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4.  Additional considerations for moving 
observers 

The relations discussed so far can easily be extended from two to several observers. Doing 

this, first the addition of velocities must be derived, because the relativistic case shows not 

the simple summation which could be expected according to the laws of the Galilei-Trans-

formation. Further special relations exist in connection with velocities lower than the speed 

of light, which are observed e.g. concerning light in transparent media or connected with 

the transport of sound in solid bodies. These relations are also valid during acceleration of 

observers because material objects cannot be considered as absolute rigid. 

 In addition the case is discussed, when the transport of a signal inside a moving body is 

not only taking place in the direction of the movement but also transverse to it. 

4.1  Relativistic addition of velocities 

The theorem for the addition of velocities in the relativistic case was derived by A. Einstein 

already in the year 1905 [12]. It is assumed that in a system S′, which is moving with the 

speed 𝑣 in direction of the 𝑥-axis in relation to the reference system S, an observer is moving 

according to the relations 

𝑥′ = 𝑤𝑥
′𝑡′                                                                             (4.01) 

𝑦′ = 𝑤𝑦
′ 𝑡′                                                                             (4.02) 

𝑧′ = 0                                                                                   (4.03) 

where 𝑤𝑥
′  and 𝑤𝑦

′  are the components of the velocity in 𝑥′ resp. 𝑦′-direction. The aim is to 

find a relation referring to the reference system S. The coordinate system is selected in a 

way that all points are situated in the 𝑥 − 𝑦 plane and so the coordinate 𝑧′ can remain un-

considered. 

 Thus, the Lorentz equations read 

 

𝑥′ = 𝛾(𝑥 − 𝑣𝑡)                                                            (4.04) 
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𝑦′ = 𝑦                                                                    (4.05) 
 

𝑡′ = 𝛾 (𝑡 −
𝑣

𝑐2
𝑥)                                                          (4.06) 

Behavior in 𝑥-direction 

When Eq. (4.04) and Eq. (4.06) are inserted in Eq. (4.01) this yields 

𝛾(𝑥 − 𝑣𝑡) = 𝑤𝑥
′ · 𝛾 (𝑡 − 

𝑣

𝑐2
𝑥)                                              (4.07) 

with 

𝑥 =
𝑤𝑥
′ + 𝑣

1 +
𝑣𝑤𝑥′

𝑐2

· 𝑡                                                            (4.08) 

 

Behavior in 𝑦-direction 

For the determination equations Eq. (4.02), (4.06) and (4.08) are successively inserted in 

Eq. (4.05) 

𝑦 = 𝑦′ = 𝑤𝑦
′𝛾 (𝑡 −

𝑣

𝑐2
𝑥)                                                  (4.09) 

 

𝑦 = 𝑤𝑦
′𝛾 (𝑡 −

𝑣

𝑐2
 ·
𝑤𝑥
′ + 𝑣

1 +
𝑣𝑤𝑥′

𝑐2

 · 𝑡)                                           (4.10) 

following 

𝑦 = 𝑤𝑦
′𝛾 
1 +

𝑣𝑤𝑥
′

𝑐2
−
𝑣𝑤𝑥

′

𝑐2
−
𝑣2

𝑐2

1 +
𝑣𝑤𝑥′

𝑐2

 · 𝑡                                           (4.11) 

 

𝑦 =
√1 −

𝑣2

𝑐2

1 +
𝑣𝑤𝑥′

𝑐2

 𝑤𝑦
′ 𝑡                                                         (4.12) 

Because of the linearity of the relations the velocities can be derived out of Eq. (4.08) and 

(4.12) in a simple way as 

𝑑𝑥

𝑑𝑡
= 𝑤𝑥 =

𝑤𝑥
′ + 𝑣

1 +
𝑣𝑤𝑥′

𝑐2

                                                      (4.13) 

𝑑𝑦

𝑑𝑡
= 𝑤𝑦 =

√1 −
𝑣2

𝑐2

1 +
𝑣𝑤𝑥′

𝑐2

 𝑤𝑦
′                                                     (4.14) 

In a final step the angles of the velocity-components in relation to the 𝑥-axis are inserted 

which yields 
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𝑤𝑥
′ = 𝑤 · 𝑐𝑜𝑠 𝛼                                                            (4.15) 

𝑤𝑦
′ = 𝑤 · 𝑠𝑖𝑛 𝛼                                                            (4.16) 

and by using 

𝑣𝑇 = √𝑤𝑥2 + 𝑤𝑦2                                                           (4.17) 

these are added as vectors 

√(
𝑤 𝑐𝑜𝑠 𝛼 + 𝑣

1 +
  𝑣 𝑤 𝑐𝑜𝑠 𝛼

𝑐2

)

2

+

(

 
√1 −

𝑣2

𝑐2

1 +
  𝑣 𝑤 𝑐𝑜𝑠 𝛼

𝑐2

 𝑤 𝑠𝑖𝑛 𝛼

)

 

2

                     (4.18) 

For the total velocity 𝑣𝑇  in system S and after transformation and using the general relation 

𝑐𝑜𝑠2𝛼 + 𝑠𝑖𝑛2𝛼 = 1                                                       (4.19) 

the final solution is 

𝑣𝑇 =

√𝑣² + 𝑤² + 2 𝑣 𝑤 𝑐𝑜𝑠𝛼 − (
𝑣 𝑤 𝑠𝑖𝑛𝛼

𝑐 )
2

1 +
  𝑣 𝑤 𝑐𝑜𝑠𝛼

𝑐2

                               (4.20) 

If the velocities 𝑣 and 𝑤 are situated unidirectional, which means angle 𝛼 = 0, then Eq. 

(4.20) is simplified to 

𝑣𝑇 =
𝑣 + 𝑤

1 +
𝑣 𝑤
𝑐2
                                                             (4.21) 

When this situation concerning emitted signals and their reception is presented in a 

space-time diagram then the configuration in Fig. 4.1 is achieved. On the left side of this 

chart the situation is presented, that the emitter in the middle is belonging to a system at 

rest. The receivers of the signals, which are in addition reflecting the incoming signals im-

mediately, are increasing their distance with equal speed (in this case: 𝑣 = 𝑤 = 0,5𝑐). On 

the right-hand side, it is illustrated how the same situation develops from the view of an 

observer which was considered as in motion before (in this case: B). One of the observers 

is increasing the distance with the same speed of 𝑣 = 0,5𝑐, the third shows a speed of 𝑣 =

0,8𝑐 according to equation (4.21). A reverse situation develops when observer C is consid-

ered as at rest. 

To illustrate the exact circumstances, the situation for times 𝑡 = 1 TU and 𝑡 = 2 TU are 

marked with different shades in the space-time diagram (Fig. 4.1). In this presentation it is 

clearly visible, that irrespective of the velocity of an observer always the same results will 

be achieved. 
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Fig. 4.1: Space-time diagram for observers at rest and in motion 
 

4.2  Experiments with transparent media in motion 

In the following a further alternative of the case discussed in chapter 2.2.2 will be looked 

at. Instead of a light pulse a second observer shall be shifted inside the body in moving di-

rection and opposite to it. In conjunction with the exchange of light pulses the following 

combinations are possible: 

A: Light pulse going and coming, 

B: Observer in motion (in moving direction), light pulse comes back, 

C: Light pulse going, observer in motion (opposite to moving direction), 

D: Observer in motion (in moving direction and opposite). 

In Fig. 4.2 possible combinations for the velocity of bodies in motion with 𝑣 = 0,5 𝑐  are 

presented. As already shown, the velocities in the relativistic range are calculated according 

to Eq. (4.21). In this case of a system velocity of 𝑣1 = 0,5 𝑐 and an additional velocity of a 

body in motion of also 𝑣2 = 0,5 𝑐  was assumed and the result is 𝑣𝑇 = 0,8 𝑐. 

The figure shows clearly that the cases B and C, i.e. the combination of light pulse and 

body in motion, are leading to the same results. 

𝑣 = −0,5𝑐 

𝑣 = 0,8𝑐 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 

𝑣 = 0 𝑣 = 0 
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Fig. 4.2: Exchange of signals and bodies in motion in a moved system 

A: Light pulse going and coming, 

B: Body in motion (in moving direction), light pulse comes back, 

C: Light pulse going, body in motion (opposite to moving direction), 

D: Body in motion (in moving direction and opposite). 

An experimental proof of these cases with bodies in motion is, however, only possible 

with extreme restrictions because of the high velocities needed. An experimental assess-

ment is yet possible by an examination using optical tools. The speed of light 𝑐𝑛 in media is 

defined as 

𝑐𝑛 =
𝑐

𝑛
                                                                   (4.30) 

with 𝑛 as refractive index. It was already in the year 1812 that Augustin Jean Fresnel (1788-

1827) developed the hypothesis, that the speed of light in moved media can be calculated 

by using a dragging coefficient (which was later named after him). According to this the 

speed of light in a moving system for an observer at rest is 

𝑐𝑇 =
𝑐

𝑛
+ 𝑣 (1 −

1

𝑛2
)                                                       (4.31) 

This theory was verified in the year 1851 by Hippolyte Fizeau (1819-1896) with an ex-

periment where he measured the speed of light in water which was flowing with different 

velocities. After the full development of the Lorentz-equations it was possible to show, that 

the addition of velocities of moved media and the light propagation 𝑐𝑛 inside can be calcu-

lated using the addition of relativistic speed [36]. 

𝑣 = 0,5 𝑐 
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For calculation Eq. (4.21) is used 

𝑣𝑇 =
𝑣1 + 𝑣2

1 +
𝑣1𝑣2
𝑐2

                                                               (4.32) 

and with 𝑣1 = 𝑐𝑛 this yield 

𝑣𝑇 = 

𝑐
𝑛 + 𝑣2

1 +
𝑣2
𝑛𝑐 

=   
𝑐2 + 𝑛𝑐𝑣2
𝑛𝑐 + 𝑣2

                                                 (4.33) 

A Taylor expansion for 𝑣2 is leading to 

𝑣𝑇 = 
𝑐

𝑛
+ 𝑣2 (1 −

1

𝑛2
 ) −

𝑣2
2

𝑛𝑐
(1 −

1

𝑛2
 ) +

𝑣2
3

𝑛2𝑐2
(1 −

1

𝑛2
 ) − +. . .        (4.34) 

This equation is, concerning terms of first order, equal to the relation given in equation Eq 

(4.31). 

A calculation using the Lorentz-Transformation for the situation according to Fig 4.2 

show the results presented in Tab. 4.1. In Fig 4.3 the results are presented in a diagram. As 

expected after the end of the experiment all values are located on the 𝑐𝑡′- line. Furthermore, 

it is evident that the transformation equations confirm the expected relations and that no 

contradictions can be observed. 

 

Fig. 4.3: Minkowski-diagram for cases A, B, C and D according to Fig. 4.2. 

  Left: moved (𝑣 = 0,5 𝑐), right: at rest (𝑣 = 0) 

𝑣 = 0 

𝑣 = 0,5 𝑐 
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Tab. 4.1: Calculated values for the situations presented in Fig. 4.2 

The validity of this equation was verified in a multitude of experiments, first by H. Fizeau 

using flowing water and later e.g. by R. V. Jones using rotating transparent discs [37,38]. It 

is therefore an important part of physics and belongs both to the foundations of optics and 

relativistic considerations. 

4.3  Triggering of engines after synchronization 

It was already discussed in detail and demonstrated based on several examples that after 

mere kinematic considerations during the exchange of signals in laboratory systems after 

an “Einstein-Synchronization” no discrepancies will occur. A similar situation exists, when 

signals are used not only for synchronization of clocks but to trigger engines which influ-

ence the movement of the laboratory. The following situation shall be discussed: 

1. From the middle of a laboratory signals are sent at the same time in different 

directions A and B. 
 

2. When a signal is detected at A or B an engine will be started instantly in trans-

verse direction compared to the direction of the incoming signal. The accelera-

tion at A and B follow the same orientation. 
 

3. Tests are executed in a situation at rest and in motion. 

First, it is clear that A and B will start their engines at the same time when the laboratory 

is in a situation at rest (Fig. 4.4, right-hand side). This is not the case for a moved system, 

however. While the observer in motion after a previous synchronization realizes that the 

engines will start at the same time, an observer at rest will monitor that, because of the 

longer running time of the signal from the middle to A´ compared to B´, the engine at B´ will 

start first. Because of the acceleration transverse to the moving direction according to this 

consideration a momentum is generated, and the laboratory should start to turn. 

In the literature cases like this are discussed quite often. A similar approach was exam-

ined by M. Born and during considerations of electrodynamics the assumption was made 

that an observer (here: the laboratory) with an unlimited rigidity would create discrepan-

cies [39]. An unlimited rigidity (sometimes also called “Born’s rigidity”) cannot be valid, 

however, because all real material objects show a limited and not an infinite speed of sound 

which would be necessary for unlimited rigidity. The situation was discussed at length by 

A. Sommerfeld [15d]. 
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Fig. 4.4: Laboratory with signals to trigger an engine in transverse direction 

  (𝑣 = 0,5 𝑐). Left: System in motion; Right: System at rest 

If the situation is considered in a way that the propagation of a signal is using the speed 

of sound (or any other limited velocity up to the speed of light), the relativistic addition of 

velocities lead to the same case that was discussed in chapter 4.2. The propagation of the 

movements in transverse direction caused by the different engines will arrive at the same 

time in the middle of the laboratory and thus no momentum will be generated. 

4.4  Exchange of signals between observers with spatial geometry 

Up to now the exchange of signals between observers with an elongation in only one direc-

tion was discussed. To extend this for objects with spatial geometry, an experimental set-

up like in chapter 2.2.2 is chosen with the difference, however, that for the laboratories ob-

jects with equilateral triangles were selected. 

The signals are therefore not emitted longitudinal, but with an angle of 60° to this direc-

tion (see Fig. 4.5). When the observers in both systems pass each other at A, B, resp. A′ and 

B′ a signal is sent to C resp. C′. Both C and C′ are reflecting the signals back to the sender 

and the measured times are monitored. For an observer at rest the situation of a system in 

motion is defined as presented in Fig. 4.6. First, the base of the equilateral triangle with 

length 𝑎 is shortened by the factor 𝛾 in moving direction, which is resulting in the effect that 

4 cases for contacts between the corners of the triangles will occur. These situations are 

shown in the left-hand side of Fig. 4.6. Whereas inside the moving system the distance from 

A′ to C′ (cases 1 and 3) and B′ to C′ (cases 2 and 4) is subjectively viewed as shown (in the 

diagram presented with dotted lines), for the system at rest the way of the signal is follow-

ing 𝑑 as defined in the right-hand side of the diagram. 

𝑣 = 0,5𝑐 𝑣 = 0 
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Fig. 4.5: Experimental set-up of experiments for observers with spatial geometry 

 
 
Fig. 4.6: Situation for contact and geometrical dependencies. 

 

The geometrical dependency for distance 𝑑 for cases 1 and 3 is defined by the Pythago-

rean theorem 

(𝑏 − 𝑒)2 + ℎ2 = 𝑑2                                                        (4.40) 

and with the relation 

𝑣 = 0,8𝑐 
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𝑏

𝑑
=
𝑣

𝑐
                                                                    (4.41) 

This leads to 

(𝑑
𝑣

𝑐
−
𝑎

2𝛾
)
2

+
3

4
𝑎2 = 𝑑2                                                   (4.42) 

resulting in 

𝑑1/2 = −𝑎𝛾 (
𝑣

2𝑐
± 1)                                                         (4.43) 

If a signal is sent from B′ to C′ (cases 2 and 4) a slightly different approach is valid with 

(𝑏 + 𝑒)2 + ℎ2 = 𝑑2                                                        (4.44) 
and 

𝑑1/2 = 𝑎𝛾 (
𝑣

2𝑐
± 1)                                                       (4.45) 

Only results with positive algebraic sign are permitted, so 

A′ → C′:          
𝑑

𝑎
= 𝛾 (1 −

𝑣

2𝑐
)                                                        (4.46) 

B′ → C′:          
𝑑

𝑎
= 𝛾 (1 +

𝑣

2𝑐
)                                                        (4.47) 

If the value for time is standardized to 1 then 

𝑡A′→C′ = 𝛾 (1 −
𝑣

2𝑐
)                                                          (4.48) 

𝑡B′→C′ = 𝛾 (1 +
𝑣

2𝑐
)                                                          (4.49) 

When the values for the returning signals are evaluated, it is instantly clear because of 

symmetry reasons 

𝑡𝐶′→𝐵′ = 𝑡A′→C′ = 𝛾 (1 −
𝑣

2𝑐
)                                                   (4.50) 

𝑡C′→𝐴′ = 𝑡B′→C′ = 𝛾 (1 +
𝑣

2𝑐
)                                                   (4.51) 

For a full calculation, the elapsing time between the contacts must be determined. When 

the time for contact A −  A′ (case 1) is set to zero, then the following periods can be calcu-

lated using 

case1→ case2:           𝑡1→2 =
𝑐

𝛾𝑣
                                                                 (4.52) 

case1→ case3:           𝑡1→3 =
𝑐

𝑣
                                                                   (4.53) 

case1→ case4:           𝑡1→4 =
𝑐

𝛾𝑣
+
𝑐

𝑣
                                                        (4.54) 

With a suitable combination of these equations, it is possible to discuss the results of all 

situations of the experiment. 
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Fig. 4.7: Sequence of signals for the 4 possible contacts in the system.  

𝑣 = 0,8𝑐 
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In Fig. 4.7 the diagram for the experiment with a velocity of 𝑣 = 0,8 𝑐 is presented. This 

high speed was chosen to provide an acceptable visual effect in the diagram, but this does 

not mean, however, that there are any restrictions in the universality of this relation. 

For the 4 different contact situations the values for the total travelling time of signals 

sent from A′ resp. B′ to C′ and after reflection to their emitting points are added in the dia-

gram. Furthermore, the equivalent measurements for the system presented by A, B, C are 

presented. To keep the evaluation simple the travelling time of a signal is standardized in a 

way that the distance 𝑎 is set to 1. To make sure that the measurements can be compared 

with each other, the travelling times are adjoined by the times which elapsed since the send-

ing of the first signal according to relations Eq. (4.52) to (4.54). The contact of A′ and A is 

representing the initial zero-value followed by B′/A, then A′/B and at last by B′ and B with 

𝑡 = 2. 

According to the Theory of Special Relativity the “principle of identity” and after using 

the Lorentz Transformation the “principle of equivalence” must be valid. First it can be 

stated that the time for travelling the distance A→ C→ A and B→ C→ B is taking the total 

time 𝑡 = 2, whereas for the distances A′→ C′→ A′ and B′→ C′→ B′ the time 𝑡 = 2.333 = 2𝛾 

is needed. This is exactly according to the anticipation valid for the situation of a moving 

observer. 

When the time periods are considered, which are measured by C and C′ between the 

signals, then the same effect can be monitored, which was already discussed in chapter 

2.2.2. This means, that the values of C and C′ for the contacts of A/B′ and B′/A are changing. 

It is obvious, that the principle of relativity requires, that C resp. C′ must receive the signal 

of the observer in their system A resp. A′ first. This is important to realize a proper sequence 

of contacts. 

Generally, it was shown that all combinations sending signals in any arbitrary spatial 

direction are respecting the principle of relativity. 

5.1  Signal exchange during rotation (Sagnac-effect) 

In contrast to translational movements, there are measurable effects between outgoing and 

returning light beams in rotating systems. This does not contradict the principle of relativ-

ity, as by definition these are not inertial systems. The first successful experiments on this 

were carried out by Georges Sagnac (1860-1926) in 1913 [100].  

The schematic experimental setup is shown in Fig. 4.8. Part a) shows that monochro-

matic light is emitted from a light source, which is partially reflected by a semi-transparent 

mirror and split into 2 opposing directions. After complete circulation and recombining, an 

interferometer is used to detect small transit time differences between the light beams. The 

apparatus is first calibrated at rest and then measurements are taken while the system is 

rotating. All elements of the experimental setup, i.e. light source, mirrors, and detector are 

also rotated. As shown in Fig. 4.8 b), the light beams emitted in the direction of rotation 

travel a longer distance than those moving in the opposite direction and this difference can 

be measured. 
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Fig. 4.8: Setup of a Sagnac interferometer. a) Rotatable test arrangement 

b) Changing the measuring length of the first segment by rotation  

Type I (in direction of rotation): Lengthening; type II (counter-rotating): Shortening 

The designations shown in Fig. 4.9 can be used to calculate the values. The following rela-

tionship applies to the length of the arc segment s from A to B 

𝑠 = 𝑟 · ω · (𝑡0 + ∆𝑡0)                                                       (4.60) 

where r is the radius and ω is the angular frequency. In addition, 𝑡0 is the time required by 

the light beam in the stationary system between 2 mirrors and ∆𝑡0 is the additional time 

required for a rotational movement. The following also applies in general 

𝑎 = 𝑐𝑡0               𝑒 = 𝑐∆𝑡0               𝑏 = 𝑎 + 𝑒             𝑎 = 𝑟√2 

 

 
 

 

 
 

Fig. 4.9: Formula symbols used for the calculations 

If ∆𝑡 ≪ 𝑡0 is assumed, the following relationships apply as a good approximation 

𝑠 = 𝑑 = 𝑟 · ω · 𝑡0                                                           (4.61) 

sin 𝛼 = sin(45°) =
1

√2
=
𝑒

𝑑
=
𝑐 · ∆𝑡0
𝑟 · ω · 𝑡0

                                      (4.62) 

b) a) 
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and thus 

∆𝑡0 =
𝑟ω𝑡0

√2 · 𝑐
=
𝑎2ω

2𝑐2
                                                        (4.63) 

There are 4 segments, so the time delay for one cycle is 

∆𝑡+ = 2
𝑎2ω

𝑐2
                                                            (4.64) 

The shortening of the time for the light beam on the opposite path has the same value, so 

the final result is 

∆𝑡𝑡 = ∆𝑡+ + ∆𝑡− = 4
𝑎2ω

𝑐2
                                                (4.65) 

With a length a of 1m and 10 revolutions per second, this results in ∆𝑡𝑡 = 4,4 · 10
−16s cor-

responding to a wavelength in visible light that allows interference measurements. 

G. Sagnac was convinced that he had measured an ether effect with his (similarly con-

structed) apparatus; however, Max v. Laue had already demonstrated in 1911 that such an 

experiment was compatible with the principle of relativity [101]. 

In 1925, A. A. Michelson and H. G. Gale carried out an experiment with dimensions of 613 

m in length and 339 m in width [102,103]. This made it possible to measure the rotation of 

the earth with a relative accuracy of 2%. 

 

Fig. 4.10: Construction of a Sagnac interferometer with an optical fiber 

In addition to the structure with beam reflection by mirrors, coiled fiber optic cables can 

also be used as shown in Fig. 4.10. These are widely used today in areas such as aerospace, 

navigation, ships, and robotics. They are less susceptible to mechanical wear than mechan-

ical gyrocompasses as they contain no moving parts. Another trend in their development is 

the miniaturization of optical gyroscopes. With the advent of micro-electro-mechanical sys-

tems (MEMS), it has become possible to produce smaller and more cost-efficient gyro-

scopes that can be used for a variety of applications, from smartphones to drones. 

  


