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2.  Relations between two moving observers 

It was already mentioned before in the introduction of this presentation, that in the follow-

ing the Theory of Special Relativity (SRT) will be placed first in an axiomatic way to discuss 

general physical relationships. Using this basis, different combinations for the exchange of 

signals between two observers will be examined first. This will start with point-shaped ob-

servers before they will be looked at as containing an extended space. Subsequently the 

relations of angles between moving observers during the exchange of signals will be inves-

tigated. 

 The consequences derived will be discussed and compared with observations and calcu-

lations presented in the literature. It will be shown that the results do not contain any con-

tradictions. Furthermore, additional considerations concerning the calculations of angles 

will be derived. These are based on geometric calculations and lead first to the expected 

result that a defined contraction of space must exist. It will also be shown that the contrac-

tion must be considered as symmetric in moving direction and opposite to it. This will be-

come important later for the examination of alternative theories, which will be discussed in 

chapter 11.1. 

 Following the historical development, the participating observers performing experi-

ments will first be specified as “at rest” and “moved”. In further considerations it will be-

come clear, that these definitions in general can be replaced by “relatively moving against 

each other”. This approach is not used very often today, but sometimes it still can be found 

in new literature [21]. 

2.1  Exchange of signals between point-shaped observers 

Although the first considerations and deductions presented here will be trivial at first sight, 

these simple approaches are already providing clear evidence of the limits of classical me-

chanics. To avoid discrepancies, it is even necessary for simple constellations, like these are 

valid for the exchange of signals between two point-shaped observers, to implement the 

calculations of the Lorentz-Transformation. 

 In the following this will be shown for some simple examples before more complex con-

siderations will be discussed in detail. 
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2.1.1 Movement decreasing or increasing the distance 

When two observers A and B decrease or increase their distance without acceleration, the 

transmission of light signals periodically emitted is of general interest. Following the clas-

sical theory according to Newton it is apparent, that the moved observer will detect a larger 

interval compared to the observer at rest, although the period of emission is the same for 

both (see Fig. 2.1). 

 

 
 
Fig. 2.1: Differences in the intervals of detected light signals by an observer at rest  

and a moving observer according to classical theory. 

 Observers have contact at 𝑡 = 0, 
 Signal interval 𝛥𝑡 = 1 𝑇𝑈 (time unit), 

 Example for 𝑣 = 0,5𝑐 
 

 In this example with 𝑣 = 0,5 𝑐 the moving observer would detect a signal every 2 time 

units (𝑇𝑈), whereas the observer at rest would find a difference of 1,5 𝑇𝑈. According to 

these considerations both observers would be able to calculate their velocity by the meas-

urement of the signals from the partner. This is in clear contradiction to the experimental 

observation, that the results of trials like these are always independent of the state of mo-

tion. 

 In Fig. 2.2 the possibilities for the state of motion between a moved observer and an ob-

server at rest are put together. Furthermore, in Tab 2.1 the fundamental relations are pre-

sented. 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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Fig. 2.2 Space-time diagrams for possibilities of light signal exchange 

 
 

a) 

𝛥𝑡𝐵 = 𝛥𝑡0
1

1 −
𝑣
𝑐

 

c) 

𝛥𝑡𝐵 = 𝛥𝑡0
1

1 +
𝑣
𝑐

 

e) 

𝛥𝑡𝐵 = 𝛥𝑡0 

𝛥𝑡𝐴 = 𝛥𝑡0
1 +

𝑣
𝑐

1 −
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0
1 −

𝑣
𝑐

1 +
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0 

b) 

𝛥𝑡𝐵 = 𝛥𝑡0 (1 +
𝑣

𝑐
) 

d) 

𝛥𝑡𝐵 = 𝛥𝑡0 (1 −
𝑣

𝑐
) 

f) 

𝛥𝑡𝐵 = 𝛥𝑡0 

𝛥𝑡𝐴 = 𝛥𝑡0
1 +

𝑣
𝑐

1 −
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0
1 −

𝑣
𝑐

1 +
𝑣
𝑐

 𝛥𝑡𝐴 = 𝛥𝑡0 

 
Tab. 2.1 Time intervals for the signal exchanges presented in Fig. 2.2 

 

 In the following the conditions for an exchange of light signals from A to B and vice versa 

according to Fig. 2.1 shall be presented in a simple space-time-diagram (see Fig 2.3). To 

realize this, the variations a) and b) from Fig. 2.2 will be combined. 

x 

t 
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Fig. 2.3: Space-time-diagram for a signal exchange between observers A 

  (at rest) and B (increasing the distance), Example for 𝑣 = 0,5𝑐 

  a) conventional (acc. to Galilei/Newton) 

  b) relativistic (acc. to Lorentz) 

 In case a) the conventional situation (acc. to Galilei/Newton) is presented. Both observ-

ers are emitting their signals at time 𝑡 = 1𝑇𝑈 and these are detected at A1 resp. B1 by the 

partner. This diagram is valid e.g. for the exchange of acoustic waves, when A is at rest 

against a medium (i. e. air or water). But it was already mentioned before that this could 

not be detected by any experiments conducted using light signals. 

 Already at the end of the 19th century a solution for this (inside classical mechanics acc. 

to Newton existing) problem was presented by H. A. Lorentz. To realize this, it is necessary 

to assume, that at higher velocities an effect of time dilatation will be present. This means 

that time is running slower for the moved observer. This effect is integrated in part b) of 

the diagram. For observer B the time is running slower and therefore B is sending his signal 

later; this will arrive at the partner at A1
′ . Because of the time dilatation the additional effect 

occurs that B is subjectively detecting the signal sent from A earlier. This effect is presented 

in the diagram by the transition from B1 to B1
′ . 

 The exact parameter of the time dilatation can be calculated in an easy way according to 

Fig. 2.2, cases a) and b). For the transition from a system at rest to a moved observer for ∆𝑡0 

the relation is valid 

∆𝑡𝐴𝐵 = ∆𝑡0  
1

1 −
𝑣
𝑐

                                                             (2.01) 

In opposite direction it is 

∆𝑡𝐵𝐴  = ∆𝑡0 (1 + 
𝑣

𝑐
 )                                                          (2.02) 
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To match ∆𝑡𝐴𝐵 and ∆𝑡𝐵𝐴 it is necessary to expand the equations (2.01) and (2.02) by the 

parameter 𝛾 (where ∆𝑡𝐴𝐵 will be smaller and ∆𝑡𝐵𝐴 will be larger) and the equations develop 

to 

1

𝛾
 ·

1

1 −
𝑣
𝑐

=  (1 + 
𝑣

𝑐
 ) · 𝛾                                                          ( 2.03) 

with 

𝛾 =
1

√1 −
𝑣2

𝑐2

                                                                   (2.04) 

 
The parameter 𝛾 calculated here is the same as the Lorentz-Factor of Eq. (1.03). 

 It is therefore not possible for observers A and B to decide, whether they are moving or 

at rest. This implies that observer B also has the impression, that the time is running slow 

for A compared to his perception. 

 The example presented here for observers who increase their distance can also easily 

transformed to the view of observers which are approaching each other (see. Fig. 2.4, larger 

scale compared to Fig. 2.3). 

  
 
Fig. 2.4: Space-time-diagram for a signal exchange between observers A 

  (at rest) and B (approaching), Example for 𝑣 = 0,5𝑐 

  a) Conventional (acc. to Newton) 

  b) Relativistic (acc. to Lorentz) 

 For the transition from a system at rest to a moving observer the time ∆𝑡0 is according 

to case c) and d) presented in Fig. 2.2 

∆𝑡𝐴𝐵 = ∆𝑡0  
1

1 +
𝑣
𝑐

                                                          (2.05) 
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and in opposite direction 

∆𝑡𝐵𝐴  = ∆𝑡0 (1 − 
𝑣

𝑐
 )                                                        (2.06) 

The equations (2.05) and (2.06) must again be expanded by the parameter 𝛾 (∆𝑡𝐴𝐵 smaller 

and ∆𝑡𝐵𝐴 larger) and it follows 

1

𝛾
 ·

1

1 +
𝑣
𝑐

=  (1 − 
𝑣

𝑐
 ) · 𝛾                                                    (2.07) 

with the same result for 𝛾 as shown in Eq. (2.04). 

 It shall be stated again that the time dilatation of the moving observer is necessary to 

avoid discrepancies. Without this effect it would always be possible to distinguish a moving 

observer from an observer at rest by simple experiments. 

2.1.2 Movement in arbitrary directions 

It was established so far, that it is not possible for two observers increasing their distance 

or approaching each other to decide by measurements regarding the exchange of light sig-

nals whether they are moving or at rest. When the velocity vectors of the observers are not 

parallel, and they are passing by with the minimum distance 𝑎 the situation changes, and 

more effort is necessary to verify that the observations of all participants are equivalent. 

 The following examination set-up shall be chosen: 

1. Both observers will send out signals, the (subjective) interval is ∆𝑡. 

2. For an incoming signal the angle referring to the direction of the sending observer is 

determined. 

3. If the incoming signal is exact transverse to the moving direction of the sender a re-

sponse signal with a special designation will be sent. 

4. The signals are coded in a defined way to realize a final evaluation at the end of the 

trial. After the exchange of all data it is possible to find out, at what time the signals 

were sent which were detected as coming in exactly from the transverse direction. 

First a moving observer B is considered, which is passing the observer at rest (A) in a 

minimum distance 𝑎 with the speed 𝑣. In this case A will detect the signals sent from B in a 

(subjective) interval 𝛾∆𝑡. Compared to this observer B has a completely different view. 

Caused by the aberration effect B will measure the angle of the signal according to the equa-

tion 

𝛿 = 𝑎𝑟𝑐𝑠𝑖𝑛 ( 
𝑣

𝑐
 ) = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝛾 ·

𝑣

𝑐
 )                                         (2 .10) 

as coming in from the transverse direction (see Fig. 2.5). Here 𝑣 = 0,5𝑐 is chosen and the 

measured angle is 𝛿 = 30°. Further discussions concerning the measurements of angles dif-

ferent to the transverse direction require additional geometric considerations which are 

presented in detail in chapter 2.3. 
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Fig. 2.5: Aberration effect: Measurement of angle 𝛿 caused by the movement of the re-

ceiver of a signal. 

 In the following it will be discussed, which values will be measured for the interval ∆𝑡 

and other relevant time measurements according to the situation presented in Fig. 2.6 for 

the moving observer and a system at rest. 

 

Fig. 2.6: Exchange of signals between A and B, example for 𝑣 = 0,5𝑐, 𝛿 = 30° 
Details for signal ∆𝑡𝐵: see Fig. 2.7; Total running time: Fig 2.8 

a) Measurement of signal interval 

As already shown the intervals between the signals emitted by the moving observer B will 

be measured by observer A at rest as ∆𝑡𝐴 = 𝛾∆𝑡. This is caused by the effect of time dilata-

tion valid for B. 

𝑣 = 0,5𝑐 

𝑣 = 0,5 𝑐 
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The value ∆𝑡𝐵 measured by B can be calculated using an approximation calculation ac-

cording to the scheme presented in Fig. 2.7. At the beginning a signal is sent by A and this is 

received at point B0, the next signal is following after time ∆𝑡0. When it arrives at point B0, 

then the observer has already moved on to point B1 and the additional time for the extended 

way must be added. If it is presumed that ∆𝑡0 ≪ 𝑡1 then it is possible for the calculation to 

shift the signals sent by A parallel in direction of B1 without changing the value of 𝛿. When 

the signal arrives at point B1 then an additional movement to B2 took place and the calcu-

lation must be repeated accordingly. 

 
 

Fig. 2.7: Scheme for calculation of signal interval ∆𝑡𝐵 (for ∆𝑡0 ≪ 𝑡1). Presentation of the 

first 3 steps. 

The single values can be summarized 

∆𝑡𝐵 = ∆𝑡0 +∑∆𝑡𝑖−1
𝑣

𝑐
𝑠𝑖𝑛𝛿

∞

𝑖=1

= ∆𝑡0∑(
𝑣

𝑐
𝑠𝑖𝑛𝛿)

𝑖
∞

𝑖=0

                             (2.11) 

In this case a geometrical series of the form 

𝑆𝑛 =∑𝑞𝑖
𝑛

𝑖=0

                                                                 (2.12) 

is derived, where 𝑆𝑛 is the limit value and 

  𝑞 =
𝑣

𝑐
𝑠𝑖𝑛𝛿                                                                (2.13) 

With 𝑛 → ∞ and 𝑞 < 1 it follows 

𝑆∞ =
1

1 − 𝑞
                                                                (2.14) 

∆𝑡𝐵1 = ∆𝑡0
𝑣

𝑐
𝑠𝑖𝑛𝛿 

 

∆𝑡𝐵2 = ∆𝑡𝐵1
𝑣

𝑐
𝑠𝑖𝑛𝛿 = ∆𝑡0 (

𝑣

𝑐
𝑠𝑖𝑛𝛿)

2

 
 

∆𝑡𝐵3 = ∆𝑡𝐵2
𝑣

𝑐
𝑠𝑖𝑛𝛿 = ∆𝑡0 (

𝑣

𝑐
𝑠𝑖𝑛𝛿)

3

 

𝑐 · ∆𝑡𝐵1 

𝑣 · ∆𝑡0 

𝐵0 

𝐵1 

Detail Step 1 

Step 1 

𝑣 = 0,5𝑐 
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Because B is subjectively realizing that the signal is arriving from the transverse direc-

tion Eq. (2.10) is valid 

𝑠𝑖𝑛𝛿 =
𝑣

𝑐
                                                                  (2.15) 

Hence 

𝑆∞ =
1

1 −
𝑣2

𝑐2

= 𝛾2                                                          (2.16) 

The combination with (2.11) reveals 

∆𝑡𝐵 = 𝛾
2 · ∆𝑡0                                                             (2.17) 

The calculation shows that the moving observer B will measure (subjective) a value of 

𝛾∆𝑡, because he is subject to time dilatation himself. Thus, it is verified that observers A and 

B are measuring the same values for the intervals of incoming signals. 

 

b) Measuring of total running time of signals 

The running time of a signal emitted by A and identified by B as transverse to his moving 

direction is 𝛾𝑡1 (see Fig. 2.6). 

 

Fig. 2.8: Signal path B → A → B and definition of distances travelled. 

 Because B is sending the signal back the same way the total running time is 2𝛾𝑡1. For B 

the first value is 𝑡1 (see Fig. 2.6), the way back 𝑡4 must be calculated. To do this some im-

portant definitions are necessary (see Fig. 2.8). 

 The distance 𝑑 (corresponding to the time 𝑡4) is derived by 

𝑎2 + (
𝑣

𝑐
𝑎 +

𝑣

𝑐
𝑑)

2

= 𝑑2                                                     (2.18) 

𝑣 = 0,5𝑐 
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Completing the square shows 

𝑎 = 𝑑

(

 
 
−

𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
± √(

𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
)

2

+
1 −

𝑣2

𝑐2

1 +
𝑣2

𝑐2
)

 
 
                       (2.19) 

Considering only positive values, it is achieved after simplification 

𝑎 = 𝑑(−
𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
+ √

𝑣4

𝑐4
+ (1 +

𝑣2

𝑐2
)(1 −

𝑣2

𝑐2
))                        (2.20) 

 

= 𝑑(−
𝑣2

𝑐2 (1 +
𝑣2

𝑐2
)
+ 1) = 𝑑(

1 −
𝑣2

𝑐2

1 +
𝑣2

𝑐2

)                                   (2.21) 

and 

𝑑 = 𝑎(
1 +

𝑣2

𝑐2

1 −
𝑣2

𝑐2

)                                                          (2.22) 

For calculation of the total distance the value of 𝑎 is added  

𝑑 + 𝑎 = 𝑎(
1 +

𝑣2

𝑐2

1 −
𝑣2

𝑐2

+ 1) = 𝑎(
1 +

𝑣2

𝑐2
+ 1 −

𝑣2

𝑐2

1 −
𝑣2

𝑐2

) = 2𝑎𝛾2                   (2.23) 

The calculations lead to a total time of 2𝛾2𝑡1 and therefore to a difference of factor 𝛾 

between observers A and B which is compensating the time dilatation for the moving ob-

server B. It is shown again that identical subjective measurements are valid. 

2.2  Exchange of signals inside moving bodies 

The considerations taken so far illustrate the fundamental relations during experiments 

concerning an exchange of signals between observers at different speed. Doing this, the 

conditions are, however, not fully described without discrepancies. If for example an ob-

server at rest could directly monitor measurements of the speed of light between two mov-

ing observers, he would find differences between his results compared to the results of the 

other observers without further modification. This would cause a violation of the fact, that 

measurement of the speed of light show the same results in any inertial system. It has to be 

mentioned that here differences for the results in moving direction and in other arbitrary 

directions occur; in the following these cases will be treated separately. 

In the following only the exchange of light pulses will be part of the calculations. The 

discussion of light as a wave and the special characteristics connected with this feature re-

quire special considerations and will be presented in chapter 8. 
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2.2.1 Exchange of signals in moving direction 

For the presentation of this situation the time for the exchange of signals between observ-

ers A and B shall be investigated. 

While the time in a system at rest for going and coming is 

𝑡𝐴𝐵 + 𝑡𝐵𝐴 = 2𝑡0                                                                 (2.30) 

it is different for moving objects for observations from a system at rest (see Eq. 2.01 and 

2.05) 

𝑡𝐴𝐵 + 𝑡𝐵𝐴 = 𝑡0  
1

1 −
𝑣
𝑐

 + 𝑡0  
1

1 +
𝑣
𝑐

                                            (2.31) 

with 

𝑡𝐴𝐵 + 𝑡𝐵𝐴 = 𝑡0 [   
(1 + 

𝑣
𝑐) + (1 − 

𝑣
𝑐)

(1 + 
𝑣
𝑐) (1 − 

𝑣
𝑐)

 ] = 2γ2𝑡0                               (2.32) 

It was already mentioned before that the time for moved observers is enlarged by the 

parameter 𝛾. During the above-mentioned calculation, the spatial extension is reaching, 

however, the factor 𝛾2. To overcome this contradiction, it is necessary to reduce in addition 

the distance between the two observers by the factor 𝛾. This reduction is generally named 

“space contraction”. 

When the effects of time dilatation and space contraction are considered together all dis-

crepancies disappear. It is worth mentioning, that the times for travelling the distances be-

tween A → B and B → A are different in view of a system at rest, but that the summation of 

the times (when time dilatation is considered) is leading to the same result compared to a 

system at rest. 

These correlations are not only valid for the observer at rest. The moved observer also 

will find during the evaluation of own measurements concerning the distances in the sys-

tem at rest that these are contracted by the factor 𝛾. Time dilatation and space contraction 

are thus depending on each other to create a physical frame without discrepancies. 

A simple example shall demonstrate the results. A case shall be monitored where observ-

ers A and B are placed in a system with a constant distance a. At time 0 observer A is sending 

out a signal to B which is immediately reflected to A. When A and B are viewed as at rest, 

the distances of going and coming and the connected times for the transport of the signal 

are equal in both directions. If both observers are moving constantly in relation to a differ-

ent inertial system, however, the situation is completely different. This shall be demon-

strated in a space-time-diagram (Fig. 2.9). For simplification of the presentation the values 

are normalized. This means that 𝑎 = 1, in addition the time t is converted to ct and is ⎼ as 

valid for the space values x ⎼ standardized to a value of 1. (The use of ct instead of t is fre-

quently used; in this case the dimensions of x and ct are identical and it is easily possible to 

take direct readings out of the diagram). 

Calculations analog Eq. (2.32) lead to 
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𝑥𝑇 = 𝑥1 − 𝑥2 =
𝑎

𝛾 (1 −
𝑣
𝑐)
+

𝑎

𝛾 (1 +
𝑣
𝑐)
=
2𝛾𝑣𝑎 

𝑐
                                   (2.33) 

𝑡𝑇 = 𝑡1 + 𝑡2 =
𝑎

𝑐𝛾 (1 −
𝑣
𝑐)
+

𝑎

𝑐𝛾 (1 +
𝑣
𝑐)
=
2𝛾𝑎 

𝑐
                                  (2.34) 

Inserting these values into the Lorentz-Equations Eq. (1.07) and (1.08) the results 𝑥′ = 0 

and 𝑡′ = 2 𝑎 𝑐⁄  will appear which are the expected findings for observers at rest. At this 

stage of the discussion it is not clear, how the Lorentz-Equations can be derived; in chapter 

3.3 different methods will be presented in which way this is possible. 

 

Fig. 2.9: Exchange of signals between observers A and B (marked using red arrows) in a 

moving system. Example for 𝑣 = 0,5𝑐 
 

2.2.2 Exchange of signals during passing of two observers 

When a more complex approach for the observations is considered, like it is the case for 

measurements between identical laboratories, which are passing in a close distance and 

exchanging light signals between front and back end, also no deviations will occur. An ex-

ample shall be discussed in detail. 

The experimental set-up is the following: 

1. Two identical laboratories with observers A, B, C and A′, B′, C′ shall be prepared. The 

orientation is presented in Fig. 2.10. The positions of C and C′ are situated exactly in 

the middle of the laboratories. 

= 
1

𝛾 (1 +
𝑣
𝑐)

 

= 
1

𝛾 (1 −
𝑣
𝑐
)
 

𝑣 = 0,5𝑐 
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2. The laboratory with A′, B′, C′ is moved relative to A, B, C according to the presenta-

tion in the diagram. 

3. The moved laboratory is passing the observers at rest in a minimum distance to keep 

aberration effects as small as possible. 

4. As soon as the observers of both systems pass each other signals to C resp. C′ will be 

sent. C resp. C′ are reflecting the signals to the sender and are recording the relevant 

periods. 

At first observers A′ and A are passing. For small velocities (compared with the speed of 

light) the passing of B′ and A plus also A′ and B will happen simultaneously. When relativ-

istic velocities are used, however, this will not be the case. Here the moved system will show 

a contraction in moving direction and the contacts between the observers will happen at 

different times. At the end B′ and B will pass. In total there are 4 different situations for 

contacts, which are presented in Fig. 2.11 in a space-time-diagram. 

After the end of the experiment the corresponding time records between all observers 

shall be compared. For the selected example with the velocity 𝑣 = 0,5 𝑐 the coordinates for 

C and C′ are presented in table 2.2. In addition to the values from the experiment the calcu-

lated results determined by the Lorentz-Transformation are also presented in this table. 

The space and time coordinates will be discussed in the following to allow an exact com-

parison between the different situations. 

 

Fig.:2.10:  Laboratory with observers A and B to transmit signals and C to receive. An iden-

tical laboratory with observers A′, B′ and C′ is passing with the velocity 𝑣 = 0,5 𝑐. 

During all contacts of A and B with A′ and B′ a signal is transmitted and received 

by C and C′. 

𝑣 = 0,5𝑐 
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Fig. 2.11: Time sequence of received signals in the middle of two identical laboratories; 

signals are transmitted when passing. 

Left:   Moving laboratory 

Right: Laboratory at rest 

 
 

 

Tab. 2.2: Coordinates for space [bracket left] and time [bracket right] for the   

  experiment according to Fig. 2.11. 

  Line 1: Values for the observer at rest 

  Line 2: Observation by the observer at rest regarding the moving system 

  Line 3: Calculated values for the moved observer according to the 

  Lorentz-Transformation 

𝑣 = 0,5𝑐 

𝑣 = 0 
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Coordinates of space 

It is clear at first sight that the coordinates of space in the first line must be constant. The 

chosen parameters lead to a value of 0.5. 

For the moved system, the parameters vary depending on the geometrical relations ac-

cording to line 2. The values of the coordinates of space derived by calculations using the 

Lorentz-Transformations are equal to those of the system at rest with the only difference 

that the algebraic sign is negative. This means, that the observers at rest and in the moved 

system are measuring the same values. 

Coordinates of time 

The coordinates of time show a similar effect. In this case the situation is different, however, 

because for C and C′ the values of A/B′ and B′/A are exchanged. It is obvious, that the prin-

ciple of relativity requires, that C resp. C′ must receive the signal of “their” observer A resp. 

A′ first. It is important, that for the observer at rest the change in the values of time is nec-

essary to show a proper sequence of contacts between A′ and B′ to C′. So, this short sum-

mary provides clear evidence that no differences between measurements of all observers 

taking part will appear. 

2.2.3 Exchange of signals in arbitrary directions 

In the following the situation shall be discussed, that a signal is transmitted and reflected 

transverse to the moving direction (i. e. 𝑦-direction). The time dilatation occurring for the 

moving observer, which travels the distance of 𝑑 = 𝑣𝑇 when the signal reaches the reflec-

tor, is exactly compensated by the longer path of the signal 𝐷′ = 𝑐𝑇 (Fig. 2.12). This means 

that it is not possible for the moving observer to find a difference compared to the situation 

at rest and so again no violation of the principle of relativity can be found. 

 

  
 
Fig. 2.12: Signal exchange transverse to the moving direction 

 

In contradiction to the effects of a longitudinal signal exchange this means, that in the 

view of an observer at rest in transverse direction there is a change in the transmission 

angle because of aberration. The value can be calculated as presented in Fig. 2.12 using the 

tangent value (see also Eq. (2.11) with 𝛼 = 90° − 𝛿). 
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Whereas the situation concerning the exchange of signals in direction of a moving ob-

server was discussed first, the behavior in transverse direction is described here. No dis-

crepancies to the expected circumstances for the observer in motion appear and the prin-

ciple of relativity is respected in any case. 

To start with the next step discussing the observations during signal exchange in any 

arbitrary spatial direction it is necessary first, to start with basic considerations concerning 

the dependencies between the angles of incoming and outgoing signal due to aberration for 

moved observers in view of a reference system at rest. This will be presented in the follow-

ing; afterwards, using these derivations, it will be shown that no differences appear be-

tween the subjective measurements in a system at rest and for a moved observer. This issue 

will be discussed in chapter 2.4 and the validity will be proven by calculations of an example 

using a spere where light signals start from the center and return after reflection. 

2.3  Exchange of signals and correlation of angles 

In the following it shall be investigated, which correlations appear when emitted and re-

ceived signals have different directions compared to a moving body. This effect is com-

monly referred to as aberration (see Fig. 2.5). 

As already discussed in detail, the relativistic approach to calculations of a moved ob-

server requires the consideration of the effect, that the body will be contracted in moving 

direction. Up to now this effect was only treated as a summation of going and coming of the 

signal and first nothing is known about the splitting into the single trips. Out of the principle 

of relativity it can be deduced, however, that this contraction must be symmetric to the 

middle axis of the moved body according to Fig. 2.13. It makes no difference in which direc-

tion the movement will take place. 

 

   
Fig. 2.13 Contraction of a moved body 

In this case the distance 𝑒′ in the moved system is equal to 𝑒 − 𝑔 or 𝑒/γ. 

at rest moved 
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2.3.1 Reception in a moving body 

In the following the values for the reception in a moving body will be investigated. First it 

is necessary to define the exact conditions for the analysis. The following set-up shall be 

used: 

 A sphere with the radius 𝑎 contains holes in the circumference in adequate quantity 

where adjusted light beams can enter (i. e. at point P1, see Fig. 2.14). When such a beam is 

touching the center (P2), then the observer can define the corresponding angle using geo-

metric evaluations. Any of these holes relates to an angle of 𝛼′ resp. 𝛽′ because of the geo-

metrical definitions of the exact position and the radius 𝑎. 

 If the observer receiving the signal is moving, then an observer at rest will find different 

angles for the incoming signal and his measurements will be 𝛼 resp. 𝛽. In his view the signal 

will travel a distance 𝑑 inside the system. For the calculations it has to be considered that, 

as already stated before, the sphere will be deformed in moving direction (see Fig. 2.13). 

In this case for the incoming signals the geometric dependencies are defined according to 

Fig. 2.14. The incoming direction from behind (part a) leads to the following dependencies 

𝑑² = 𝑓² + (𝑒 + 𝑏 − 𝑔)2                                                    (2.40) 
and 

𝑓 = 𝑑 ∙ 𝑠𝑖𝑛𝛼         𝑓 = 𝑎 ∙ 𝑠𝑖𝑛𝛼′                                              (2.41) 
Further 

𝑒 = 𝑎 ∙ 𝑐𝑜𝑠𝛼′                                                                (2.42) 

𝑏

𝑣
=
𝑑

𝑐
                                                                     (2.43) 

𝑒 − 𝑔 =  
𝑒

𝛾 
                                                                (2.44) 

The first calculation yields 

𝑎 = 𝑑 ·
𝑠𝑖𝑛𝛼

𝑠𝑖𝑛𝛼′
                                                               (2.45) 

Eq. (2.40) is developing to 

𝑑² = (𝑑 ∙ 𝑠𝑖𝑛𝛼)2 + (𝑑
𝑣

𝑐
+ 𝑑

𝑐𝑜𝑠𝛼′ · 𝑠𝑖𝑛𝛼

𝛾 · 𝑠𝑖𝑛𝛼′
)

2

                                  (2.46) 

1 − 𝑠𝑖𝑛2𝛼 = 𝑐𝑜𝑠2𝛼 = (
𝑣

𝑐
+

𝑠𝑖𝑛𝛼

𝛾 · 𝑡𝑎𝑛𝛼′
)
2

                                      (2.47) 

𝑡𝑎𝑛𝛼′ = 
𝑠𝑖𝑛𝛼

𝛾 (± 𝑐𝑜𝑠𝛼 −
𝑣
𝑐 )
                                                  (2.48) 

where because of geometrical considerations only positive values for 𝑐𝑜𝑠𝛼 are valid. If the 

signal is approaching from the front (Fig. 2.14b) the relations are 

𝑑² = 𝑓² + (𝑒 − 𝑏 − 𝑔)2                                                     (2.49) 
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After the same calculation as presented before this leads to 

𝑡𝑎𝑛𝛽′ = 
𝑠𝑖𝑛𝛽

𝛾 (𝑐𝑜𝑠𝛽 +
𝑣
𝑐 )
                                                   (2.50) 

 

 
 

 

 
 

Fig. 2.14: Definition of parameters to determine the angle of incoming beams 

  for a moved observer (examples for 𝑣 = 0,5𝑐 and 𝛼′, 𝛽′ = 45°) 

  a) Signal approaching from behind, b) Signal approaching from the front 

Before reviewing the results, the opposite situation with an outgoing light beam shall be 
discussed first. 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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2.3.2 Outgoing signals of moving bodies 

For outgoing signals similar correlations apply. The relevant parameters are presented in 

Fig. 2.15. In this case the signal will be emitted from the center (P1) and is passing a hole in 

the circumference of the sphere (P2). In this case the space contraction of the moving body 

has also to be considered. 

 

 

 

 

 

Fig. 2.15: Definition of parameters to determine the angle of outgoing beams  

  for a moving observer (examples for 𝑣 = 0,5𝑐 and 𝛼′, 𝛽′ = 45°) 

  a) Signal emitted in moving direction, b) Signal emitted backwards 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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 For outgoing signals in moving direction (Fig. 2.15a) the results are exactly the same 

compared to incoming signals approaching from behind, which are covered by the equa-

tions presented from Eq. (2.40) to Eq. (2.48). For outgoing signals emitted backwards (Fig. 

2.15b) the opposite combination occurs, and the result is Eq. (2.50) corresponding to the 

signal approaching from the front end. 

 

2.3.3 Results of calculations of angles 

At first it shall be demonstrated for the example discussed in chapter 2.1.2, that the results 

for a moved observer and a system at rest are exactly the same. To realize this, the propa-

gation of the signals and the connected angles will be investigated. In view of the observer 

at rest (marked as “A”) the process will start sending the signal 1 to observer B, following 

this, the signal 2 will be detected and returned, at the end the reflection of signal 1 is arriv-

ing. The angles of outgoing signals are marked with 𝜀, whereas incoming signals carry the 

letter 𝛿. 

  

Fig. 2.16: Signal propagation according to situation in chapter. 2.1 with 

  corresponding angles, example for 𝑣 = 0,5𝑐 

Due to the chosen conditions the following situation is defined: 

• The angles for incoming signals 𝛿2 and 𝛿1
′  are 90°. 

• The values for incoming signal 𝛿1 and outgoing signal 𝜀1 are equal. 

• The outgoing signal 𝜀2 can be calculated using Eq. (2.23) as 

𝜀2 = 𝑎𝑟𝑐𝑠𝑖𝑛 ( 
𝑎

𝑑
 ) = 𝑎𝑟𝑐𝑠𝑖𝑛(

1 −
𝑣2

𝑐2

1 +
𝑣2

𝑐2

) = 36,87°                              (2.51) 

Calculations for the chosen speed of 𝑣 = 0,5𝑐 show the following results: 
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Tab. 2.3: Calculation of angles for the situation corresponding to Fig. 2.16 

It is shown here that A and B find the same values for outgoing (60°;  36.87°) and incoming 

signals (90°;  60°). It is thus demonstrated that the principle of relativity is also valid for 

measurements of angles and that the spatial contraction must be symmetric to the middle 

axis of the moved body in moving direction and vice versa. 

2.3.4 Literature review and evaluation 

The following simple derivation of the aberration formula for relativistic velocities was pre-

sented by D. Giulini [19]. Here the emission of a light pulse from an observer with the coor-

dinates 𝑥0 and 𝑦0 in a system at rest resp. 𝑥0
′  and 𝑦0

′  for a system moving with the velocity 

𝑣 is investigated in relation to their relative point of origin. In this case 𝛿 and 𝛿′ are the 

angles to the 𝑥-axis. At the time 𝑡 = 𝑡0 = 𝑡0
′  the systems meet in their respective points of 

origin. In this case the component 𝑢𝑥 in the system at rest can be calculated using 

 

𝑢𝑥 = −𝑐 · 𝑐𝑜𝑠𝛿                                                             (2.60) 

and in the moving system 

𝑢𝑥
′ = −𝑐 · 𝑐𝑜𝑠𝛿′                                                           (2.61) 

Integrated in the equation of relativistic addition of velocities 

𝑢𝑥
′ =

𝑢𝑥 + 𝑣

1 +
𝑢𝑥 · 𝑣
𝑐2

                                                           (2.62) 

the calculation yields 

𝑐𝑜𝑠𝛿′ =
𝑐𝑜𝑠𝛿 −

𝑣
𝑐

1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛿

                                                      (2.63) 

 Further comprehensive derivations of the calculations are leading to the same results  

(e. g. presented by R. K. Pathria [27]). Other investigations, however, show additional deri-

vations, e. g. [28,89a] 
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𝑠𝑖𝑛𝛿′ =
𝑠𝑖𝑛𝛿

𝛾 (1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛿)

=
(1 −

𝑣2

𝑐2
)

1
2⁄

𝑠𝑖𝑛𝛿

1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛿

                                   (2.64) 

A particularly useful formula is derived using the general valid formula for the tangent 

[19,28] yielding 

𝑡𝑎𝑛 (
𝜃

2
) =

𝑠𝑖𝑛𝜃

1 + 𝑐𝑜𝑠𝜃
                                                        (2.65) 

Inserting equations Eq. (2.63) and Eq. (2.64) the transformation leads to 

𝑡𝑎𝑛 (
𝛿′

2
) =

𝑠𝑖𝑛𝛿

𝛾 (1 +
𝑣
𝑐) (1 + 𝑐𝑜𝑠𝛿)

                                          (2.66) 

 

𝑡𝑎𝑛 (
𝛿′

2
) = (

𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛿

2
)                                             (2.67) 

 Using this equation, it is possible to determine in an easy way the value of 𝛿 depending 

on 𝛿′. In the following, some selected results for all equations are calculated and compared. 

It must be considered that inverse functions (arc) for values between 0 and 180° are not 

exactly defined in cases where a sinus is present. The reason is, that in contrast to the co-

sine, which is monotonously decreasing in this interval, the sine wave shows a maximum at 

90° and therefore the inverse function contains two possible solutions. This is the reason 

why for angles > 90° the standard result must be converted as presented in tables 2.4 and 

2.5. (The tangent is monotonously increasing between 0 and 90°, which is sufficient acc. to 

Eq. (2.67), because when taking 𝛿 2⁄  as argument the necessary interval is halved). 

𝟏:    𝛼′ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛼

𝛾 (𝑐𝑜𝑠𝛼 −
𝑣
𝑐)
) 𝟐:    𝛼′ = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛼 −
𝑣
𝑐

1 −
𝑣
𝑐
· 𝑐𝑜𝑠𝛼

) 

𝟑:    𝛼′ = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠𝑖𝑛𝛼

𝛾 (1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛼)

) 𝟒:    𝛼′ = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 + 𝑣

𝑐 − 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛼

2
)] 

 

Tab. 2.4: Values for 𝛼′ depending on 𝛼 according to equations 1 to 4, 𝑣 = 0,5𝑐 

  Results presented as radian and in degrees [°] (marked grey). 

  Values with frame: 180°+ angle (Eq. 1) and 180°- angle (Eq. 3) 
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𝟓:    𝛽′ = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛽

𝛾 (𝑐𝑜𝑠𝛽 +
𝑣
𝑐)
) 𝟔:    𝛽′ = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛽 +
𝑣
𝑐

1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛽

) 

𝟕:    𝛽′ = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠𝑖𝑛𝛽

𝛾 (1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛽)

) 𝟖:    𝛽′ = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛽

2
)] 

 

 

Tab. 2.5: Values for 𝛽′ depending on 𝛽 according to equations 5 to 8, 𝑣 = 0,5𝑐 

  Results presented as radian and in degrees [°] (marked grey). 

  Values with frame: 180°+ angle (Eq. 5) and 180°- angle (Eq. 7) 

 The considerations of equations 1 to 8 discussed so far were solely directed on the radi-

ation angle for a light pulse, which could be measured by an observer at rest and was sub-

sequently calculated for a moving system. In this case the angles measured in moving di-

rection cover per definition the designation 𝛼 (for the system at rest) and 𝛼′ (moving) 

whereas 𝛽 and 𝛽′ are situated in opposite direction.  

 It was already demonstrated in chapter 2.3.2 that the investigation of the case, where the 

positions are changed and the moving observer is calculating values for the observer at rest, 

the angles evaluated by the moving observer will reveal exactly the opposite results. This 

means that measurements in moving direction following angle 𝛼 will show the formal result 

of angle 𝛽′ and that it will also be the same case for 𝛽 and  𝛼′. 

 The evaluation presented so far is only valid for the equation 1. The same result will ap-

pear, however, when equation 4 is converted in a suitable way to show the value of 𝛼. 

Whereas calculations for incoming signals are discussed quite often in the literature, only 

few solutions for outgoing signals can be found. R. Göhring [47] used the equations for out-

going signals and made a transformation to 𝛼′; this showed that the results were in accord-

ance with the results described in the following. In the presentation by W. Rindler [28] it is 

defined, that the values for the velocity 𝑐 shall be replaced by −𝑐 and then the relevant cal-

culations will appear. When this is done for all presented variants then it can be shown that 

this statement is valid for all calculations investigated here. 

 The results can be summarized as follows: 
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𝟏:      𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛼′

𝛾 (𝑐𝑜𝑠𝛼′ +
𝑣
𝑐)
)  𝟐:            𝛼 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛼′ +
𝑣
𝑐

1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛼

′
) 

 𝟑:     𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛(
𝑠𝑖𝑛𝛼′

𝛾 (1 +
𝑣
𝑐 · 𝑐𝑜𝑠𝛼

′)
)  𝟒:     𝛼 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(

𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛼′

2
)] 

The same conversion is possible for the opposite case: 

 𝟓:        𝛽 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠𝑖𝑛𝛽′

𝛾 (𝑐𝑜𝑠𝛽′ −
𝑣
𝑐)
)  𝟔:        𝛽 = 𝑎𝑟𝑐𝑐𝑜𝑠 (

𝑐𝑜𝑠𝛽′ −
𝑣
𝑐

1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛽

′
) 

 𝟕:       𝛽 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝑠𝑖𝑛𝛽′

𝛾 (1 −
𝑣
𝑐 · 𝑐𝑜𝑠𝛽

′)
)  𝟖:    𝛽 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(

𝑐 + 𝑣

𝑐 − 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛽′

2
)] 

 Finally, it can be stated, that all presented equations are suitable for the calculation of 

relativistic aberration of moving observers connected to systems at rest and vice versa. The 

results of the aberration angles are the same for all involved participants and thus the prin-

ciple of relativity is not violated. Precondition is that the effect of spatial contraction is sym-

metric to the middle axis of the moved body in moving direction and opposite to it. 

 For practical use equations 2 or 4 resp. 6 or 8 shall be preferred because they show no 

sinus in the formula and so no interpretation of the result is necessary for values > 90°. The 

real advantage of the geometric derivation presented here (this means equations 1 and 5) 

will become apparent later, when subluminal velocities of moving bodies instead of light 

signals will be discussed. In this case equation 1 (or 5) can be modified using a simple re-

placement of 𝑐 by the velocity 𝑣 of the second moving object, which is not possible for the 

other calculations. This will be especially important for discussions of questions concerning 

the momentum, which will be a major topic in chapter 7. 

2.4  Exchange of signals in any arbitrary spatial direction 

 

After discussion of the basic relations concerning the path of a signal in any arbitrary spatial 

direction, it is now possible to verify that for a signal in a moved system (here with the 

shape of a sphere with a standard-radius of 𝑎 = 1) from the center to the outer shell and 

back, subjectively the same time will be measured compared to the system at rest. The fol-

lowing conditions shall be defined: 

An angle 𝛼′ (related to the moving direction) shall be chosen for the moved system, from 

which the light signal will be emitted to the outer shell. Then the following values are cal-

culated: 

1. The related angle 𝛼1 viewed by the observer at rest, 

2. The length 𝑑1 to the outer shell, 

3. The angle 𝛼2 for the way back referring to the same angle 𝛼′, 
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4. The length 𝑑2 from the shell to the center, 

5. The calculation of 𝑑𝑇 = 𝑑1 + 𝑑2. The value of 𝑑𝑇 must be exactly 2𝑎𝛾 to verify that 

the measurements in both systems (moving and at rest) are subjectively identical.  

For the calculation, the equations (2.67) and (2.45) shall be used and the following relations 

appear: 

𝟐:       𝛼1 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)
1
2⁄

𝑡𝑎𝑛 (
𝛼′

2
)]           𝟑:        𝑑1 =

𝑠𝑖𝑛𝛼′

𝑠𝑖𝑛𝛼1
        

𝟒:       𝛼2 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 + 𝑣

𝑐 − 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛼′

2
)]           𝟓:        𝑑2 =

𝑠𝑖𝑛𝛼′

𝑠𝑖𝑛𝛼2
 

In table 2.6 calculations for an example 𝑣 = 0,5𝑐 are presented. For the values 𝛼′→ 0° 

and 180° with respect to 𝛼1 and 𝛼2 a division of 0 by 0 would appear and it would be nec-

essary to extrapolate, for simplification only values between 1° to 179° were selected. The 

values directly in moving direction and opposite to it (0° and 180°) were already deter-

mined before in chapter 2.1. 

For all calculated values of 𝑑𝑇 the result of 2𝛾 (in this case 𝑣 = 0.5𝑐  2𝛾 = 2,309401. . ) 

appear. This means that in view of the observer at rest the distance travelled by the light 

pulse and the time needed is exactly longer by this value. All values show impressively that 

no deviations between the subjective measurements of the moved observer and a system 

at rest will appear. The time in the moving system is running slower by the calculated factor 

and the principle of relativity, as in all cases discussed before, will not be violated. 

 
Tab. 2.6: Calculation of values 𝑑𝑇 = 𝑑1 + 𝑑2 according to equations 2 to 5, 𝑣 = 0.5𝑐 

   All results reveal exactly 2𝛾 = 2,309401 

 

  


