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3.  Lorentz-Transformation and 
synchronization 

The calculations concerning coordinates of space and time presented so far are not suffi-

cient for the complete understanding of the relativistic transformation procedure. Already 

in the year 1900 the essential additional principle of “local time” and the consequences con-

nected with it were investigated by H. Poincaré [10]. Later A. Einstein implemented the 

general statement, that the local time of moving observers must always be connected by 

synchronization processes [12]. 

 Inside Special Relativity the synchronization of incidents between moved observers is of 

paramount importance. It is part of any comprehensive lecture concerning Special Relativ-

ity, further a multitude of publications exists of which only a small part can be discussed 

here. 

 Generally, the issue can be divided in two categories: 

 

1. The synchronization of incidents by exchanging signals, 
 

2. The synchronization of incidents by the exchange of clocks. 

 The results do not correspond to the intuitive human understanding of simultaneity and 

are therefore not easy to understand. This is due to the fact that an exchange of signals be-

tween two observers always occurs at the speed of light, and this must be included in the 

considerations. In the following the connections with the synchronization of events by us-

ing signal exchange are considered first, the synchronization by means of the exchange of 

clocks is treated in chapter 5. 

3.1  Local time and synchronization using the exchange of signals 

An experimental set-up shall be discussed, where a laboratory with length 𝑎 is considered 

as at rest and is passed by a small body with the velocity 𝑣 (Fig. 3.1). On both ends named 

A and E of the laboratory a clock is fixed. At the first contact of the moved body at A (case 

a) the clock is set to the value 

𝑡 = − 
𝑎

𝑣
                                                                   (3.01) 



3.  Lorentz-Transformation and synchronization 

48 

 When the moving body has contact at point E (case b) the clock at point A shows the 

value of zero. Using this procedure, the synchronization of both observers is realized. At the 

point zero both emitters at A and E shall send simultaneously a signal that will arrive at 

time 

𝑡 =  
𝑎

𝑐
                                                                       (3.02) 

at their partners (case c). 

 
 

Fig. 3.1: Experimental set-up for the synchronization of an observer at rest 

  using clocks at the ends A and E 

 

According to the principle of relativity all participants of the experiment must find the same 

results, when instead of the laboratory the moving body in Fig 3.1 is considered as at rest. 

When these conditions are recorded a completely different diagram will appear. In Fig. 3.2 

the space-time-diagram covering the new issue with the changing of the point of view is 

presented. 

 First the clock at A is passing the body at rest (presented as point A0). Now the waiting 

time is starting; for the observer at rest the time dilatation must be considered. The clock 

in the position E is passing the body at rest at E1 (the presentation is respecting the fact, 

that the moving laboratory is shortened by the factor 𝛾 because of its movement). At that 

point a signal is send to A which will be received there at time A4. After the end of the wait-

ing time A will send at time A2 also a signal to E which will be received there at time E3. 

 It is clearly visible, that from the point of view of the observer at rest the times for the 

moved laboratory at A and E are not identical to his observations. In this case the time zero 

is depending on the distance to the observer at rest and follows a line which is marked as 

𝑥′ in the diagram. 

 Generally, this is one of the most important features of Special Relativity. This effect is 

commonly called “Relativity of Simultaneity”. 

c 

b 

a 
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Fig. 3.2 Experimental set-up for the synchronization of a moving observer 

  using clocks at the ends A and E.  

 

The synchronization difference ∆𝑡𝑆 can be determined easily using 

 

∆𝑡𝑆 =
𝑎

cγ (1 −
𝑣
𝑐)

−  
γ𝑎

𝑐
=

γ𝑎

𝑐
(1 +  

𝑣

𝑐
 ) −

γ𝑎

𝑐
                                (3.03) 

 

∆𝑡𝑆 =  
γ𝑎𝑣

𝑐2
                                                                 (3.04) 

The angle between the 𝑥′- and the 𝑥-axis is calculated from the synchronization differ-

ence divided by γ𝑎 

tan 𝛼 =  
𝑐 · ∆𝑡𝑆

γ𝑎
=

𝑣

𝑐
                                                           (3.05) 

and is thus identical with the angle between the 𝑐𝑡′- and 𝑐𝑡-axes. 

The diagram developed here has interesting features, which will be discussed in the fol-

lowing. 

𝑣 = 0,5𝑐 
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3.2  Minkowski-diagram 

The diagram presented above was introduced into Special Relativity by Hermann Minkow-

ski (1864-1909) who, among many important scientific contributions, developed this 

presentation later named after him [15c]. 

Minkowski diagrams show several peculiarities. First of all, usually not the representa-

tion of 𝑡 but of 𝑐𝑡 over 𝑥 is chosen. This gives both axes the same dimension (length) and 

direct derivations can be made from them. After normalization, the appearance shown in 

Fig. 3.3 is obtained. In this form, the diagram shows a mirror symmetry with respect to the 

45° axis passing through the origin. 

It is possible to determine directly from these diagrams the coordinates which result for 

the stationary (𝑥, 𝑐𝑡) and for the moving observer (𝑥′, 𝑐𝑡′) for the same circumstances. In 

the diagram Fig. 3.4 the point Px,ct with the coordinates 𝑥 = 3 and 𝑐𝑡 = 2 is shown as an 

example. This is the value, at which a moving observer from the view of the stationary sys-

tem is at a distance of 3 length units (LU) after 2 time units (TU) referred to the origin. 

 

 
Fig. 3.3: Minkowski diagram: Example with point 𝑥 = 3 and 𝑐𝑡 = 2. 

  Graphical determination of the coordinates in the moving system (𝑥′, 𝑐𝑡′) '. 

The 𝑥′, 𝑐𝑡′ − coordinate system is not rectangular but has angles 𝛼 to the system 𝑥, 𝑐𝑡. 

Therefore the coordinates are also read under this angle. Parallels to the 𝑥′ and 𝑐𝑡′ axis are 

formed. The values for 𝑥𝑃
′  and 𝑐𝑡𝑃

′  can then be read from the intersections with the axes 

𝑐𝑡′ = 0 and 𝑥′ = 0 respectively as shown. 

𝑣 = 0,5𝑐 
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It will be shown in the next chapter that a purely graphical/geometric derivation leads 

in consequence to the Lorentz transformation equations. This is absolutely necessary, be-

cause otherwise there would be contradictions within the theory. 

3.3  Lorentz-Transformation 

For the derivation of the Lorentz transformation there is a multiplicity of approaches, which 

can be mentioned here only exemplarily. According to the classification introduced by M. 

Born [26] and still used today [47], there is basically the graphical and the algebraic ap-

proach. While the graphical derivation is rarely used [e.g. 26a], there is a multitude of vari-

ants for the algebraic approach. These range from the classical representation [12,29] to 

the "fastest" derivation [30], conventional approaches [31,32] and to the use of the tensor 

calculus [27,28,33]. Moreover, parts of the graphical and algebraic derivation can also be 

combined [19]. Since the Lorentz transformation is one of the most important elements of 

Special Relativity, its derivation will be shown here with selected examples for both basic 

approaches. 

In principle, the present relations must be linear. If there were e.g. quadratic terms, then 

derivations after space or time would depend on the space or the time itself. All physical 

laws, which contain derivations after place or time (e.g. velocity, accelerations) would then 

depend on the zero point of the corresponding space or time scale in case of non-linear 

relations. In such a case, however, this could be the subject of direct measurements and 

thus contradicts the general idea of the homogeneity of space and time. A further point is 

that the relations to be determined in the limit case of small velocities must pass over into 

the Galilei transformation of the classical mechanics. 

In the following, first a graphical (and geometric) derivation of the Lorentz transfor-

mation from the Minkowski diagram is presented. In contrast to the approach of M. Born 

[26a], which works with proportion relations and the Pythagorean theorem, angular func-

tions and geometrical approaches are used here and a particularly clear representation ap-

pears. Subsequently, a selected algebraic approach is presented. 

At this stage, an important point shall be briefly discussed. According to the principle of 

the constancy of the speed of light in all inertial systems, measurements of the speed of light 

will lead to the same result for the reference system ("resting") and for an observer moving 

relative to it (chapter 1.6). This is subjectively correct. However, the derivations discussed 

in the following are based exclusively on the speed of light of the reference system and thus 

describe the observations made from this, from which finally the Lorentz transformations 

are resulting. 

 

3.3.1  Derivation of the Lorentz-Transformation using the Minkowski diagram 

As was already explained, the representation of the Minkowski diagram can be derived ex-

clusively using time dilation, space contraction and synchronization difference. Beyond that 

only the assumption of the isotropy of time and space as well as the constancy of the speed 

of light (in the system at rest) is necessary. In the following it will be shown that at the 



3.  Lorentz-Transformation and synchronization 

52 

transition between the represented systems of this diagram, relations corresponding to the 

Lorentz transformation must inevitably result. 

 When an arbitrary point Px,ct is considered in this diagram (Fig. 3.4), the coordinates can 

be calculated with the help of the values marked in yellow. 

 

 

Fig. 3.4: Minkowski diagram with coordinate determination of point Px,ct in the moving  

system. Quantities relevant for the calculation are colored yellow. 

 
 

First, parallels to the 𝑥′ and c𝑡′ axes are formed and their intersections with the 𝑐𝑡/𝑥- 

coordinate system are determined. The resulting values 𝑐𝑡𝑃0 and 𝑥𝑃0 can be converted into 

𝑥𝑃
′  and 𝑐𝑡𝑃

′ . For this purpose, an intermediate calculation is required in the range around 1. 

For this purpose, a circle is drawn in Fig. 3.4, the contents of which are shown in higher 

resolution in Fig. 3.5. 

In this diagram Fig. 3.5 all values are normalized to 1. In the case shown, no change of 

location occurs within the moving laboratory, i.e. the movement takes place on the 𝑐𝑡′-axis. 

Then, as already shown in chapter 2, the dependence 𝑑 = γ · 𝑐𝑡1 applies for the case 𝑐𝑡 = 1. 

It follows 

tan 𝛼 =
𝑣

𝑐
=

𝑏

𝑑
=

𝑒

𝑏
                                                     (3.10) 

and from this 

𝑒 = 𝑑
𝑣2

𝑐2
                                                         (3.11) 

𝑣 = 0,5𝑐 
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Because of 𝑓 = 𝑑 − 𝑒, it follows after substituting eq. (3.11) 

𝑓 = 𝑑 − 𝑑
𝑣2

𝑐2
= 𝑑 (1 −

𝑣2

𝑐2
) =

𝑑

𝛾2
=

𝑐𝑡1

𝛾
                                            (3.12) 

 

 

Fig. 3.5:  Detail from Fig. 3.4, determination of 𝑓 corresponding to 𝑐𝑡𝑃0 from Fig. 3.4. 

 

For the 𝑥′-axis, the same relationship applies for symmetry reasons. It follows first for 

the value 𝑐𝑡𝑃
′ : 

𝑐𝑡𝑃
′ = γ · 𝑐𝑡𝑃0                                                              (3.13) 

From the geometrical conditions in Fig. 3.4, we get 

𝑐𝑡𝑃
′ = γ (𝑐𝑡𝑃 −  𝛥𝑐𝑡𝑃)                                                       (3.14) 

Because of  

tan 𝛼 =
𝛥𝑐𝑡𝑃

𝑥𝑃
=

𝑣

𝑐
                                                         (3.15) 

then finally appears 

𝑡𝑃
′ = 𝛾 (𝑡𝑃 −

𝑣

𝑐2
𝑥𝑃)                                                     (3.16) 

 
For 𝑥𝑃

′  we obtain in the same way 

𝑥𝑃
′ = 𝛾 · 𝑥𝑃0                                                               (3.17) 

𝑥𝑃
′ = γ (𝑥𝑃 − 𝛥𝑥𝑃)                                                            (3.18) 

𝑣 = 0,5𝑐 



3.  Lorentz-Transformation and synchronization 

54 

tan 𝛼 =
𝛥𝑥𝑃

𝑐𝑡𝑃
=

𝑣

𝑐
                                                         (3.19) 

𝑥𝑃
′ = 𝛾 (𝑥𝑃 − 𝑣 𝑡𝑃)                                                       (3.20) 

 

The calculation results in the following values 

 

The equations (3.16) and (3.20) correspond exactly to the relations of the Lorentz trans-

formation as they were already presented in Eq. (1.01) and (1.02). Thus it is shown that 

these equations can be derived from a Minkowski diagram by establishing simple geomet-

rical correlations. 

3.3.2  Algebraic concept for the derivation of the Lorentz-Transformation 

To complete the considerations concerning the Lorentz-Transformation in addition a “clas-

sic” approach, which means a typical derivation of the equations used in the literature, shall 

be discussed. To show this concept in detail the presentation of H. J. Lüdde and T. Rühl [34] 

was chosen, because it has a basic approach and does not need assumptions during the der-

ivation, which show later that they are reasonable. A similar derivation was also used by A. 

Einstein in the year 1905, although his only comment was “after easy calculation” without 

showing any details [12b]. 

Using this concept, two systems shall be looked at which are moving against each other. 

It is generally required that these are inertial systems, which means acceleration and rota-

tion is not permitted. The position of any point in these systems is characterized by three 

coordinates for the space and one for the time. For the system S these are 𝑥, 𝑦, 𝑧, 𝑡 and S′ 

with 𝑥′, 𝑦, ′𝑧′, 𝑡′. It is assumed, that the systems move against each other with a speed of 𝑣 

concerning the 𝑥- coordinate and that in 𝑦- and 𝑧- direction no motion exists. 

First the situation is discussed that the point of origin (where space and time are defined 

as zero) of both systems get in contact at the time 

𝑡 = 𝑡′ = 0                                                                    (3.40) 

In this case the correlations between the coordinates are, because of the required linearity 

 

𝑥′ = 𝐴𝑥 + 𝐵𝑡,        𝑦′ = 𝑦,        𝑧′ = 𝑧,        𝑡′ = 𝐶𝑥 + 𝐷𝑡                       (3.41) 

This means that 𝑡 is no longer invariant concerning space and furthermore 𝑥 is not in-

variant concerning time. Thus, for an arbitrary sphere with a light emitter in the center the 

following equations will apply: 
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𝑆:     𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2                                                                          (3.42) 

𝑆´:     𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑐2𝑡′2                                                                     (3.43) 

Hence 

   𝑥′2 + 𝑦′2 + 𝑧′2 − 𝑐2𝑡′2 = 𝑥2 + 𝑦2 + 𝑧2 − 𝑐2𝑡2                                           (3.44) 

For the solution of the equations first the system-velocities are considered. In view of 

system 𝑆´ the velocity of 𝑆 is 

𝑣 =
𝑥

𝑡
                                                                    (3.45) 

When the situation is discussed that both systems have contact in the point of origin Eq. 

(3.41) develops to 

0 = 𝐴𝑣𝑡 + 𝐵𝑡                                                             (3.46) 
or 

𝐵 = −𝐴𝑣                                                                 (3.47) 

The use of Eq. (3.44) leads to 

(𝐴𝑥 + 𝐵𝑡)2 − 𝑐2(𝐶𝑥 + 𝐷𝑡)2 = 𝑥2 − 𝑐²𝑡²                                    (3.48) 

and 

𝑥2(𝐴2 − 𝑐2𝐷2 − 1) + 2𝑥𝑡(𝐴𝐵 − 𝑐2𝐶𝐷) + 𝑡2(𝐵2 − 𝑐2𝐷2 + 𝑐2) = 0            (3.49) 

Because the relations (3.48) and (3.49) are valid for arbitrary values of space and time 

the following equations apply: 

𝐴2 − 𝑐2𝐶2 − 1 = 0                                                        (3.50) 

𝐴𝐵 − 𝑐2𝐶𝐷 = 0                                                          (3.51) 

 

𝐵2 − 𝑐2𝐷2 + 𝑐2 = 0                                                       (3.52) 

The solution of this system with 4 equations and 4 unknown factors [Eq. (3.47) and also 

Eq. (3.50) - (3.52)] leads to the following relations 

𝑡′ = γ (𝑡 −  
𝑣

𝑐2
𝑥)                                                         (3.53) 

𝑥′ = γ(𝑥 − 𝑣𝑡)                                                            (3.54) 

The 𝑦- and 𝑧- coordinates remain unchanged. 

The results of the derivation presented here are in full agreement with the Lorentz-

Transformation already discussed before several times. The requirements concerning time 

dilatation, space contraction and local time (with asynchronous characteristics) can be de-

rived out of subsequent calculations. This contrasts with the calculations presented before, 

where the equations were derived using a graphic approach; in this case time dilation and 

length contraction were preconditions and not the results of calculations. 
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Finally the question remains, what significance the result has for the interpretation of 

the conditions. In chapter 2.2 it was already presented in detail that it is impossible for an 

observer at rest or in a moving system using the exchange of signals to decide about the 

state of movement. This is caused by the simultaneously appearing effects of dilatation of 

time and contraction of space. 

However, it is by no means the case that an observer at rest is determining a different 

speed of light in the moving system; in his view the speed of light of his system will be valid 

for all investigations instead. The fact that the moving observer will find the same results 

in comparison to the system at rest is exclusively caused by differences in the synchroniza-

tion procedures between the two systems. This question will be taken up again in chapter 

11. 

3.4  Einstein-synchronization 

The synchronization procedure later named after Albert Einstein was first mentioned in his 

pioneering publication in the year 1905 [12]. To illustrate this point further, an extract of 

the original work is presented in Fig. 3.5, which was part of the derivation of the Lorentz-

Transformation. The following equation is of special interest 

1

2
(𝜏0  +  𝜏2) =  𝜏1                                                         (3.60) 

Einstein used Greek letters for the time in a moving system, for which today generally 𝑡′ 

is taken (further he used the letter 𝑉, not 𝑐 for the speed of light); today the equation is 

generally presented in a different form like 

1

2
(𝑡0

′ + 𝑡2
′ ) =  𝑡1

′                                                          (3.61) 

It is a special characteristic of this equation, that the synchronization is solely depending 

on the exchange of signals between the participants. 

The synchronization procedure following this specification can generally be character-

ized as follows: 

Clock U(0) is situated in the coordinate origin of an arbitrary inertial system. An 

identical clock U(x) is located at a different point with the distance 𝑥. When U(0) is 

showing time 𝑡0 a light signal is emitted from here to point 𝑥 and from there imme-

diately reflected to the coordinate origin. At arrival U(0) is showing time 𝑡2. U(x) is 

synchronized with U(0) when U(x) at the time of reflection is showing time 𝑡1 fol-

lowing the relation: 

𝑡1 = 𝑡0 +
1

2
(𝑡2 − 𝑡0)                                                       (3.62) 

Equation Eq. (3.62) is identical to Eq (3.60) resp. (3.61). This is independent from the 

situation, whether the clocks are at rest or shall be moved (which means the use of 𝑡 or 𝑡′ 

is possible). 
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To any system of values 𝑥, 𝑦, 𝑧, 𝑡, which completely defines the place and time of an 
event in a stationary system, a system of values 𝜉, 𝜂, 𝜁, 𝜏, determining that event relatively 
to the system 𝑘 belongs to it, and the task is now to find a system of equations connecting 
these variables. 

First it is clear that the equations must be linear on account of the properties of homo-
geneity which we attribute to space and time. 

If we set 𝑥′ = 𝑥 − 𝑣𝑡, it is clear that a point at rest in the system 𝑘 must belong to a 
system of values 𝑥′, 𝑦, 𝑧, independent of time. We first determine 𝜏 as a function of 𝑥′, 𝑦, 𝑧, 
and 𝑡. To do this we have to express in equations that 𝜏 is nothing else than the summation 
of the reading of clocks at rest in system 𝑘, which have been synchronized according to the 
rules given in § 1. 

From the origin of system 𝑘 let a ray be emitted at time 𝜏0 along the X-axis to 𝑥′, and 
at time 𝜏1 be reflected to the origin of the coordinates, arriving there at time 𝜏2, then we will 
find 

1

2
(𝜏0  +  𝜏2) = 𝜏1 

 
or, by inserting the arguments of the function 𝜏 and applying the principle of the constancy 
of the speed of light in the stationary system: 

1

2
[𝜏(0,0,0, 𝑡)  +  𝜏 (0,0,0, {𝑡 + 

𝑥′

𝑉 − 𝑥
 + 

𝑥′

𝑉 + 𝑥
})] 

=  𝜏 (𝑥′, 0,0, 𝑡 +  
𝑥′

𝑉 − 𝑥
) 

 
Hence, if 𝑥′ is chosen infinitesimally small 

1

2
(

1

𝑉 − 𝑥
 +  

1

𝑉 + 𝑥
 )

𝜕𝜏

𝜕𝑡
=

𝜕𝜏

𝜕𝑥′
+

1

𝑉 − 𝑣

𝜕𝜏

𝜕𝑡
 

 
or 

𝜕𝜏

𝜕𝑥′
+

𝑣

𝑉2 − 𝑣2

𝜕𝜏

𝜕𝑡
= 0 

It shall be noted that it is possible to choose any other point of origin for the coordi-
nates of the ray, and the equation just obtained is therefore valid for all values of 𝑥′, 𝑦, 𝑧. 

Fig. 3.5: Extract from original publication of Albert Einstein [12a], translated 

The definition used in these equations is not giving information, whether synchroniza-

tion is still valid at a later point in time or not. In principle the following situations are pos-

sible: 

a) U(x) remains stationary in relation to U(0), 

b) U(x) is passing U(0) in short distance to be synchronized and then moving away, 

c) U(x) is passing U(0) in a long distance without direct contact. 

 It is immediately clear for situation a) that the factor 𝛾 is always identical for both clocks 

and so the synchronization can be repeated without difference at any time. Situations b) 
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and c) were dealt with in chapters 2.1.1 resp. 2.1.2. In both cases it was shown, that inde-

pendent from the distance of objects no differences of their observations are detectable. 

The only precondition is, that the Lorentz-Transformation is taken as a basis. 

 Exact interpretation of the situation makes clear, that when using hypothetical superlu-

minal velocities sending information to an observer, differences would appear. However, 

according to the assumptions made, this is not possible and so synchronization differences 

cannot occur. As already discussed, the appearing situation is called “Relativity of Simulta-

neity”. 

 Current concepts for derivation of the Lorentz-Equations generally avoid using the form 

Einstein selected in the year 1905. In a normal case a presentation using equations Eq. 

(3.42) and Eq. (3.43) is taken (which was used as a basis for calculation in chapter 3.3.2) 

 

𝑆:      𝑥2 + 𝑦2 + 𝑧2 = 𝑐2𝑡2                                                           (3.42) 

𝑆´:    𝑥′2 + 𝑦′2 + 𝑧′2 = 𝑐2𝑡′2                                                        (3.43) 

 The equation system can be interpreted in a way, that the transition from Eq. (3.42) to 

Eq. (3.43) is in accordance with Einstein synchronization and this relation is implicitly in-

cluded. Einstein himself in his book about the theory of relativity written as a “simple ver-

sion” [29], first edited in the year 1916, also used a similar approach. Obviously, he also 

shared the opinion that this would be easier to understand. 

 The Einstein-synchronization, connected with Eq. (3.62), is a definition, not an observa-

tion. The Einstein synchronization is of paramount importance for the Theory of Special 

Relativity and is widely discussed until today [19,20,35]. After the presentation of addi-

tional important aspects, it will be discussed again in more detail in this investigation (chap-

ter 11.2). 

.  


