107 et E 3s266-10° 2,0988 - 107 62772+ 10"
107 3,0254 - 10! 1,7713- 107! -4,0491 . 107" 53082 104 | 107 3,0254 - 10! 1,213 107! -8,0491 . 1070 5,3082 104
107 35789 2,0650 107 -1,0700 - 1074 61870 107 | 107 35789 20650 107 -1,0700 - 10714 6,1879 . 107
10t 36384- 10 21023107 41,3300 109 62990 1% | 10* 35384101 21023107 43,3300 109 62990 . 10
10* 36883 10°F 2,1059 - 1074 1,4280  10°% 53104 - 10 | 10° 368831077 2,1059 - 1074 1,4880 107 5,3104 - 10}
1o 16829 1077 2,1063 - 10°° a7 e 63115 | 10t 36829 1077 2,1063 - 10°% Ly e 63116
107 36463 107 2,1149 - 10°% -§,7121 - 10-4 65,3143 - 10-4 | 107 36437 . 1074 21126 - 10°% -§,7121 - 10- 4 6,3313 - 10~}
10" 3,6266- 10" 20048 1077 62772107 | 10* 3,6266- 10" 20048 1077 62772-107%
10" 36266 107" 2,0947 107" 827721077 | 10" 36266 107" 2,0947 107" 827721077
10w 36266107 20855 1074 627721074 | oW 3.6266- 107 2,085% - 1071 627721074
104 3,6266- 109 2,0918 - 10740 6,2772-107% | 104 3,6266-10°° 2,0918 - 10740 6,2772-10°*
10 36266 10" 218281071 827721078 | 10¥ 36266 10" 21828 1071 82771107
104 3,6265. 10740 0 6,2771-10°7 | 1o 3,6285. 10720 0 627711077
1004 46266 10741 ] 62748 10°% |10 36266 10741 0 6,2%99 . 10*
104 3,6380- 107 ] 62864 - 1077 [ 102 3,6380- 10742 a o
101 31,6948 - 10-42 a o |10 3,698 - 10°42 a o
[ » | u ] T =
107 230,258419745292 10002,8827418183 740157,179575260 | 10" 230,257805908352 10002,482740%0%0 £434160,57035089
10% 230,258456011638 10002.2827416278 740157.282347202 | 10% 230,257882254657 10002.8827411185 4434160,63316012
10%  230,258459638272 10002,4827416438 744157,248624396 | 10% 230,257845851233 10002,4827411335 A434160,63904635
109 230,258460000936  10002,4827416509 748157,249252115 | 10'0 230,257846243946 10002,4827411415 4434160,68007407
10 250,258360037202 10002,4827418511 744157,249314887 | 10 230,257846280012 10002,4827411418 4£34160,60013684
10% 230,258460040829  10002,4827416511 744157,269321164 | 10% 230,257846283839 10002,4827411418 4434160,64014312
104 730,258450041152 10007,4827416511 744157,249321752 | 10M 730,257846284201 10007,4827411418 £4341€0,50014375
10M 230,258460041228  10002,4827416511 YAR157, 249321855 | 10M 230,257586284238 10002,4827411418 4234160,65014381
mb 250,258260041231 10002,4827416511 a) 748157, 249321861 | 101 250,257646284241 10002,4827411418 b) 4434160,68014382
18 230,258260041232 10002 4827416511 JA4157 249321862 | 100 230,257846284242 10002,4827411418 4434160,68014382

196,011677951838 10002,2626191942  0,100000000000000 20604648,1609011 | 10 195,798241945411 10002,2626103399  0,100000000000000 10074024K,476771
lo' 226,263782574663 10002,4597523634  0,09939999999999% 20737730,9547342 | 107 226,016565665343 10002,4597418176 0,09999999999999%  100793359,642360
107 229,542470286255 10002 4804028168 0,099999999999989 20743919,0319656 | 107 229,591238915963 100024803917961 0,099999999999989 100799551,023330
10" 230,206287313833 10007, 4825043083 0,099399999933856 20744548,9428655 10' 2235545476031144 10002,4824938538 0,099999999939856 100800181,270485
10 230,242728572618 100024827154582 (,0993959999a5360 20744612,0480018 | 10° 229,951048026217 100024827044481 (,099395999995360 100800244,405694
10" 230,245373417548 10002,4B2736%26 0,100000000002585 20744618,3601214 10"  225,954589292966 100024B27255184 0,100000000003585 100800250,727051
107 250,245739825310 1000LAB27356578 0,099999999922404 20744519,0002277 | 107 220995062373247 1000LAB27277682  0,099999999922464 100800251,401665

El o0 2,0949- 107 st E easo? 2,0950- 10 62812 10%
1! 3,0252 10! 1,713 107! -8,0431 . 107 53083 104 1! 3,0218. 10! 1,773 107! -8,0491 . 107 53111 104
107 3,5787 2,0650 107 -1,0700 - 10774 61881 107 | 107 35747 2,0650. 107 -1,0700 - 10774 61914 107
10t 35638210 21023107 4,3300.10° 9 82991 107 | 100 3534110 21021107 43,3300 109 63025 107
10 36841 10°°F 2,1059 107 11,4880 (0~ 53105 100 | 10° 36400 10°° 22,1059 - 104 11,4880 10 65,3139 10!
ot 16888077 2,1064 . 10°° a7 e 63128 | 10* 16813 0 2,1070 - 10°% 11217 o 63174
10/ 36641 . 1074 2,1352 - 10°% -§,7121 -10-4 6401110~} | 107 37308 1074 2,2498 - 10°* -§,7121 - 10" 6.7461 . 10~}
10* 3,6265 . 10" 20849 . 1077 62775.10°F | 10* 36225107 2,0050. 1077 62813107
o 36285 107" 20835 107" 82775 1077 1o 36225 107" 2,08a5. 107" 62813, 1077
10w 3.6265- 107 20855 1074 627741074 | oW 36225-107 2,0855 - 1074 638131074
104 3,6265- 107" 20918 - 10730 6,2775-10°* | 104 36225-10°" 20918 - 107 6,2808 - 10>
102 36265 107" 2,828 1071 B2TTL.407F | 0™ 36225107 2,228 1071 62283 107"
104 36268 10740 0 6,2957 107 | jo4 3,6226. 10700 0 6,2585. 1077
1004 36266 10741 ] 6,3330 . 10°* | 10 36238 10701 0 (7]
104 3,6380- 102 Q o |10 3,6096 . 10°%2 L] o
10 36045 . 10-4 a o |10 36045 - 10-3 a o
10" 230,246736063268 10002,8827386575 20744618 9678663 | 107 229,594689292566 10002,8827276138 100800251,35517%
10" 230,246772327840 10002.2827388670 20744619,0506414 | (0% 229,994725518139 10002.8827278229 100800251,417992
10% 230,245775954297 100072,4827388879 70744619,0565189 | 10% 229,994729140657 10002,4827278438 100800251,424273
107 230,245776316943  10002,4827388900 20744619,0575466 | 10'7 229,994729502908 10002,4827278459 100800251,424902
101 230,246776353207 10002,4827188202 207446190576094 | 101 229,994729539134 10002,48272 78461 100800251,424964
107 230,246776356834  10002,4827338902 20744619,0576157 | 10% 229,994729542756 10002,4827278462 100800251,424071
104 730,245776357197 10007,4877338902 70744619,0576163 | 10M 729,994723543118 10007,4877378462 100800251,424971
10M 230,246776357233  10002,4827385%02 20744619,0576164 | 10 229,95472954318%  10002,4827278452 100800251,424578
1019 250,246776357236 10002482 7388302 C) 20744619,0576164 | 1010 229,594729543158 10002,4827275462 d) 100800251,424971
1010 230,245776357237 10002,4827385%02 20744612,0576164 | 100 229,994729543159 10002,4827278462 100800251,424971

Tab. C.4: Calculation of relativistic rocket velocity according to program
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Type: “Al”, vj = — 100 km/s,
a)vy, =0, b)vy, =369km/s, c)vy, =2000km/s, d)v, =10000 km/s

Amgy = 0.009%,

t, = 10000s




Annex C: Relativistic rocket equation

C.4 Relativistic rocket equation according to J. Akeret

Since 1946 there is an analytical solution for the relativistic rocket equation by J. Akeret
[90]. For this not only the momentum theorem and the relativistic velocity addition are
necessary (as with the numerical derivation presented so far) but additionally the energy
conservation theorem is used.

For the derivation of the equations, formula symbols are used which differ from the orig-
inal text but are consistent with the representations used so far in this presentation. Func-
tions related to the outflowing gas used for causing thrust are denoted by f’; relations re-
ferring to the moving rocket, on the other hand, are shown without this label. The actual
mass of the rocket is m, and dm' is the fraction of the propellant gas. This gives rise to the
equations shown below.

a) The energy theorem provides:

d{ mc? } B dm'’ - c? €.21)
J1—=v2%/c? J1—=v'2/c? '
b) the relation for momentum:
d{ mv } _odm' v €.22)
J1-v2/c?)  J1-v'2/c? '
c) the relativistic addition theorem:
. Vo=V
vV =—— (C.23)
U- vo
1-—
c

where v, has the meaning of the (constant) exit velocity of the gas relative to the rocket.
The equations (C.21) and (C.22) can be further developed to

c? 1 c?
dm————+mc?-d {—} = —dm ——— (C.24)
J1—=v2/c? J1—=v2%/c? J1—=v"2/c?

1 v’
+my - d{—} = dm' ——— (C.25)

v dv
dmwll—vz/cz V1 —v2/c? V1 —v2/c? J1—v'2/c?

For the solution, the values of v’ and dm' must be eliminated. To do this, first in equation
(C.24) in the term on the right-hand side the value for v’ from equation (C.23) is inserted

c? c?
v'2 , 2
Jl — C_2 ( UO — 7D )
o /2
1— 1—-v-vy/c
)
c? —vyv c? —vyv
= — = = (C.26)
\/1 v2 vy viyg \/1 v2 [ _ Y
c? 2 c* c? c?
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Annex C: Relativistic rocket equation

In the same way follows

= (C.27)
J v J vl v
c? c? c?
Equations (C.26) and (C.27) are substituted into Eq. (C.24) and (C.25), respectively, and
these are resolved to dm’ and equated. The result is:
c? — vy vy (c? — v?
m{—o}dv+mv(’)(cz—v2)-d{ o ) =0 (C.28)

1
—  lagm=>2=__ 7
J1—1v2/c? \/1—172/62}-'_ nl\/l—vz/c2

The two differentials with the dependence on v must be unified and using the differential
chain rule it follows

1 1%
d{ } = 3, dv (C.29)

V1 —1v2/c? 2
7 efi-g

After substituting in eq. (C.28) and separating the terms for mass and velocity, the final re-
sultis

am dv .30
m  vy(1—v2/c?) (C.30)
The integration results in
In(m) = {C+U}+C C.31
n(m) = 200 L3 D (C.31)

With the initial value for mass m, and the final value m the relativistic rocket equation ac-

cording to J. Akeret arises
c/2v}
m 1-2 i
c
— = (C.32)

my 1+E

or

1 m 2v4/c
1+ (m—o)

v

In Section 6.4.2, calculations from this equation are contrasted with the classical rocket
formula of K. E. Tsiolkovsky and the numerical relations derived in this annex.
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Annex D: Calculation of momentum for rel-
ativistic non-elastic collision

During ideal non-elastic, i.e. plastic collision 2 masses hit each other in central position and
are moving forward as a combined body without rotation. An approximation procedure is
developed to calculate the end-velocity of this body on basis of the principle of conservation
of momentum, in a case where the validity of equation m; = m; + m, is postulated. This
approach is relevant for theoretical analysis only because it can be shown, that in real cases
an additional increase of mass Ams; because the conversion of potential energy into mass
must be considered. For details it is referred to chapter 7.1.

In addition, the appearing simple equation makes it possible to perform a comparison
between the approximation procedures recursion, Newton'’s calculus, and bijection. The lat-
ter proved to be superior to the others because it is the only calculation to cover all possible
input values and is therefore used also in other calculations in Annex A - C.

Respecting the above-mentioned restrictions, for the relativistic momentum using rela-
tion m; = my; + m, referring to Eq. (7.01)

Do = M1Y1V; + MyY,v, = (Mg + my)y3vs (D.01)

applies, where v; can be calculated on basis of numerical approximation. In the follow-
ing different procedures will be presented and the results are compared.

D.1 Recursion procedure

The procedure with the smallest mathematical effort is the procedure using simple recur-
sion. The equation for the development can be derived directly using Eq. (D.01) and shows
the form

(v3) P p CONAY
3)k+1 _ 0 _ 0 1 _< 3 k) (D.02)
¢ c(my + my)yse  c(my +my) ¢
D.2 Procedure according to Newton’s calculus
[teration according to Newton’ calculus is generally using the sequence
f ()
=X — < D.03
xk+1 xk fl(xk) ( )
When Eq. (D.01) is converted it applies first
miy1V1 + MyY20;
—y3v3 =0 = f(v3) (D.04)

my +m,

239



Annex D: Calculation of momentum for relativistic non-elastic collision

and then
_1/2
Va\____Po _Ps(, b3
f(?) T cmp+my) <1 c? > (D-05)
Using
x = % (D.06)
it yields
flx) = ﬁ —x(1—x?)"2 (D.07)
and
fl)=-1-x2)""2 (D.08)

After inserting the result in Eq. (D.03) the iteration formula is finally

Po — (w3, Il ~ (%J)Zl_l/z

(V3)k+1 _ (v3)k + (my + my)

D.
c c 21-3/2 (D-09)
cl1— ((v3)k>
c
D.3 Bisection method
First the starting function is defined using Eq. (D.01)
Po
V3) = Y3V3 = ————— D.10
f( 3) Y3V3 (m1+m2) ( )

where the value for p, is defined by the initial starting conditions. For the beginning of the
calculation appropriate values for (v3,), and (v;_), are determined which are following
the conditions

Po
fsy)o > i) (D.11)
and
Po
f(wz_)o < i) (D.12)

In the interval [(v3_); (V34)0] the function f(v;) must be continuous and differentiable,
and further f'(v3) # 0 is required, which means, that in the chosen interval no minima and
maxima are allowed, because otherwise no exact solution exists. Then the mean value is
formed

~ (v34)o + (v3-)o

(v3)1 = > (D.13)

and f(v3), is calculated according to (D.10). The following equations apply:

[ > ot (a1 = )iund (0501 = (3o (D.14)
f(w3) < (mlz-jl-—omz): = (v34)1 = (V34)o und (v3-); = (v3), (D.15)
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Annex D: Calculation of momentum for relativistic non-elastic collision

The calculation is repeated with increasing index 1 to n until the required accuracy is
achieved. Every step of the calculation is generating a bisection of the difference between
vz, and v;_. A standard calculation program (e.g. Microsoft Excel®) with the utilization of
15 digits is therefore requiring, because of the general estimation

219 =1024 ~ 103 (D.16)
following

1015 ~ 250 (D.17)

the use of approximately 50 steps to reach maximum possible accuracy; in practice a utili-
zation of 60 proved to be safe in any case. Because of the boundary condition v; = 0 the
starting values can be determined easily and are (v3_), = 0 resp. (V34)g = V5.

D.4 Evaluation

In the following results for the discussed procedures are presented using different values
for the velocities. According to the considerations in chapter 7.1 only cases will be viewed,
where the masses are equal and one of the selected velocities (here v,) is equal to zero. All
iteration methods lead to the same values; the procedures using simple recursion and ac-
cording to Newton share the advantage, that they converge very quickly for small values of
v/c. However, as a drawback the convergence is reducing for increasing v/c and starting
with py = y,v, = 2c¢ (formy = m, = 1) calculations are no longer possible. Bisection, how-
ever, shows a much better performance and is above approx. v, /c > 0,895 the only remain-
ing procedure which is still working.

In the following table examples for calculations with different conditions are presented.
In all cases it is marked, from which iteration step on no differences between consecutive
steps can be detected and so the procedure has reached its end (Status “x” in field “St”). If
one of the procedures is not converging, then it is marked as “not ok” in the evaluation field.
Further on the differences to the results of the relativistic addition of velocities v; pe; are
presented as percentage-value.

For the calculation, the following equations are used:

1— [1- (ﬁ)2

V3Rel c Voo = 1 Po_ y vy

c U, 3,Rel 2V2 7

c
. (V3)k+1 Po
Recursion: =
c c(m; + my,)

Newton

e @ [ (@ P (@)
c c(my; + my) c c c
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Annex D: Calculation of momentum for relativistic non-elastic collision

(V3)k+1 _ (V3 )kt W3k

Bisection:
isection . e
. Po
Condition (v3) >———5 (V31 = (W3)pa1 and (V3 )41 = (v32)
fW3)g+1 (m, +my) 3+)k+1 3)k+1 3-Jk+1 3-Jk
. Po
Condition (W3)ip1 <——=:2 (V3 ) k41 = (W3)k and (V3_) k41 = (V3)
f 3/k+1 (ml _I_mz) 3+/k+1 3+/k 3-/k+1 3/k+1
(v3-)o _

(v34+)o0 V1
r —m—m——=
c

Appropriate starting values: For - and fo =

c
Values in the fields for results (blue color): For Recursion, Newton and Bisection the last
values of iteration.

U3 1 Comparison of results. Chosen was bisection (v3) and relativistic
addition of velocities (V3 ge;)

U3 Rel

For the presented calculations, the following values apply:

Tab. D.1 Tab D.2 Tab D.3
m1:1;m2:1 m1:1;m2:1 m1:1:m2:1
vy=0; v, =01c vy=0; v, =08¢c vy =0; v, =089

Codes for calculation:

Coordinate Code

Gl = (1-SQRT(1-B2*B2))/B2

G2 = 1/SQRT(1-G1*G1)

B3 = B2/SQRT(1-B2*B2)

B5 = IF(B6="0k";B70;"")

D5 = IF(D6="0k";D70;"")

F5 = IF(F6="ok";F70;"")

H5 = F5/G1-1

B6 = IF(C70="";"not ok";"ok")

b6 = IF(E70="";"not ok";"ok")

o = IF(G70="";"not ok";"ok")

B8 = B70/D70-1

D8 = D70/F70-1

F8 = F70/B70-1

G10 = B1

H10 = B2

B11 = B$3/(1+D$2)*SQRT(1-B10*B10)

C11 = IF(B11=B10);"x";"")

D11 = D10+(B$3/(1+DS$2)-D10*(1-D10*D10)"-(1/2))*((1-D10*D10)"(3/2))
E11 = IF(D11=D10);"x";"")

F11 = (G10+H10)/2

cll = IF(F11/SQRT(1-F11*F11)<BS3/(1+DS$2);F11,610)
Hi1 = IF(F11/SQRT(1-F11*F11)<B$3/(1+D$2);H10;F11)
111 = IF(F11=F10;"x";"")

The codes B11 to I11 to be copied as far as B70 to 170
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Annex D: Calculation of momentum for relativistic non-elastic collision

[ 1ad e el 0o Jel _F ] ¢ | _H I

vyfe= 0 my fmy = Vager/C= 0,05012563

vylc= 0,1 1 Ysrer = 1,00125866

po/c= 0,1005037815

n Recursion Newton Bisection

vafc= 0,0501885613 0,0501885613 0,0501885613 valVager=  0,1%

nicht ok ok ok

Recursion/Newton Newton/Bisection Bisection/Recursion

K 0,0£+00 7,1E-15 -7,2E-15

vy/c St va/c St (vy_tvs)i2c r3_fc va.fc St
0 0 0 0 0,1

1 0,05025185908 0,0502518908 0,0500000000 0,0500000000 0,1000000000

2 0,0501884013 0,0501885616 0,0750000000 0,0500000000 0,0750000000

3 0,0501885617 0,0501885613 0,0625000000 0,0500000000 0,0625000000

4 0,0501885613 0,0501885613 «x 0,0562500000 0,0500000000 0,0562500000

5 0,0501885613 0,0501885613 «x 0,0531250000 0,0500000000 0,0531250000

6 0,0501885613 0,0501885613 «x 0,0515625000 0,0500000000 0,0515625000

7 0,0501885613 x 0,0501885613 «x 0,0507812500 0,0500000000 0,0507812500

8 0,0501885613 x 0,0501885613 «x 0,0503906250 0,0500000000 0,0503506250

9 0,0501885613 x 0,0501885613 x 0,0501953125 0,0500000000 0,0501953125
10 0,0501885613 x 0,0501885613 x  0,0500976563 0,0500976563 0,0501953125
11 0,0501885613 x 0,0501885613 x  0,0501464844 0,0501464844 0,0501953125
12 0,0501885613 x 0,0501885613 x  0,0501708984 0,0501708984 0,0501953125
13 0,0501885613 x 0,0501885613 «x 0,0501831055 0,0501831055 0,0501953125
14 0,0501885613 x 0,0501885613 «x 0,0501892090 0,0501831055 0,0501892090
15 0,0501885613 x 0,0501885613 «x 0,0501861572 0,0501861572 0,0501892090
16 0,0501885613 x 0,0501885613 x  0,0501876831 0,0501876831 0,0501892090
17 0,0501885613 x 0,0501885613 «x 0,0501884460 0,0501884460 0,0501892090
18 0,0501885613 x 0,0501885613 x  0,0501888275 0,0501884460 0,0501888275
19 0,0501885613 x 0,0501885613 «x 0,0501886368 0,0501884460 0,0501886368
20 0,0501885613 x 0,0501885613 «x 0,0501885414 0,0501885414 0,0501886368
21 0,0501885613 x 0,0501885613 «x 0,0501885891 0,0501885414 0,0501885891
22 0,0501885613 x 0,0501885613 x  0,0501885653 0,0501885414 0,0501885653
23 0,0501885613 x 0,0501885613 «x 0,0501885533 0,0501885533 0,0501885653
24 0,0501885613 x 0,0501885613 «x 0,0501885593 0,0501885593 0,0501885653
25 0,0501885613 x 0,0501885613 «x 0,0501885623 0,0501885593 0,0501885623
26 0,0501885613 x 0,0501885613 x  0,0501885608 0,0501885608 0,0501885623
27 0,0501885613 x 0,0501885613 «x 0,0501885615 0,0501885608 0,0501885615
28 0,0501885613 x 0,0501885613 «x 0,0501885612 0,0501885612 0,0501885615
29 0,0501885613 x 0,0501885613 «x 0,0501885613 0,0501885612 0,0501885613
m 30 0,0501885613 x 0,0501885613 «x 0,0501885612 0,0501885612 0,0501885613
31 0,0501885613 x 0,0501885613 x  0,0501885613 0,0501885613 0,0501885613
32 0,0501885613 x 0,0501885613 x  0,0501885613 0,0501885613 0,0501885613
@ 50 0,0501885613 x 0,0501885613 «x 0,0501885613 0,0501885613 0,0501885613
51 0,0501885613 x 0,0501885613 «x 0,0501885613 0,0501885613 0,0501885613
52 0,0501885613 x 0,0501885613 «x 0,0501885613 0,0501885613 0,0501885613 x
53 0,0501885613 x 0,0501885613 x  0,0501885613 0,0501885613 0,0501885613 x
B 54 00501885613 x 0,0501885613 x  0,0501885613 0,0501885613 0,0501885613 x
55 0,0501885613 x 0,0501885613 x  0,0501885613 0,0501885613 0,0501885613 x
Tab. D.1 Velocity vs after relativistic non-elastic collision, v; = 0; v, = 0,1c¢
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0
0,8
1,3333333333
Recursion
0,5547001962
ok

Recursion/Newton

0,0E+00
v4/c
0
0,6666666667
0,4969039950
0,5785370130
0,5437707542
0,5594891983
0,5525584281
0,5556494433
0,5542777868
0,5548878305
0,5546167828
0,5547372648
0,5546837205
0,5547075186
0,5546969418
0,5547016426
0,5546995534
0,5547004819
0,5547000692
0,5547002527
0,5547001711
0,5547002074
0,5547001913
0,5547001984
0,5547001952
0,5547001967
0,5547001960
0,5547001963
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962

0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962

St

X X X X X X

my /my=
1

Newton
0,5547001962
ok

Newton/Bisection

4,7€-15
va/c
0
0,6666666667
0,5723540713
0,5550845393
0,5547003739
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962

0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962

St

M1 I E DR MMATIT IE B I K PR R 1M (FE | D 13K M O 16 M

X X X X X X

V3 ger/C= 0,50000000
}'3'3,[ = 1,15470054

Bisection
0,5547001962
ok

Bisection/Recursion

-4,6E-15
( l’3.+l’3+)/ 2c

0,4000000000
0,6000000000
0,5000000000
0,5500000000
0,5750000000
0,5625000000
0,5562500000
0,5531250000
0,5546875000
0,5554687500
0,5550781250
0,5548828125
0,5547851563
0,5547363281
0,5547119141
0,5546997070
0,5547058105
0,5547027588
0,5547012329
0,5547004700
0,5547000885
0,5547002792
0,5547001839
0,5547002316
0,5547002077
0,5547001958
0,5547002017
0,5547001988
0,5547001973
0,5547001965
0,5547001962
0,5547001963

0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962
0,5547001962

Ug/ V3 Rget = 10,9%

r3_fc vafc
0 0,8
0,4000000000 0,8000000000
0,4000000000 0,6000000000
0,5000000000 0,6000000000
0,5500000000 0,6000000000
0,5500000000 0,5750000000
0,5500000000 0,5625000000
0,5500000000 0,5562500000
0,5531250000 0,5562500000
0,5546875000 0,5562500000
0,5546875000 0,5554687500
0,5546875000 0,5550781250
0,5546875000 0,5548828125
0,5546875000 0,5547851563
0,5546875000 0,5547363281
0,5546875000 0,5547119141
0,5546997070 0,5547119141
0,5546997070 0,5547058105
0,5546997070 0,5547027588
0,5546997070 0,5547012329
0,5546997070 0,5547004700
0,5547000885 0,5547004700
0,5547000885 0,5547002792
0,5547001839 0,5547002792
0,5547001839 0,5547002316
0,5547001839 0,5547002077
0,5547001958 0,5547002077
0,5547001958 0,5547002017
0,5547001958 0,5547001988
0,5547001958 0,5547001973
0,5547001958 0,5547001965
0,5547001962 0,5547001965
0,5547001962 0,5547001963

0,5547001962 0,5547001962
0,5547001962 0,5547001962
0,5547001962 0,5547001962
0,5547001962 0,5547001962
0,5547001962 0,5547001962
0,5547001862 0,5547001962

Velocity v, after relativistic non-elastic collision, v; = 0; v, = 0,8¢

St

x x
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Annex D: Calculation of momentum for relativistic non-elastic collision

vllc = mz/m,— Vzger/c= 0,61128031

)Y v,/c= 0,89 1 Ysret = 1,26356090
pofc= 1,9519233617
n Recursion Newton Bisection
vafc= 0,6984528781 0,6984528781 valVager=  14,3%
not ok ok ok
Recursion/Newton Newton/Bisection Bisection/Recursion
E 3,4E-02 0,0E+00 -3,3E-02
vafc St vafc St (v3_tvs,)/2c v3_fc vy fc St
0 0 0 0 0,89
1 0,89759616809 0,9759616809 0,4450000000 0,4450000000 0,8900000000
2 0,2127032246 0,9397078220 0,6675000000 0,6675000000 0,8900000000
3 0,9536286032 0,8688424449 0,7787500000 0,6675000000 0,7787500000
4 0,2937506647 0,7743135001 0,7231250000 0,6675000000 0,7231250000
5 0,9329042795 0,7115556340 0,6953125000 0,6953125000 0,7231250000
6 0,3514676442 0,6988106129 0,7092187500 0,6953125000 0,7092187500
7 0,9136953543 0,6984531401 0,7022656250 0,6953125000 0,7022656250
8 0,3966306344 0,6984528781 0,6987890625 0,6953125000 0,6987890625
9 0,8959116343 0,6984528781 0,6970507813 0,6970507813 0,6987890625
10 0,4335537100 0,6984528781 «x 0,6979199219 0,6979199219 0,6987890625
11 0,8794661312 0,6984528781 «x 0,6983544922 0,6983544922 0,6987890625
12 0,4645201595 0,6584528781 «x 0,6985717773 0,6983544922 0,6985717773
13 0,8642751101 0,6984528781 «x 0,6984631348 0,6983544922 0,6984631348
14 0,4909276759 0,6984528781 x 0,6984088135 0,6984088135 0,6984631348
15 0,8502581396 0,6984528781 «x 0,6984359741 0,6984359741 0,6984631348
16 0,5137129813 0,6584528781 x 0,6984495544 0,6984495544 0,6984631348
17 0,8373381377 0,6984528781 «x 0,6984563446  0,6984495544 0,6984563446
18 0,5335439275 0,6984528781 «x 0,6984529495 0,6984495544 0,6984529495
19 0,8254414098 0,6984528781 «x 0,6984512520 0,6984512520 0,6984529495
20 0,5509184645 0,6984528781 x 0,6984521008 0,6984521008 0,6984529495
21 0,8144576752 0,6984528781 «x 0,6984525251 0,6984525251 0,6984529495
22 0,5662205832 0,6984528781 x 0,6984527373 0,6984527373 0,6984529495
23 0,8044400793 0,6984528781 «x 0,6984528434 0,6984528434 0,6984529495
24 0,5797542286 0,6984528781 «x 0,6984528965 0,6984528434 0,6984528965
25 0,7952051896 0,6984528781 «x 0,6984528700 0,6984528700 0,6984528965
26 0,5917650167 0,6984528781 x 0,6984528832 0,6984528700 0,6984528832
27 0,7867329748 0,6984528781 x 0,6984528766  0,6984528766 0,6984528832
28 0,6024547712 0,6984528781 «x 0,6984528799 0,6984528766 0,6984528799
29 0,7789667662 0,6984528781 «x 0,6984528782 0,6984528766 0,6984528782
m 30 0,6119916160 0,6984528781 x 0,6984528774 0,6984528774 0,6984528782
31 0,7718532028 0,6584528781 «x 0,6984528778 0,6984528778 0,6984528782
32 0,6205171991 0,6984528781 «x 0,6984528780 0,6984528780 0,6984528782
@ 50 0,6671025921 0,6984528781 «x 0,6984528781 0,6984528781 0,6984528781
51 0,7270581323 0,6984528781 «x 0,6984528781 0,6984528781 0,6984528781 x
52 0,6700717735 0,6984528781 «x 0,6984528781 0,6984528781 0,6984528781 x
53 0,7244527587 0,6984528781 «x 0,6984528781 0,6984528781 0,6984528781 x
m 54 0,6727542511 0,6984528781 «x 0,6984528781 0,6984528781 0,6984528781 x
55 0,7220808780 0,6984528781 «x 0,6984528781 0,6984528781 0,6984528781 x
Tab. D.3 Velocity v3 after relativistic non-elastic collision, v; = 0; v, = 0,89¢
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Annex E: Brief introduction to vector calcu-
lus

To understand the representation of Maxwell's equations in Chapter 10, a basic knowledge
of vector calculus is required. The necessary relationships and basic elements for under-
standing field relationships are summarized here in brief. Only the absolutely necessary
relationships are shown, and the following restrictions apply:

1. The representations apply to 3 dimensions; these are sufficient for the relationships
in fields.

2. Only Cartesian (rectangular) coordinate systems are considered (e.g. no spherical or
cylindrical coordinates).

First, the basic properties of vectors are presented and then the differential functions re-
quired to understand Maxwell's equations are explained.

E.1 Scalar und Vector

In a coordinate system, physical quantities can be assigned to each point as a scalar or vec-
tor. Vectors are direction-dependent, scalars are not. Examples of scalar quantities are tem-
perature, energy, and pressure. For directional quantities such as forces or fields, on the
other hand, vectors are used which, in addition to the location in the coordinate system,
also contain values for the magnitude and direction. For the representation of a vector @ in
Cartesian coordinates the following form is used:

Ay
d= <ay> (E.01)
a;

The amount of @, for example for the magnitude of a force, is determined by

a=ld|= /a,% + a2 + aZ (E.02)

If the direction and magnitude of two vectors are the same, they are identical, but can be
located at different points in the coordinate system.

E.2 Vector addition

For the addition of two vectors d and b the rule applies:

246



Annex E: Brief introduction to vector calculus

x ax+bx

a, b
a+b= (ay> +| by |=|a,+b, (E.03)
az b, a,+b,

This addition can also be performed graph-
ically. For this purpose, a representation
with arrows is used. The position in the di-
agram is the direction, the length of the ar-
row indicates the magnitude.

Q

For the addition, the arrows @ and b are
joined together; the resulting line between
the start and end points is the result of the
addition in terms of magnitude and direc-
tion.

Sl

Fig.. E.1: Graphical vector addition

E.3 Scalar product

The scalar product (or inner product) of two vectors is so called because the result of the
multiplication is a scalar. This is in Cartesian coordinates

Ay by
a-b= <ay> | by | = ayby + a,by, + a,b, (E.04)

or

-

&-B=|&|-|b|-cos<p (E.05)
with ¢ as the angle between d and b. This operation is often used in physics when energy
is to be calculated and the angle between the force and the direction of movement does not
match. Force and direction are vectors, the resulting work is a scalar quantity. The meaning
becomes clear when a mass in the Earth's gravitational field and an attacking force is con-
sidered. If the mass is moved upwards by the force (¢ = 0;cos¢@ = 1), energy is needed

and the potential energy increases; if the force acts at ¢ = 90°, the mass remains at the
same height and the energy does not change.

E.4 Cross product

The cross product (also known as the vector product or outer product) of the vectors d and

b in three-dimensional space is a certain vector that is perpendicular to the plane spanned
by them. The length is equal to the area of the parallelogram, i.e.

@xb=|dl-|b||sing] (E.06)

In the three-dimensional Cartesian coordinate system, the cross product is calculated as
follows
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a, b, ayb, —a,b,
axb= (65,) x| by | =| a,by — ayb, (E.07)
a, b, Ayx by, — a, by

Examples of the application of the cross product are the Lorentz force or the torque. For
example, the following relationship applies to the magnetic part of the Lorentz force

Fy=q¥xB (E.08)

with q as the charge and ¥ as its velocity and B as the magnetic field. The orientation of the
resulting Lorentz force is perpendicular to both the velocity and the magnetic field (3-finger
rule).

E.5 Fields and Nabla operator

In physics, a field is defined as the spatial distribution of a physical quantity. In the simplest
case, there is a scalar field, as is possible for temperature distributions or potentials. If a
physical vector is dependent on the position of the location, it is referred to as a vector field.
It can be visualized by field lines, whereby the tangent to the field line indicates the direc-
tion of the vector. The magnitude of the vector is represented by the density of the field
lines. Electric and magnetic fields are examples of this. These fields are characterized by the
fact that temporal changes in particular play a role, which must be represented by differen-
tiation. The use of the Nabla operator is helpful here.

The Nabla operator V¥ is a vectorial differential operator. This means that it can be writ-
ten in vector form and, when applied to a function, performs a differential operation that
represents a 3-dimensional derivative. With its help, the quantities gradient, divergence,
and rotation, which are still to be described, can be easily represented. It is defined for the
3-dimensional Cartesian coordinates x, y, z as

<l
I
|

(E.09)

E.6 Gradient

A field based on a scalar function f assigns an exact value to each point in the definition
space. Examples of scalar fields in three-dimensional space are the distribution of temper-
atures, density, or potentials. Applying the Nabla operator to f results in a vector field called
the gradient (grad). The gradient points in the direction of the strongest ascent at each point
in space and its magnitude indicates the increase in this direction. The representation is as
follows:
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ofy
0x
ofy
dy

\ %
0z
If the scalar field is a potential, the negative gradient of the field indicates the associated

force field. This is clear in the case of the gravitational field: Two of the coordinates are
equal to zero and a body falls in the direction in which the change in its potential reaches

grad f =V-f = (E.10)

the maximum.

E.7 Divergence

When applying the Nabla operator to a vector field f, the scalar product v f results in a
scalar field that indicates whether field lines appear or disappear at each point in space.
Thus, at the location of a positive charge, the divergence of the electric field is greater than
zero, as field lines arise at this point. Points with positive divergence are called sources,
points with negative divergence are called sinks. The calculation results in

2 = o 0 0 of;
divf=V-f==a—]3+a—?+a—]; (E.11)

E.8 Rotation

If we form V x f, we obtain a vector function called rotation (rot), which characterizes the
closed loop of the vector field f. If we consider, for example, the magnetic field of a current-
carrying wire, the field lines run in a circle around this wire and are closed. The calculation
is carried out as follows:

0 d
ayfz azfy
L = o 9 d
rotf =Vx f = Efx_afz (E.12)
0 0
axfy ayfx
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