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5.  Clock transport 

It is well known, that according to Special Relativity during an exchange of signals between 

two observers only a mutual consideration of the time needed in both directions is possible. 

Nevertheless, in the past effort was made to measure the one-way speed of light inside a 

system in motion. One of these attempts to perform a separate measurement was the ex-

amination of the effect that occurs, when clocks are moved at slow speed inside a moving 

observer. In this case a system in motion is defined, where two clocks after an Einstein Syn-

chronization are lined up and one is following the other. To execute the experiment the 

clocks are moved in this system in a way, that after the end of the trial they have changed 

their positions. When the experiment is carried out at low speed the synchronization should 

maintain its original values and after a further synchronization process a difference should 

appear. 

Since some time it is clear, however, that the effects measured by both clocks is changing 

exactly corresponding to their position inside the system and therefore leading to a null 

result (see i.e. [19,40]). This important verification and the necessary calculations are pre-

sented here, first simply by means of an example and afterwards in a general way. Further 

in this chapter the well-known twin paradox will be discussed, and it will appear as a special 

case of the clock transport. 

5.1  Clock transport in direction of motion 

To define an appropriate experimental set-up it is assumed, that in a laboratory 3 observers 

A, B and C are lined up equidistant. 

    

First the case is considered that the observers are at rest. To start the experiment ob-

server B is sending out synchronized clocks with the same speed to A and C. After the arriv-

ing of the clocks at A and C it is found that these - depending on the speed they were moved 

- are running slow compared to the clocks at rest because of time dilatation. Further A and 

C after exchanging of experiment data conclude that the moved clocks arrived at the same 

time at their positions. 
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It is now considered that the laboratory is accelerated and afterwards moving with a 

constant speed. The existing clocks shall then be synchronized. If an effect that could be 

measured inside the system would occur, it must be possible to find it out in one (or both) 

of the ways presented in the following: 

1. Observers A and C find differences in the arriving time of the clocks sent out by ob-

server B in comparison to the results of the experiments in a system at rest. 
 

2. The moved clocks show differences when they arrive at A and C compared to the 

situation of a system at rest. 

It shall be presented in the following, that inside a system at rest compared to a system 

in motion the same results will be achieved. This simplified statement can be extended to 

the proposition that it is valid also for any arbitrary inertial system, which means it is a 

system not accelerated and without rotation. The statement is therefore valid universally. 

5.1.1  Qualitative Considerations 

Fig. 5.1 shows the situation, that in a laboratory at rest (left) and in motion (right) at the 

time zero a light signal is emitted from position B in direction to the back end (A) and the 

front end (C). These signals are reaching A and C at the positions 𝑐1 and 𝑎1 as shown in the 

diagram. In this presentation further the situation with moving clocks starting from point 

B is added.  

 
Fig. 5.1: Space-time-diagram for clock transport 

  Dotted lines: Signal exchange 

𝑣 = 0,5𝑐 𝑣 = 0 
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First the laboratory at rest shall be looked at (left-hand side of the diagram). When the 

clocks are starting at time zero with a velocity of 1/2𝑐 they are reaching the positions 𝑐2 as 

well as 𝑎2 after 2 time-units, when the speed is 1/4𝑐 then 4 time-units are necessary for the 

positions 𝑐4 and 𝑎4 etc. All possible times for receiving the signals can be realized depending 

on the velocities of the moved clocks. 

When a moving system is considered, however, for an observer at rest some differences 

in the situation would occur (right-hand side of the diagram), i.e. differences in the times to 

reach 𝑐𝑛 and 𝑎𝑛, further the distance 1 is changing to 1 𝛾⁄  etc. These changes are described 

by the Lorentz-Transformation. 

In the following the situation for an observer in motion shall be discussed. This is pre-

sented in Fig. 5.1 by means of marked zones (blue: in moving direction, red: opposite direc-

tion). The following relation applies for the system at rest 

𝑣 = (0,5 ± 
1

3
) · 𝑐                                                         (5.01) 

and for the observers in motion 

𝑣𝑐3+ = 
0,5 + 0, 3

1 + 0,5 · 0, 3
𝑐 =  0,714𝑐                                           (5.02) 

 

𝑣𝑎3− = 
0,5 − 0, 3

1 − 0,5 · 0, 3
𝑐 =  0,2𝑐                                             (5.03) 

To simplify the calculations the following definitions shall be introduced: The values for 

time, space and speed of light 𝑐 are scaled to 1, the results of the velocities are therefore 

defined as fractions of 𝑐. 

The arrival time and the factor 𝛾 is 

𝑡𝑐3+ = 4,041           𝛾𝑐3+ = 1,429  
(5.04) 

𝑡𝑎3− = 2,887           𝛾𝑎3− = 1,021  

The passed (subjective) time for the observers is 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑖𝑛 𝑚𝑜𝑡𝑖𝑜𝑛:   
𝑡𝑐3+
𝛾𝑐3+

=
𝑡𝑎3−
𝛾𝑎3−

= 2,828                                           (5.05)  

This result is consistent with the values of the system at rest, because 

𝑡𝑐3 = 𝑡𝑎3 = 3           𝛾𝑐3 = 𝛾𝑎3 = 1,061                                       (5.06) 

is valid and so the same result is obtained. 

𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑡 𝑟𝑒𝑠𝑡:   
𝑡𝑐3
𝛾𝑐3

=
𝑡𝑎3
𝛾𝑎3

= 2,828                                                (5.07)  

The presented deductions show that the subjectively measured time period for the tran-

sition to A and C of the moved observers is identical. Further the presentation makes clear, 

that the time measured for the arrival of the simultaneously moved clocks by the observers 
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A and C in their synchronized system is also the same. This makes it impossible inside a 

uniformly proceeding system, which is moving without acceleration or rotation, to take 

measurements with clocks or any other devices and find conclusions out of the received 

results about the velocity compared to other systems or to find deviations in the synchro-

nization. 

5.1.2  General derivation 

The presented issue will now be verified in a general form. First it is necessary to define the 

following parameters: 

System at 
rest 

System in  
motion 

 

- 𝑣0 Velocity of the system in motion 

∆𝑣 𝑣+, 𝑣− Travelling speed of the moved observers 

- ∆𝑡𝐴, ∆𝑡𝐴 Synchronization difference to system at rest 

𝑡0 𝑡+, 𝑡− Arrival time of moved observers 

𝑡0
′  𝑡′+, 𝑡′− Subjective travelling time of moved observers 

𝛾∆ 𝛾+, 𝛾− Lorentz-factor of moved observers 

These parameters are presented in a modified Minkowski-diagram (see Fig. 5.2). The 

experimental set-up is the following: 

From position B in the middle of a laboratory at rest, signals are sent to the positions at 

both ends A and C and arrive here at the time 𝑡′ (left side of the diagram, positions 

marked with A′ and C′). At the same time 2 synchronized clocks start moving from the 

position B with an arbitrary velocity ∆𝑣 which is the same for both. They arrive at their 

positions at time 𝑡′′ (marked with A′′ and C′′); directly afterwards signals are sent back 

to position B. In the right part of the diagram the situation is presented for an observer 

in motion. The differences in moving direction and opposite to it are in conformance with 

the Lorentz equations. 

In the following it is demonstrated that the observers taking part in this experiment are 

not able to detect differences in the measurements of the elapsing time. In detail these are 

the considerations: 

1. The observers in motion cannot decide on basis of their measurements whether the 

system is moving or not. 
 

2. The observers at rest find during their measurements - independent of the velocity 

of the moving system - the same time periods for the arriving of the moving observ-

ers. 
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Fig. 5.2:  Space-time-diagram for clock transport with defined parameters 

  Dotted lines: Signal exchange 

The different issues are now dealt with separately. 

5.1.3  Identical time schedules for the arriving of moved observers 

The following issues shall be reviewed: 

a) The synchronization differences in a moving system ∆𝑡𝐴 and ∆𝑡𝐶  for the observers 

A and C relating to B 
 

b) The time periods 𝑡− and 𝑡+ the observers in motion need to reach the positions A 

and C 
 

c) The difference between both values. When the result (multiplied by 𝛾0) is corre-

sponding to the values of the system at rest, then the measuring results are not dis-

tinguishable from each other. 

 
a) Synchronization differences 

To determine the synchronization differences, it is first necessary to identify the travelling 

time a light signal needs starting from B to the positions A´ resp. C´. This is 

∆𝑡𝐵→𝐴′ =
𝑎

𝑐𝛾0(1 +
𝑣0
𝑐 )
                                                      (5.08) 
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∆𝑡𝐵→𝐶′ =
𝑎

𝑐𝛾0(1 −
𝑣0
𝑐 )
                                                     (5.09) 

The value which is necessary to reach the starting point is subtracted 

∆𝑡𝐴′→𝐴 = ∆𝑡𝐶′→𝐶 =
𝑎

𝑐
𝛾0                                                     (5.10) 

Thus, the synchronization leads to values 

∆𝑡𝐴 =
𝑎

𝑐𝛾0(1 +
𝑣0
𝑐 )
 − 

𝑎

𝑐
𝛾0 = −

𝛾0𝑎𝑣

𝑐2
                                       (5.11) 

and 

∆𝑡𝐶 =
𝑎

𝑐𝛾0(1 −
𝑣0
𝑐 )
− 
𝑎

𝑐
𝛾0 = 

𝛾0𝑎𝑣

𝑐2
                                         (5.12) 

b) Time for observers in motion 

The time a moved observer needs to reach the positions A′ resp. C′ in a system at rest is 

𝑡0 = 
𝑎

∆𝑣
                                                                  (5.13) 

To determine this in a system in motion the values of 𝑥𝐵+ and 𝑥𝐶+ (with 𝑡 → 𝑡+) resp. 𝑥𝐵− 

and 𝑥𝐶− (with 𝑡 → 𝑡−) are set equal and this results in (see Fig. 5.2) 

𝑡+ = 
𝑎

𝛾0(𝑣+ − 𝑣0)
                                                         (5.14) 

 

𝑡− = 
𝑎

𝛾0(𝑣0 − 𝑣−)
                                                         (5.15) 

c) Consideration of differences 

In the following the differences between ∆𝑡𝐴 and 𝑡− resp. ∆𝑡𝐶  and 𝑡+ are considered. In a 

system at rest this is 

∆𝑡𝐴→𝐴′′ = ∆𝑡𝐶→𝐶′′ =
𝑎

∆𝑣
                                                    (5.16) 

In a system in motion this changes to 

∆𝑡𝐴→𝐴′′ = ∆𝑡𝐶→𝐶′′ = 𝛾0
𝑎

∆𝑣
                                                 (5.17) 

If 
𝑡− = ∆𝑡𝐴 + ∆𝑡𝐴→𝐴′′                                                        (5.18) 

with 
𝑎

𝛾0(𝑣0 − 𝑣−)
=

𝑎

𝑐𝛾0(1 +
𝑣0
𝑐 )
 −  

𝑎

𝑐
𝛾0 + 𝛾0

𝑎

∆𝑣
                                 (5.19) 

 
𝑡+ = ∆𝑡𝐶 + ∆𝑡𝐶→𝐶′′                                                          (5.20) 

𝑎

𝛾0(𝑣+ − 𝑣0)
=

𝑎

𝑐𝛾0(1 −
𝑣0
𝑐 )
 −  

𝑎

𝑐
𝛾0 + 𝛾0

𝑎

∆𝑣
                                 (5.21) 

is valid, no differences can be detected inside a system. 
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 To simplify the calculation the equations shall be multiplied with 𝑐 𝑎⁄  and the values of 

the velocities are replaced by their quotient to the speed of light 𝑐 
 

𝑣+
′ =

 𝑣+
𝑐
    𝑣−

′ =
 𝑣−
𝑐
     𝑣0

′ =
 𝑣0
𝑐
    ∆𝑣′ =

∆𝑣

𝑐
                                 (5.22) 

Eq. 5.19 is developing to 

1

𝛾0(𝑣0
′ − 𝑣−′ )

=
1

𝛾0(1 + 𝑣0
′ )
 −  𝛾0 +

𝛾0
∆𝑣′
                                      (5.23) 

and Eq. 5.21 changes to 
1

𝛾0(𝑣+
′ − 𝑣0

′ )
=

1

𝛾0(1 − 𝑣0
′ )
 −  𝛾0 +

𝛾0
∆𝑣′
                                      (5.24) 

Inserting the values 

𝛾0
2 =

1

1 − 𝑣0
′ 2
                                                             (5.25) 

then after simple transformation of Eq. 5.23 

(1 + 𝑣−
′ )(1 − 𝑣0

′ ) = −𝑣0
′ +

𝑣0
′

∆𝑣′
+ 𝑣−

′ −
𝑣−
′

∆𝑣′
                                   (5.26) 

can be derived. Further 

𝑣−
′ = 

𝑣0
′ − ∆𝑣′

1 − 𝑣0
′ · ∆𝑣′

                                                         (5.27) 

and from Eq. 5.24 

(1 − 𝑣+
′ )(1 + 𝑣0

′ ) = −𝑣+
′ +

𝑣´+
∆𝑣′

+ 𝑣0
′ −

𝑣0
′

∆𝑣′
                                  (5.28) 

 

𝑣+
′ = 

𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

                                                          (5.29) 

is valid. These results correspond exactly to the definitions of 𝑣−
′ . and 𝑣+

′ . It is thus shown 

that inside a system the observers A and C are not able to find differences in the arriving 

time of a moved observer. The subjective time periods are completely independent whether 

the system is moving or not. 

5.1.4  Identical time periods at arrival for moving observers 

The time period a moving observer needs to reach the positions A or C in a system at rest 

is 

𝑡0 = 
𝑎

∆𝑣
                                                                 (5.30) 

and in the moving system 

𝑡+ = 
𝑎

𝛾0(𝑣+ − 𝑣0)
                                                          (5.31) 

𝑡− = 
𝑎

𝛾0(𝑣0 − 𝑣−)
                                                         (5.32) 
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The time subjectively measured by the moving observer is here  

𝑡′0 = 
𝑎

𝛾∆∆𝑣
                                                               (5.33) 

 

𝑡′+ = 
𝑎

𝛾+𝛾0(𝑣+ − 𝑣0)
                                                      (5.34) 

𝑡′− = 
𝑎

𝛾−𝛾0(𝑣0 − 𝑣−)
                                                      (5.35) 

If the subjectively measured time is identical then the relation applies 

𝑡′0 = 𝑡′+ = 𝑡′−                                                             (5.36) 

First this is discussed for the case 𝑡′0 = 𝑡′+. Thus 

 
𝑎

𝛾+𝛾0(𝑣+ − 𝑣0)
=

𝑎

𝛾∆∆𝑣
                                                    (5.37) 

must be valid. This leads to 

𝛾∆
𝛾+𝛾0

=
(𝑣+ − 𝑣0)

∆𝑣
                                                         (5.38) 

To simplify the calculation again the values of the velocities are replaced by their quo-
tient to the speed of light 𝑐 

𝑣+
′ =

 𝑣+
𝑐
    𝑣−

′ =
 𝑣−
𝑐
     𝑣0

′ =
 𝑣0
𝑐
    ∆𝑣′ =

∆𝑣

𝑐
                                 (5.39) 

When in equation (5.38) the values of 𝛾 are inserted, then 

(1 − 𝑣+
′ ²)(1 − 𝑣0

′ ²)

1 − ∆𝑣′²
=
(𝑣+
′ − 𝑣0

′ )²

∆𝑣′²
                                          (5.40) 

and 
(1 − 𝑣+

′ 𝑣0
′ )2∆𝑣′2 = (𝑣+

′ − 𝑣0
′ )²                                              (5.41) 

When 𝑣+ is replaced by 

𝑣+
′ = 

𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

                                                         (5.42) 

then 

(1 −
𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

𝑣0
′)

2

∆𝑣′2 = (
𝑣0
′ + ∆𝑣′

1 + 𝑣0
′ · ∆𝑣′

− 𝑣0
′)

2

                          (5.43) 

 If this equation is expanded completely, then 20 terms will occur which will add up to 

zero. The same procedure can be applied to 𝑡0
′ = 𝑡−

′ . With 

𝛾∆
𝛾−𝛾0

=
(𝑣0
′ − 𝑣−

′ )

∆𝑣´
                                                          (5.44) 

and 

𝑣− = 
𝑣0
′ − ∆𝑣′

1 − 𝑣0
′ · ∆𝑣′

                                                         (5.45) 
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the same result will be realized. Thus, it is shown that the subjective measurements of the 

moving observers do not differ from the results achieved at rest. 

 It is now generally verified that inside a moving system no possibility exists to find devi-

ations caused by “slow clock transport” when using synchronized clocks in comparison to 

a reference system at rest. 

5.2  Twin paradox 

One of the best-known examples connected with the theory of Special Relativity is the twin 

paradox. This issue covers a long history in literature (see i.e. a comprehensive summary in 

[41]). In general, a pair of twins is looked at, where one is at rest (remaining at earth) while 

the other is leaving with a fast spaceship and comes back later. This twin will be aged less 

compared to the one who remained on earth. The paradox occurs because according to Spe-

cial Relativity both twins should be considered as equal and therefore the travelling twin 

after his return should find the remaining twin also in a condition aged less. 

 The solution to overcome the contradictions is possible because the twin in the space-

ship is changing the inertial system during his trip. 

 

Fig. 5.3:  Presentation of the twin paradox 

  Left:   Observer A at rest, B in motion 

  Right : Observer A in motion, B at rest (at the beginning) 

𝑣 = 0,8𝑐 

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 

𝑣 = −0,5𝑐 

𝑣 = 0 𝑣 = 0 
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 In Fig. 5.3 this case is presented on the left side of the diagram. On the right side the 

situation is presented, that the observers change their perspective and the one who was 

first considered as at rest is moving and vice versa. To avoid influences during changing of 

the direction, the experimental set-up is modified in a way that 3 observers take part (in 

Fig. 5.3 marked with the colors green, red, and blue) and each of the observers is in posses-

sion of a precise clock [41]. At the positions A1 and B1 resp. A2 and B2 the clocks are syn-

chronized and at the end of the trial the results are evaluated. In this presentation the prob-

lem finally has the same status as the issue of a slow clock transport. 

 If the situations are comparable, then the subjective measuring results must be the same 

for all observers taking part in the trial. This shall be demonstrated in the following. The 

important issues are the total travelling time from the start to the end of the journey, and 

the subjective time periods for the moving observers, which must be identical from the start 

to the returning point and from that to the end. The total time for the observer at rest is 

defined as 𝑡0 as shown in the left part of the diagram. The other parameters are presented 

in the following table. 

System at 

rest 

System in 

motion 
 

𝑡𝑇 𝑡𝑇
′  Total time from start (A) to the end of journey (C) 

𝑡1 𝑡1
′  Time for the first part of the journey (A→ B) 

𝑡2 𝑡2
′  Time for the second part of the journey (B→ C) 

- 𝑣1
′  Velocity for A1→ B1, B1→ C1, A2→ C2 

- 𝑣2
′  Velocity for B2→ C2 

- 𝛾1 Lorentz factor for 𝑣1
′  

- 𝛾2 Lorentz factor for 𝑣2
′  

Remark: 

The velocities are always taken as ratio to the speed of light, i.e. 

𝑣1
′ =

𝑣1
𝑐
             𝑣2

′ =
𝑣2
𝑐
                                                      (5.50) 

a) Total time 

Left: The total time 𝑡𝑇 is defined as 

𝑡𝑇 = 𝑡0                                                                   (5.51) 
and for 𝑡𝑇

′  is valid 

𝑡𝑇
′ = 𝑡1+𝑡2 =

𝑡0
𝛾1
                                                          (5.52) 
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where in this case because of symmetry reasons applies 

𝑡1
′ = 𝑡2

′ =
𝑡𝑇
′

2
=
𝑡0
2𝛾1

                                                        (5.53) 

Right: Because the subjective time periods 𝑡1 shall be the same in both cases it must be valid 

𝑡1 =
𝑡0
2𝛾1

                                                                   (5.54) 

 The time 𝑡2 can be derived using relations concerning 𝑏2 (see Fig. 5.3, right), because for 

𝑣1
′  and 𝑣2

′  applies 

𝑣1
′(𝑡1 + 𝑡2) = 𝑣2

′ 𝑡2                                                           (5.55) 

𝑡2 =
𝑣1
′𝑡1

𝑣2
′ − 𝑣1

′                                                                (5.56) 

 Further for 𝑣2
′  because of the same velocities during the round trip for the relativistic 

addition of velocities according to Eq. (4.21) applies 

𝑣2
′ =

2𝑣1
′

1 + 𝑣1
′ 2
                                                               (5.57) 

This leads to 

𝑡𝑇 = 𝑡1+𝑡2 =
𝑡0
2𝛾1

+
𝑣1
′𝑡0

2𝛾1(𝑣2
′ − 𝑣1

′)
=
𝑡0
2𝛾1

(1 +
𝑣1
′

𝑣2
′ − 𝑣1

′)                        (5.58) 

After insertion of Eq. (5.57) in Eq. (5.58) follows with 

𝛾1 = √
1

1 − 𝑣1
′ 2
                                                              (5.59) 

𝑡𝑇 =
𝑡0
2
𝛾1(1 − 𝑣1

′2)

(

 
 
1 +

𝑣1
′

2𝑣1
′

1 + 𝑣1
′2
− 𝑣1

′

)

 
 
                                     (5.60) 

 

𝑡𝑇 =
𝑡0
2
𝛾1(1 − 𝑣1

′2) (1 +
𝑣1
′(1 + 𝑣1

′2)

𝑣1
′ − 𝑣1

′3
)                                      (5.61) 

 
𝑡𝑇 = 𝛾1𝑡0                                                                    (5.62) 

Because of  

𝑡𝑇
′ =

𝑡𝑇
𝛾1
                                                                     (5.63) 

it applies 
𝑡𝑇
′ = 𝑡0                                                                      (5.64) 

The measurements of subjective times are thus the same. 
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b) Single times 

First it is necessary to calculate time 𝑡2, which is subjectively elapsing for the observer in 

motion between B2 and C2. 

According to Eq. (5.56) and (5.54) for the observer at rest applies 

𝑡2 =
𝑣1
′𝑡0

2𝛾1(𝑣2
′ − 𝑣1

′)
                                                           (5.65) 

This leads to 

𝑡′2 =
𝑣1
′𝑡0

2𝛾2𝛾1(𝑣2
′ − 𝑣1

′)
                                                        (5.66) 

 When the subjective time periods for the left- and right-hand side of the diagram shall 

be the same then 
 

𝑡0
2𝛾1

=
𝑣1
′𝑡0

2𝛾2𝛾1(𝑣2
′ − 𝑣1

′)
                                                       (5.67) 

This can be derived easily. First 

𝛾2 =
𝑣1
′

𝑣2
′ − 𝑣1

′                                                                 (5.68) 

and using Eq. (5.57) 

𝛾2 =
1 + 𝑣1

′ 2

1 − 𝑣1
′ 2
                                                                (5.69) 

applies. Because of 

𝛾2 = √
1

1 − 𝑣2
′ 2
                                                              (5.70) 

it applies 

1 − 𝑣1
′ 2

1 + 𝑣1
′ 2
= √1 −

4𝑣1
′2

(1 + 𝑣1
′2)

2                                                   (5.71) 

 

1 − 𝑣1
′2 = √(1 + 𝑣1

′ 2)
2
− 4𝑣1

′ 2                                               (5.72) 

 

1 − 𝑣1
′2 = √1 − 2𝑣1

′2 + 𝑣1
′ 4                                                  (5.73) 

which is obviously the same. It is thus shown that the subjective measured times for the total 

distance and for the single parts of the trip are identical. The “paradox” is therefore not show-

ing discrepancies. 

5.3  Clock transport in arbitrary directions 

When the clock transport in arbitrary spatial directions is considered the relation Eq. (4.20) 

must be used for relativistic addition of velocities. 
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𝑣𝑇 =

√𝑣1
2 + 𝑣2

2 + 2𝑣1𝑣2𝑐𝑜𝑠𝛼 − (
𝑣1𝑣2𝑠𝑖𝑛𝛼

𝑐 )
2

1 +
  𝑣1𝑣2𝑐𝑜𝑠𝛼

𝑐2

                               (4.20) 

A simple example with 𝛼 = 90° shows 

𝑣𝑇
′ = √𝑣1

′2 + 𝑣2
′2 − 𝑣1

′2𝑣2
′2                                                   (5.80) 

 This equation can be interpreted as a variant of the relation presented in Fig. 5.3 with the 

difference that all observers are moving with an additional speed of 𝑣2. In this case the time 

dilatation during the trip from A1⟶ B1 is increasing in view of an observer at rest from 𝛾1 

to 𝛾1 · 𝛾2. This means that the following relation 
 

𝛾𝑇 = 𝛾1
′𝛾2
′                                                                    (5.81) 

must apply. This yield 

𝛾𝑇 =
1

√1 − 𝑣𝑔𝑒𝑠′2
                                                            (5.82) 

 

=
1

√1 − (𝑣1
′2 + 𝑣2

′2 − 𝑣1
′2𝑣2

′2)
=

1

√(1 − 𝑣1
′2)(1 − 𝑣2

′2)
                          (5.83) 

which is obviously identical with Eq. (5.81). So, it is verified for this case also, that a linear 

combination of different motions will not lead to a possibility to measure differences of the 

elapsing time. 

 Summarizing the calculations, it was verified here, that no possibility exists to carry out 

measurements inside a system moving with constant speed and decide about its state of 

motion. All the discussed variants of the exchange of signals and the “slow clock transport” 

lead to a null result. Of course, this cannot be a surprise, because according to Special Rela-

tivity this is predicted. 

  


