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6.  Relations for mass, momentum, force, 
and energy 

In this chapter results connected with the relativistic mass increase will be presented. First 

the well-known effect on the kinetic energy will be discussed, followed by some new inves-

tigations. These are the “spring paradox”, the relativistic consideration of the elastic colli-

sion (important for the examination of collisions of elementary particles), the exchange of 

signals during and after acceleration and the concept of a relativistic rocket equation. Be-

cause some of the delineations show no approach to an analytical solution, numerical eval-

uation concepts combined with examples for calculations are added in separate files for 

these cases. 

 None of the examinations show any contradictions to the Lorentz Transformation or the 

basic principles of relativity. 

6.1  Relativistic mass increase and energy 

During the historical development of the investigations concerning relativistic mass, it was 

first realized that there are differences between a “longitudinal” and “transversal” mass in-

crease for high velocities. These terms were introduced by H. A. Lorentz [13,42], because 

during the acceleration of electrons differences were measured depending on their move-

ment. According to experiments the transversal mass 𝑚𝑡 and the longitudinal mass 𝑚𝑙 

showed the following values: 

𝑚𝑡 =
𝑚0

√1 −
𝑣2

𝑐2

                                                             (6.01) 

 

𝑚𝑙 =
𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄
                                                         (6.02) 

 During these experiments the mass was measured in a way, that the acting force was 

divided by the acceleration using Newton´s law 

𝑚 =
𝐹

𝑎
                                                                    (6.03) 
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 The transverse acceleration is leading to a constant circular motion, while a longitudinal 

acceleration is increasing the velocity of the object and therefore both the longitudinal and 

transverse mass of the body is raised. 

 According today´s standard of knowledge the equation (6.01) is presenting the correct 

increase of mass during acceleration, whereas Eq. (6.02) is derived, when instead of Eq. 

(6.03) the complete notation of Newton´s formula for the force is used 

𝐹 =
d𝑝

d𝑡
=
d(𝑚𝑣)

d𝑡
=
d𝑚

d𝑡
𝑣 + 𝑚

d𝑣

d𝑡
                                          (6.04) 

If Eq. (6.01) is combined with Eq. (6.04) then 

 

𝐹 =
d

d𝑡

(

 
𝑚0

√1 −
𝑣2

𝑐2)

 𝑣 +
𝑚0

√1 −
𝑣2

𝑐2

d𝑣

d𝑡
                                       (6.05) 

With 

d𝑚

d𝑡
  

d𝑚

d𝑣
·
d𝑣

d𝑡
                                                            (6.06) 

the equation develops to 

𝐹 = (−
1

2
)

(

 
 𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄

)

 
 
(−2

𝑣

𝑐2
)
d𝑣

d𝑡
𝑣 +

𝑚0

√1 −
𝑣2

𝑐2

d𝑣

d𝑡
 

 

𝐹 =

(

 
 𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄

)

 
 
(
𝑣2

𝑐2
)
d𝑣

d𝑡
+
𝑚0 (1 −

𝑣2

𝑐2
)

(1 −
𝑣2

𝑐2
)

3
2⁄

d𝑣

d𝑡
=

𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄

d𝑣

d𝑡
            (6.07) 

 
and thus, the value in Eq. (6.02) for the longitudinal mass is the result. So, the equations for 

the different masses are identical and therefore since the mid of the 20th century the sepa-

ration was cancelled and today normally the general term “relativistic mass” according to 

Eq. (6.01) is used. 

 It is apparent that equation Eq. (6.07) can be directly transformed to 

𝐹 =
𝑚0
𝛾3
𝑎                                                                  (6.08) 

 This means that for a constant force acting from the system at rest, the acceleration oc-

curring in the moving system (also measured from the system at rest) differs by a factor 𝛾3. 

This law was derived by H. A. Lorentz for an electric field acting on an electron from the 

outside. When considering accelerations caused by effects within a moving system (such as 

valid for a rocket engine), the same laws apply. As shown in chapter 6.4, the factor 𝛾3 results 

also if the relativistic velocity addition is chosen as the only criterion for derivation. 
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 In the following the kinetic energy of a body in motion shall be discussed. To realize this, 

the relativistic (longitudinal) mass according to (6.07) is considered, because this is the 

complete equation that describes an increase of the velocity. The force which is necessary 

to accelerate a mass is therefore defined as 

𝐹 =
𝑚0 · 𝑎

(1 −
𝑣2

𝑐2
)

3
2⁄
                                                          (6.09) 

The necessary acceleration energy is 

𝑊1,2 = ∫ 𝐹 · d𝑠
𝑣2

𝑣1

= ∫
𝑚0 · 𝑎

(1 −
𝑣2

𝑐2
)

3
2⁄
· d𝑠

𝑣2

𝑣1

= ∫
𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄
·
d𝑣

d𝑡
d𝑠

𝑣2

𝑣1

           (6.10) 

Because of 

𝑣 =
d𝑠

d𝑡
                                                                    (6.11) 

it applies 

𝑊1,2 = ∫
𝑚0

(1 −
𝑣2

𝑐2
)

3
2⁄
𝑣 d𝑣

𝑣2

𝑣1

                                               (6.12) 

and finally 

𝑊1,2 =
𝑚0𝑐

2

√1 −
𝑣2

𝑐2

                                                          (6.13) 

For 𝑣1 = 0 and 𝑣2 = 𝑣 follows 

𝑊 = 𝐸𝑘𝑖𝑛 = 𝑚0𝑐
2

(

 
1

√1 −
𝑣2

𝑐2

− 1

)

 = 𝑚0𝑐
2(𝛾 − 1)                         (6.14) 

The Taylor expansion of the square root leads to 
 

(1 −
𝑣2

𝑐2
)

−1 2⁄

= 1 +
1

2
 
𝑣2

𝑐2
 +  

1 · 3

2 · 4
 
𝑣4

𝑐4
 +  

1 · 3 · 5

2 · 4 · 6
 
𝑣6

𝑐6
+ +⋯               (6.15) 

and for 𝑣 ≪ 𝑐 the classical formula for the kinetic energy is derived 

𝐸𝑘𝑖𝑛 ≅ 
𝑚0
2
𝑣2                                                              (6.16) 

 The equation (6.14) was developed by A. Einstein already in the year 1905 [22]. It con-

tains implicit the first consideration of the equivalence of mass and energy and leads gen-

erally to 

𝐸 = 𝑚𝑐2                                                                  (6.17) 

This is most probably the best-known formula in modern physics. 

𝑣2 

 

 

 

𝑣1 
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6.2  Spring paradox 

In the following the situation shall be discussed, in which way a simple spiral spring and a 

mass attached to it will behave, when different experiments in a system at rest and in mo-

tion will be performed. To realize this at first 3 different experimental arrangements will 

be examined and in a second step the correlations for the energy are investigated and finally 

assessed. 

6.2.1 Simple elongation of a spring 

The simplest way to realize a static displacement of a spiral spring (this means without 

oscillation) is straining using a weight. This procedure is not suitable for a discussion using 

Special Relativity, however, because the value of the displacement is defined by the gravi-

tational constant and thus by the mass of the earth. It is therefore not possible to carry out 

an undisputed examination. In this case a concept using General Relativity would be neces-

sary. 

 Because of this reason a different technique for the generation of a displacement is nec-

essary. For realization, the straining with a repulsive force is chosen, when caused by stead-

ily flowing gas a constant force will be applied to the spring. Thus, the spring constant 𝑘 can 

be derived by 

𝐹 = 𝑘 · 𝑠                                                                   (6.20) 

 In this case 𝐹 is the norm of the generated force and 𝑠 of the displacement. When this 

experimental set-up is transferred into motion and the elongation of the spring is in a posi-

tion transverse to the system at rest, the observers at rest and in motion must detect the 

same displacement of the spring because the “principle of identity” is valid. For the observer 

in motion the spring constant must be the same as in the case discussed before. The ob-

server at rest will, however, because of time dilatation and increasing of the relativistic 

mass, realize the following differences: 

1. The number of gas-molecules per time unit generating the repulsion force is reduced 

by the factor 𝛾. 

2. The mass of any single molecule of the gas is increased by the factor 𝛾. 

3.  The velocity of the gas molecules moving in transverse direction (in relation to the 

observed direction of motion) is reduced by the factor 𝛾. 

 It must be added to point 3 that the total speed of a flowing gas molecule is exactly the 

same compared to the situation for an experiment at rest. The reason for this is that the 

way is increasing by the factor 𝛾 but the angle of the gas flow is different by the factor 𝛼 =

𝑎𝑟𝑐𝑡𝑎𝑛 𝑣 𝑐⁄  to the transverse direction. This is the same situation why a light beam is trav-

elling a longer way to a target in transverse direction in view of an observer at rest. The 

transverse component of the velocity is not affected by this, however, and is therefore re-

duced by the factor 𝛾. These relations must be valid to make sure, that the moved observer 

is realizing the same situation compared to an observer at rest. In summary the considera-

tions lead to the equation 

𝑘 =  𝛾 · 𝑘′                                                                (6.21) 
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 This means, that the spring constant in the system in motion is lower by the factor 𝛾 

when it is monitored by the observer in a system at rest. This fact, which is surprising at 

first sight, is necessary to make sure that no discrepancies with other experimental config-

urations appear. This will be shown in the following. 

6.2.2 Rotation 

Instead of using a repulsion force the displacement of a spring can also be generated by its 

existing torsion characteristics. First in a system at rest the value for the peripheral velocity 

depending on the dislocation of the spring and so the existing force is determined. When 

this set-up is accelerated to a higher velocity and the experiment is repeated (using again 

the orientation transverse to motion) the following value for the centrifugal force is calcu-

lated 

𝐹𝑧
′ = 𝑚′ ·

𝑣′2

𝑟
=
𝐹𝑧
𝛾
                                                        (6.22) 

 Reason for the difference to the system at rest is the fact that the peripheral velocity 𝑣 is 

occurring in a quadratic form in this equation. The relation is valid because the speed is 

slower in view of the observer at rest and the mass 𝑚 is increasing in the discussed manner. 

6.2.3 Harmonic oscillation 

A similar situation is observed when the spring is performing an oscillation. In this case the 

following differential equation is valid 

𝑥̈ + 𝜔0
2 · 𝑥 = 0                                                             (6.23) 

with 

𝜔0
2 =

𝑘

𝑚
                                                                  (6.24) 

and 

𝑇0 =
2𝜋

𝜔0
= 2𝜋√

𝑚

𝑘
                                                         (6.25) 

where 𝜔0 is the angular frequency and 𝑇0 the oscillation time. When this experimental set-

up is accelerated to a higher speed (again transverse to the direction of motion) the ampli-

tude will be reduced by the factor 𝛾. This leads to the following relation 

𝑇0
′ = 2𝜋√

𝑚′

𝑘′
= 2𝜋√

𝛾2 · 𝑚

𝑘
= 𝛾 · 𝑇0                                          (6.26) 

 In this case also a reduction of the spring constant is necessary to avoid discrepancies 

with the principle of relativity. 

6.2.4 Literature survey 

In the literature no variants of these experiments are discussed (at least not known by the 

author). There is, however, an additional interpretation of the experiment with a “broken 

lever” (first discussed by G. N. Lewis and R. C. Tolman), which is a variant of the Trouton-
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Noble Experiment, were a similar situation is discussed by P. S. Epstein [43]. Based on the 

general approach by A. Sommerfeld [44] the following relations were developed 

𝑓𝑥 = 𝑓𝑥
′          𝑓𝑦 =

𝑓𝑦
′

𝛾
                                                       (6.27) 

where 𝑓𝑥 and 𝑓𝑦 are the components of the “Newtonian force”. This description explains the 

relations developed for springs like the decrease of the force in transverse direction by an 

observer at rest. 

6.2.5 Considerations of energy 

Due to these relations a further effect appears, however, which is leading to an apparent 

contradiction. Considering the internal energy of the spring 

𝐸𝑝𝑜𝑡 = ∫ 𝐹(𝑠)𝑑𝑠
𝑠

0

= ∫ 𝑘 · 𝑠 𝑑𝑠
𝑠

0

                                             (6.28) 

 
it is obviously clear, that during straining the energy is depending on the force resp. on the 

spring constant in a linear relationship. Assessing the examples discussed before this would 

mean, that the mechanical energy of a spring is decreasing with higher velocities. This is 

clearly a violation of the universal principle of conservation of energy. If a strained spring 

is accelerated and then released an observer at rest would measure a lower energy com-

pared to the value which was necessary when loading the spring. Looking the other way 

round the spring would have a higher internal energy after a deceleration. 

 To dissolve the apparent paradox first an additional examination of the total energy shall 

be carried out. For this purpose, the total energy of a mass is observed which is moving with 

a velocity 𝑣1. This situation is according to the equation established in chapter. 6.1 

 

𝐸1 = 𝛾1𝑚0𝑐
2                                                               (6.29) 

 Now the case is investigated, that the mass is moving in a direction transverse to this 

(relative to the observer at rest), with a speed of 𝑣2 measured by the observer in motion. 

The observer at rest will find a reduced value of 

𝑣2
′ =

𝑣2
𝛾1
                                                                   (6.30) 

because of time dilatation. According to the relativistic addition of velocities (see chapter 

4.1, Eq. (4.20) with 𝛼 = 90°) this will lead to 

𝑣𝑇 = √(
𝑣1
𝑐
)
2

+ (
𝑣2
𝛾1𝑐
)
2

− (
𝑣1𝑣2
𝛾1𝑐2

)
2

                                          (6.31) 

The energy of this mass is 

𝐸𝑇 = 𝛾𝑇𝑚0𝑐
2                                                              (6.32) 

The differences of these energies are 
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∆𝐸 = 𝛾𝑇𝑚0𝑐
2 − 𝛾1𝑚0𝑐

2                                                    (6.33) 

with 

∆𝐸 =
𝑚0𝑐

2

√1 − (
𝑣𝑇
𝑐 )

2
−

𝑚0𝑐
2

√1 − (
𝑣1
𝑐 )

2
                                           (6.34) 

 A Taylor expansion using 𝑣1, 𝑣2 ≪ 𝑐 for this equation and the insertion of 𝑣𝑇  according 

to Eq (6.31) leads to the value 

∆𝐸 ≅ [1 +
1

2
((
𝑣1
𝑐
)
2

+ (
𝑣2
𝛾1𝑐
)
2

− (
𝑣1𝑣2
𝛾1𝑐2

)
2

) − (1 +
1

2
(
𝑣1
𝑐
)
2

)]𝑚0𝑐
2 

=
1

2
[(
𝑣2
𝛾1𝑐
)
2

− (
𝑣1𝑣2
𝛾1𝑐2

)
2

]𝑚0𝑐
2 

 

=
1

2
[(
𝑣2
𝛾1𝑐
)
2

(1 − (
𝑣1
𝑐
)
2

)]𝑚0𝑐
2 =

1

2
𝑚0𝑣2

2                                   (6.35) 

 This is exactly the relation for the kinetic energy of a body in motion for nonrelativistic 

condition and shows that the balance of energy is obeyed in this case. The discrepancies 

concerning the energy of a spring are generated by the fact, that the force is a physical value 

with a direction. In this case the strange situation occurs that force and acceleration having 

different orientations. This issue was already discovered by P. S. Epstein in the year 1911 

[43]. Although in this paper - according to the knowledge at that time - the mass was as-

signed the character of a tensor and the relationships discussed in chapter 6.1 for the force 

in moving direction and transverse to it where unknown, this is the solution to solve the 

discrepancies of the paradox. 

6.3  Relativistic elastic collision 

A further non-linear examination is possible for relativistic elastic collision. This will not be 

of importance when macroscopic observers are considered, because velocities to create a 

noticeable effect would certainly destroy the participating bodies on impact. However, 

when the effect on the behavior of elementary particles is examined, e.g. in particle collid-

ers, it is an interesting question, how the tracking of the reaction changes when it is viewed 

by observers with different velocities relative to the experimental set-up. 

 The foundation for the calculation is − like for the non-relativistic examination − the laws 

of conservation for energy and momentum. The relevant relations for momentum and en-

ergy are 

Rel.momentum:                    𝑝⃗ = 𝛾𝑚𝑣⃗                                                   (6.40) 
 

Rel. kinetic energy:                 𝐸 = (𝛾 − 1)𝑚𝑐2                                     (6.41) 
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 When in a simple example it is assumed that 2 masses are colliding centrally without 

deviation, then for the momentum the presentation as vector can be skipped and the con-

servation laws are 

𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = 𝑚1𝛾3𝑣3+𝑚2𝛾4𝑣4                                      (6.42) 

 

(𝛾1 − 1)𝑚1𝑐
2 + (𝛾2 − 1)𝑚2𝑐

2 = (𝛾3 − 1)𝑚1𝑐
2 + (𝛾4 − 1)𝑚1𝑐

2               (6.43) 

where 𝑣1 and 𝑣2 are the velocities before and 𝑣3 and 𝑣4 after collision. This leads to 

𝑝 = 𝑚1𝛾1𝑣1 +𝑚2𝛾2𝑣2 = 𝑚1𝛾3𝑣3 +𝑚2𝛾4𝑣4                                (6.44) 

and 
𝐸0
𝑐2
= (𝛾1 − 1)𝑚1 + (𝛾2 − 1)𝑚2 = (𝛾3 − 1)𝑚1 + (𝛾4 − 1)𝑚2                  (6.45) 

 The determination of the results for 𝑣3 and 𝑣4 is not possible in closed analytical form 

and so for the solution a numerical approach is necessary. For the required calculation the 

principle of bisection is used. An example for the required computation is presented in an-

nex A in the attachment. 

 For the examination of the non-relativistic case the equation for the momentum in Eq. 

(6.44) is modified 

𝑚1𝑣1 +𝑚2𝑣2 = 𝑚1𝑣3+𝑚2𝑣4                                               (6.46) 

where simply the values for 𝛾 are skipped, and further the use of the approximation formula 

(1 −
𝑣2

𝑐2
)

−1 2⁄

= 1 +
1

2

𝑣2

𝑐2
+···                                               (6.47) 

for 𝑣 ≪ 𝑐 and insertion into Eq. (6.45) leads to 

 

1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2 =
1

2
𝑚1𝑣3

2 +
1

2
𝑚2𝑣4

2                                       (6.48) 

When Eq. (6.46) and Eq. (6.48) are suitably transformed it applies 
 

𝑚1(𝑣1 − 𝑣3) = 𝑚2(𝑣4 − 𝑣2)                                                (6.49) 
and 

𝑚1(𝑣1 − 𝑣3)(𝑣1 + 𝑣3) = 𝑚2(𝑣4 − 𝑣2)(𝑣4 + 𝑣2)                              (6.50) 

Hence, after division of both equations 
 

𝑣1 + 𝑣3 = 𝑣4 + 𝑣2                                                           (6.51) 

and after insertion in Eq. (6.49) the classical equations for the central collision can be de-

rived in a simple way 

𝑣3 = 2
𝑚1𝑣1 +𝑚2𝑣2
𝑚1 +𝑚2

− 𝑣1                                                  (6.52) 
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and 

𝑣4 = 2
𝑚1𝑣1 +𝑚2𝑣2
𝑚1 +𝑚2

− 𝑣2                                                 (6.53) 

 It is obvious that the result represents a simple analytical solution and that for this case 

no numerical calculations are necessary. 

 Still open is the question, how the results will be tracked by observers with different 

velocities relative to the collision. To examine this, the circumstances for the situation be-

fore and after collision must be considered in detail. In annex A the calculation of the values 

of  𝑣3 and  𝑣4 is presented first, furthermore the equations for the relativistic addition of 

velocities according to the following relations are calculated, which is then subject to fur-

ther comparison: 

 𝑣𝑇( 𝑣1,  𝑣2) =
 𝑣1 −  𝑣2

1 −
 𝑣1 𝑣2
𝑐2

                                                  (6.54) 

 𝑣𝑇( 𝑣4,  𝑣3) =
 𝑣4 −  𝑣3

1 −
 𝑣4 𝑣3
𝑐2

                                                  (6.55) 

 For a meaningful comparison between both results the quotient will be calculated first 

and then, because of the small deviation, the appearing value will be subtracted by1 result-

ing the error range 

𝛿𝑣 =
 𝑣𝑇( 𝑣1,  𝑣2)

 𝑣𝑇( 𝑣4,  𝑣3)
− 1                                                       (6.56) 

 In Fig. 6.1 the values of the velocities 𝑣1 𝑐⁄  from 0.0001 to 0.999 are presented for the 

mass-ratio 𝑚1: 𝑚2 of 1: 2 and 2: 1 corresponding to the starting conditions 𝑣2 = 0 and 𝑣1 =

𝑣2. To ensure comparability between the examined different velocities, for any value of 

𝑣1 𝑐⁄  the results of 𝑣3 𝑣1⁄  and 𝑣4 𝑣2⁄  were calculated and shown in a table, furthermore the 

findings are presented in graphical form. The graphs of the relations between the velocities 

show an asymptotic approach to the values of the non-relativistic cases calculated using Eq. 

(6.52) and Eq. (6.53), which were also inserted in the diagrams. The calculation of 𝛿𝑣 shows 

clearly, that all observers come to the same result irrespective of their velocities. This is 

corresponding to the examination of the non-relativistic case (see Eq. (6.52) and Eq. (6.53)). 

 In a further examination the error range 𝛿𝑣 for different velocities is presented. Whereas 

high velocities show almost no noteworthy deviations this is changing considerably for 

lower values. This is caused by the decreasing accuracy during the calculation of small val-

ues because of round-off errors. Using standard spreadsheet calculation programs on a PC 

(such as Microsoft Excel©) the possible calculation limit is reached at values for 𝛿𝑣 of ap-

proximately 10−15. It is not possible to calculate with higher precision, smaller values are 

classified as 0. The question of accuracy is also of great importance for numerical solutions; 

this topic is dealt with in a comprehensive way in annex D, where 3 different approaches 

(recursion, Newton’s calculus, bisection) are described and compared. 
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Fig. 6.1: Relativistic elastic collision for 0,0001 < 𝑣1 𝑐⁄ < 0.999. Relations for  

 velocities 𝑣3 𝑣1⁄  (blue), 𝑣4 𝑣2⁄  (red). Error range 𝛿𝑣 (For definition: see text). 

 Non-relativistic case: dotted line. 
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 Finally, it can be stated that during relativistic elastic collision no effects appear which 

would make it possible to identify the existence of a system of absolute rest in the universe. 

However, new attempts are made (year 2017) to identify results of this kind using precision 

measurements of particle mass (in this case: electrons) [45]. According to the considera-

tions presented here it is not possible that experiments of this type can be successful at all. 

6.4  Exchange of signals during and after acceleration 

In this chapter it is investigated how accelerated systems behave in relativistic situations 

and which measurement results are obtained for other, non-accelerated observers with 

constant velocity. The acceleration is not generated from outside sources - e.g. by an elec-

tromagnetic field acting on a charged object - as it was investigated by H. A. Lorentz (cf. 

chapter 6.1), but shall be caused by thrust like it is the case for a rocket. 

First, a simple situation is considered in which the system under investigation is sub-

jected to constant acceleration, with changes in mass due to the emission of propellant 

gases initially being disregarded. Important results can be determined by analytical and 

numerical methods. Then, in a more advanced approach, consideration of the decrease in 

rocket mass with acceleration is added. If for the propulsion a proportional change of the 

ejection mass compared to the remaining rocket mass is assumed, the acceleration remains 

constant during a trial and the behavior is the same as in the previously investigated case. 

In contrast, a constant mass decrease per time unit (as required when the classical rocket 

formula is used) leads to increasing acceleration values. These calculations in full scale (in-

cluding acceleration and covered distance) can only be carried out numerically; a corre-

sponding program and the results obtained with it are shown in the appendix. Further, the 

final velocity of a rocket, which can be calculated using the classical and relativistic rocket 

formula, is determined and the agreement of the results is shown. 

6.4.1  Exchange of signals in systems with constant acceleration 

In the following the case shall be discussed that a rocket accelerates uniformly and is ob-

served from other inertial systems. During the acceleration process, signals are emitted by 

observer S inside the rocket at regular intervals of ∆𝑡𝑆. Further observer A also participates 

in the experiment and moves at the beginning of the acceleration with the same speed as S. 

Out of an additional inertial system, a second observer B is moving with an arbitrary veloc-

ity relative to A. Both observers A and B are recording the signals of S. 

First, the acceleration of the rocket monitored by observer A is investigated. An analyti-

cal calculation is complicated by the fact that the relation for the relativistic velocity addi-

tion is not linear. During the acceleration, for the current velocity 𝑣𝐴 the velocity change d𝑣𝐴 

(from the point of view of A) is described by 

𝑣𝐴 + 𝑑𝑣𝐴 =
𝑣𝐴 + 𝑑𝑣𝑆

1 +
𝑣𝐴 · 𝑑𝑣𝑆
𝑐2

                                                        (6.60) 

where 𝑑𝑣𝑆 represents the change of the velocity observed in the moving system S. The use 

of a Taylor expansion results in 
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𝑣𝐴 + 𝑑𝑣𝐴 = 𝑣𝐴 + 𝑑𝑣𝑆 (1 −
𝑣𝐴
2

𝑐2
) + (𝑑𝑣𝑆)

2 (
𝑣𝐴
3 − 𝑣𝐴 · 𝑐

2

𝑐4
) + + . . .                 (6.61) 

With a differential consideration for 𝑑𝑣𝑆 → 0, values of (𝑑𝑣𝑆)
2 and higher order can be ne-

glected. Equation (6.61) thus obtains the form 

𝑑𝑣𝐴 = 𝑑𝑣𝑆 (1 −
𝑣𝐴
2

𝑐2
)                                                        (6.62) 

The applicable accelerations are now defined for both systems 

𝑎𝑆 =
𝑑𝑣𝑆
𝑑𝑡𝑆

                              𝑎𝐴 =
𝑑𝑣𝐴
𝑑𝑡𝐴

                                            (6.63) 

Furthermore 

𝑑𝑡𝑆 =  𝑑𝑡𝐴 · 𝛾 =
𝑑𝑡𝐴

√1−(
𝑣𝐴
𝑐 )

2

 

                                               (6.64) 

and finally 

𝑎𝐴 =
𝑑𝑣𝐴
𝑑𝑡𝐴

= 
𝑑𝑣𝑆
𝑑𝑡𝑆

(1 −
𝑣𝐴
2

𝑐2
)

3
2⁄

= 𝑎𝑆 (1 −
𝑣𝐴
2

𝑐2
)

3
2⁄

=
𝑎𝑆
𝛾3
                          (6.65) 

Thus, between 𝑎𝐴 and 𝑎𝑆 the same factor 𝛾3 appears as it was derived when determining 

the correlations for the occurring forces in case of relativistic mass increase (cf. chapter 

6.1). 

In the following, the relations between the subjectively observed times, velocities, and 

distances for stationary and moving observers shall be determined. For this purpose, first 

the velocity is considered. From eq. (6.65) follows immediately 

𝑑𝑡𝐴 =
1

𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−3 2⁄

𝑑𝑣𝐴                                                   (6.66) 

Assuming, that values for 𝑎𝑆 are constant and integrating Eq. (6.66), we obtain  

𝑡𝐴 =
𝑣𝐴
𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

+ 𝐶 =
𝑣𝐴 · 𝛾(𝑣𝐴)

𝑎𝑆
 + 𝐶                                   (6.67) 

If concrete values are used (e.g. time runs from 0 to 𝑡𝐴), the integration constant C equals 

zero. This equation describes - with subjectively constant acceleration of the rocket - the 

dependency between time and velocity from the point of view of A. With a given velocity, 

time can be determined directly, in the opposite case, a numerical procedure must be ap-

plied to determine 𝑣𝐴 when using the equation. To avoid this, however, equation Eq. (6.67) 

can be extended and transformed via 

(
𝑎𝑆 · 𝑡𝐴
𝑐

)
2

= (
𝑣𝐴 · 𝛾(𝑣𝐴)

𝑐
)

2

=
 
𝑣𝐴
2

𝑐2
+ 1 − 1

1 −
𝑣𝐴
2

𝑐2

=
 1

1 −
𝑣𝐴
2

𝑐2

− 1                        (6.68) 



6.  Relations for mass, momentum, force, and energy 

98 

Transformed to 𝑣𝐴 the result is 

𝑣𝐴 =
𝑎𝑆 · 𝑡𝐴

√1 + (
𝑎𝑆 · 𝑡𝐴
𝑐 )

2
                                                        (6.69) 

This representation is also found in the literature, using approaches similar to the one cho-

sen here [32] as well as using rapidity [91]. [Note: rapidity  describes a concept in which 

velocities are added up according to Galileo's principle; the relationship with relativistic 

velocity is  = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ(𝑣 𝑐⁄ )]. Equations (6.67) and (6.69) are equivalent and can be used 

depending on the computational requirements. 

To calculate the time subjectively elapsing in the rocket, equations (6.64) and (6.66) are 

combined, yielding the relation 

𝑑𝑡𝑆 =
1

𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−1

𝑑𝑣𝐴                                                    (6.70) 

Integration leads to 

𝑡𝑆 =
𝑐

𝑎𝑆
arctanh (

𝑣𝐴
𝑐
) + 𝐶                                                    (6.71) 

For direct calculation of the dependency on 𝑡𝐴 instead of 𝑣𝐴, Eq. (6.69) can be substituted 

into (6.71). 

The distance travelled 𝑥𝐴 can be calculated using Eq. (6.66) with 

𝑑𝑥𝐴 = 𝑣𝐴𝑑𝑡𝐴 =
1

𝑎𝑆
(1 −

𝑣𝐴
2

𝑐2
)

−3 2⁄

𝑑𝑣𝐴                                    (6.72) 

Integration yields 

𝑥𝐴 =
𝑐2

𝑎𝑆
 (1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

+ 𝐶                                            (6.73) 

In contrast to the previous cases, the integration constant must be determined here. This is 

done by using the boundary condition 𝑥𝐴 = 0 for the velocity 𝑣𝐴 = 0. Substituting in Eq. 

(6.73) this leads to 

0 =
𝑐2

𝑎𝑆
 (1 − 0)−

1
2⁄ + 𝐶           𝐶 = − 

𝑐2

𝑎𝑆
  

and inserted into Eq. (6.73), the final form is given by 

𝑥𝐴 =
𝑐2

𝑎𝑆
 {(1 −

𝑣𝐴
2

𝑐2
)

−1 2⁄

− 1} =
𝑐2

𝑎𝑆
 (𝛾 − 1)                                   (6.74) 

Again, the relationship between 𝑣𝐴 and 𝑡𝐴 from equation (6.69) can be used alternatively to 

obtain a direct dependence on 𝑡𝐴.  

Equation (6.74) has the peculiarity that for small values of 𝑣𝐴 the end results can become 

very inaccurate. The value of 𝛾 approaches 1 in this case; but since the value 1 is subtracted 
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in the formula, larger errors can occur with usual calculation accuracy. It is recommended 

here to use a Taylor expansion where these problems do not appear. Appendix B contains 

a derivation in chapter B.3 and it is shown under which boundary conditions Eq. (6.74) or 

the Taylor method is more accurate. 

Furthermore, a numerical method is also presented in this annex B, where the use of 

additions of relativistic velocities with sufficiently small steps leads to the same results. An 

analytical method is easier to use but would lead to problems in case of modifications, such 

as changing the acceleration during the experiment. With numerical methods, on the other 

hand, such a situation can be implemented easily. This becomes clear in the situation de-

scribed in the next chapter, in which the real behavior of creating thrust realized by ejection 

of a propellant gas from a rocket and the resulting influences on the system are considered 

in detail. 

In the following it shall be demonstrated that based on these simple correlations no con-

tradictions will occur concerning the experimental findings of observers travelling with dif-

ferent velocities compared to the system, which is at rest at the start of acceleration of the 

rocket. The only precondition necessary is, that from the rocket signals to observers A and 

B are transmitted, and that these signals have a constant subjective frequency concerning 

the system inside the rocket. The situation of all participants is presented in the following 

diagram. 

 
Fig. 6.2: Comparison of different acceleration conditions calculated for 

𝑎 = 10 m/s², 𝑎 = 0 and 𝑎 = −10 m/s² 

a) 𝑣0 = 0,       b)  𝑣0 = 50 m/s 

Observer B is at rest in all cases relative to the presentation of the diagram (i.e. from the 

point of view of A and S, he is moving relative to them at the start of the experiment with 

velocity 𝑣0), while A is moving on the line a = 0. Thus, in subplot a) with 𝑣0 = 0, the results 

for A and B coincide, while in b) participant A is increasing the distance in relation to B with 

constant velocity 𝑣0. The aim of the following calculations is to show that the values of A in 

part a) and also b) are identical from the point of view of B using the Lorentz equations. The 

principle of relativity is valid because the subjectively measured times are independent of 

the speed of the observers. 
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To prove this, Fig. 6.3 shows a situation in which subplot a) shows the rocket passing 

observer B (blue line in the x/t diagram), decelerates and then approaches again. In subplot 

b) the rocket starts from a position at rest and is accelerated uniformly. In this case, the 

course of an additional test participant A moving uniformly at velocity 𝑣0 is also shown 

(blue line). To make the results easier to distinguish, the reference points in subplot a) have 

been marked with P and in b) with Q and R.  

 
Fig. 6.3: Identical accelerations observed by different participants  

  a)  𝑣0 = 50 m/s, 𝑎𝑆 = −10 m/s²     b)  𝑣0 = 0, 𝑎𝑆 = 10 m/s²  

With the very small values for 𝑣0 chosen here for the presentation in the diagram, in 

principle no significant deviations between relativistic and non-relativistic consideration 

can be provided. Therefore, calculations were carried out which are based on a system ve-

locity of 369 km/s. As already pointed out in several other cases, this is the velocity with 

which our solar system is moving relative to the uniform cosmic background radiation and 

thus is of great interest for possible experiments to be performed. It remains to be clarified 

how large the difference is in the present case between relativistic and non-relativistic con-

sideration. In order to show this, values for the non-relativistic case (Galileo) were also 

added to the table. As it is well known, these relations are given by  

𝑣 = 𝑎 · 𝑡                                                                    (6.75) 

𝑥 =
1

2
 𝑎 · 𝑡2                                                                (6.76) 

If it is assumed that a spaceship passes earth with 369 km/s and decelerates with 

10m/s², the maximum distance would be reached at about 6,8 · 106  km (subplot a, point 

𝑃2) in non-relativistic consideration. The total time until the earth is reached again at 𝑃3 is 

about 20.5 hours. The exact values and also the results calculated for a relativistic consid-

eration are summarized in a table (Tab. 6.1). 
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The information included in this representation will be broken down in the following. 

For this purpose, it is necessary to note the sequence of the calculations. First, the subplot 

a) is considered: 

1. 𝑃1 → 𝑃2 

The values of 𝑡𝑆(𝑃2) are calculated using Eq. (6.67), 𝑡𝐴(𝑃2) is derived from Eq. (6.71) 

and 𝑥𝐴(𝑃2) from Eq. (6.74) for the velocity 𝑣𝐴 = 369 km/s. The use of Eq. (6.74) is 

permitted, although it was initially derived considering the case 𝑣𝐴 = 0; because of 

symmetrical reasons first case 𝑃2 → 𝑃1 is calculated and the result is then trans-

ferred to 𝑃1 → 𝑃2. 

2. 𝑃2 → 𝑃3 

Because of symmetry reasons the values of 𝑡𝑆(𝑃3) und 𝑡𝑁(𝑃3) must be twice as large 

as for (𝑃2). The value of 𝑥𝐴(𝑃3) = 0 by definition. 

For subplot b) the values are accordingly: 

1. 𝑄1 → 𝑄2 

Symmetry reasons result in 𝑡𝑆(𝑃2) = 𝑡𝑆(𝑄2), 𝑡𝐴(𝑃2) = 𝑡𝐴(𝑄2) and 𝑥𝐴(𝑃2) = 𝑥𝐴(𝑄2). 

2. 𝑄2 → 𝑄3 

In this case the assumption is used that subjectively within differently moved iner-

tial systems no differences may arise at the same changes of state; this means  

𝑡𝑆(𝑃3) = 𝑡𝑆(𝑄3) is set (the two fields are green and marked with arrow). If this as-

sumption is correct, no differences may show up in a later comparison of results. 

First, the value for 𝑣𝐴(𝑄3) is calculated from Eq. (6.71), then 𝑡𝐴(𝑄3)  from Eq. (6.67) 

and 𝑥𝐴(𝑄3) from Eq. (6.74). 

 
Tab. 6.1: Results of calculations for 𝑣0 = 369 km/s using  𝑎𝑆 = −10 m/s² (values P) and 

𝑎𝑆 = 10 m/s² (values Q) for a non-relativistic (Galileo) and relativistic approach. 

 Points are defined according to Fig. 6.3. 
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For a further evaluation, the case must be calculated, how the situation arises in subplot 

b) for a linearly (unaccelerated) moving observer (blue line). To realize this, the boundary 

condition is used that accelerated and non-accelerated observers meet at the point 𝑄3, i.e. 

the values 𝑥𝑁 for 𝑄3 and 𝑅3 must be the same in this case (these fields are also green and 

marked with an arrow). From 

𝑡𝐴 =
𝑥𝐴
𝑣0
                                                                    (6.77) 

and 

𝑡𝑆 =
𝑡𝐴
𝛾
                                                                    (6.78) 

the values of 𝑡𝐴 and 𝑡𝑆 can be calculated. 

With the data determined here, a comparison between individual values can be carried 

out. First, the values for 𝑡𝐴 for the accelerated and non-accelerated case are compared at 

point 𝑄3 = 𝑅3, which by definition must be the same, since both start and end from the same 

point (𝑄1 → 𝑄3 and 𝑅1 → 𝑅3). The values are marked in blue. Despite different calculations, 

they lead to approximately the same result, with the deviation according to the calculation 

for  

𝛿𝐾1 =
𝑡𝐴(𝑄3)

𝑡𝐴(𝑅3)
− 1                                                                 (6.79) 

to be determined. The same behavior occurs when the values for 𝑡𝐴(𝑃3) and 𝑡𝑆(𝑄3(𝐿) are 

compared (marked in yellow) 

 𝛿𝐾2 =
𝑡𝐴(𝑃3)

𝑡𝑆(𝑅3)
− 1                                                                 (6.80) 

These must be equal for the following reason: The stationary observer in subplot a) deter-

mines that the passing rocket arrives at his position again after uniform negative accelera-

tion at the time 𝑡𝐴. The uniformly moving observer in subplot b) must subjectively observe 

the same behavior. For the situation of an observer at rest in subplot b), represented by the 

course of the dashed line, the value for 𝑡𝐴 is higher in this case, but can be traced back to the 

subjective measured value of the moving system by simple division by 𝛾. No relevant calcu-

lation differences can be determined here. 

With the boundary conditions selected here using 𝑣𝐴 = 369 km/s, deviations of approx. 

8 · 10−13 occur for 𝛿𝐾. If, on the other hand, higher values for 𝑣𝐴 are selected, as e.g. in Tab. 

6.2 with 𝑣𝐴 = 0,5𝑐, no deviations are detectable within the scope of the calculation accu-

racy, but with smaller values for 𝑣𝐴 they increase. This is due to the occurrence of very small 

values of 𝛾, especially in Eq. (6.74). At small velocities, the value for 𝛾 is only slightly larger 

than 1; if the value of 1 is subtracted from this, large deviations can result depending on the 

accuracy of the calculation. This effect is shown in more detail in annex B, chapter B.3 and 

for this purpose a significant improvement of the accuracy is demonstrated by using a Tay-

lor expansion. 

Instead of the analytical approach chosen here, the regularities can also be determined 

numerically. A procedure for this is compiled in Annex B. If the occurring deviations are 
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considered, an advantage for the numerical procedure is shown with low values of 𝑣𝐴, with 

higher velocities it is the other way round; the accuracy depends beyond that substantially 

on the number of the selected iteration steps. After performing the numerical calculations, 

it is shown here that the subjectively existing acceleration between motionless and moving 

observer differs by a factor 𝛾3; in contrast to the analytical method, where this was deter-

mined by basic considerations, this is a result of the calculations performed. In the Annex B 

the results are presented in detail. Also added is a comparison with results of the numerical 

method from Annex C, in which the amount of propellant gas ejected was kept constant in 

relation to the residual mass of the rocket, thus achieving uniform acceleration. 

 
Tab. 6.2: Results of calculations for 𝑣0 = 0,5c  using  𝑎𝑆 = −10 m/s² (values P) 

and 10 m/s² (values Q) for a non-relativistic (Galileo) and relativistic approach. 

 Points are defined according to Fig. 6.3. 

 

An evaluation of the chosen general conditions reveals at first sight that a rocket tech-

nology generating the required thrust long enough is not existing today; with such a system 

it would be possible to reach Mars in a few days. This becomes even clearer if a long journey 

is considered under the conditions chosen here. If it is assumed that a body of 100 tons with 

constant acceleration of 1g crosses the galaxy (100,000 light years, subjective time on 

board: approx. 12 years), the rocket with a propellant density of 70 kg/m³ would have to 

have a size of 14 x 14 x 14 km³ at departure, even if an optimal conversion of mass into 

kinetic energy is assumed [91]. This does not include any statements on the deceleration of 

the rocket after the journey or on the influence of micrometeorites and gas causing a speed 

reduction, or the protection of the passengers by additionally required masses due to nec-

essary shielding devices.  
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Despite the obvious impossibility of implementation on an industrial scale, however, the 

results calculated here are unambiguous and show that - although the influence is small - 

they must be taken into account when even small acceleration phases are considered. 

Finally, questions of the influence of acceleration on the measurements shall be exam-

ined in general. According to the Theory of General Relativity it is not possible for an ob-

server to decide with measurements in a closed system, whether he is exposed to an accel-

eration effect caused by increasing velocity or by a gravitation field. Although it is not with-

out controversy that additional (gravitational) time dilatation will appear in accelerated 

systems, the potential effect shall be estimated to complete a general consideration. 

For the conditions chosen here with an acceleration value of 10 m/s², which corresponds 

approximately to the effect of the earth's acceleration due to gravity of 9.81 m/s², a time 

dilation of about 7 · 10−10 results, which has been confirmed by many measurements [80]. 

If this value is multiplied by the total time from Tab. 6.2, an effect of 5,17 · 10−5 s results. 

This would mean that the calculated time difference between relativistic and non-relativ-

istic consideration is extended by a value of 0.28%. Thus, because of the small deviation, 

this potential effect can be neglected here. 

6.4.2  Relativistic rocket propulsion 

Now the question arises, how a rocket behaves in reality, which is accelerated by outflowing 

gas and accordingly loses mass. An observer B, who monitors this process from another 

inertial frame and measures the velocity 𝑣0 for S and A at the beginning of the experiment, 

will find differences to the measurements of S due to the time dilation and the relativistic 

mass increase, namely 

1. The quantity of the gas-molecules generating the repulsion force is reduced by the 

factor 𝛾(𝑣0) per time unit. 

2. The mass of any single molecule of the gas is increased by the factor 𝛾(𝑣0). 

3. The remaining mass of the rocket is increased by the factor 𝛾(𝑣0). 

4. The speed of the outflowing gas corresponds to the theorem of relativistic addition 

of velocities. 

5. The elapsing time between outgoing signals is increased by the factor 𝛾(𝑣0). 

6. The total time for acceleration during an experiment is increased by the factor 𝛾(𝑣0). 

For the exact determination of the situation, all influences related to these criteria must 

be calculated with respect to the reduction of the rocket mass due to the gas ejection for 

propulsion. These conditions are considered for cases with constant gas ejection (which 

leads to a steady increase in acceleration) and with constantly reduced gas ejection (to en-

sure constant acceleration). 

The relativistic momentum is used to establish the equations relevant to solve this prob-

lem. It is determined in general that all functions referring to the outflowing gas are marked 

with 𝑓′; relations connected with the moving rocket, on the other hand, are represented 

without this marking. 

Following this general definition, the relativistic momentum of a rocket before starting 

acceleration is 

𝑝0 = 𝑚0𝑣0𝛾0                                                               (6.81) 



6.4.2  Relativistic rocket propulsion 

105 

where 𝑣0 is the velocity of the rocket relative to a reference frame at the start of the trial. 

After the first step the relation changes to 

𝑝1 = 𝑚1𝑣1𝛾1                                                               (6.82) 

and the values for step 1 are calculated as follows: 

1. It is assumed that during the first step of acceleration the rocket is losing mass 𝛥𝑚0 

with the jet velocity 𝑣0
′ ; the gas used to form the high-speed jet to generate the re-

pulsion force is generally called “propellant mass”. 
 

2. The momentum of the rocket 𝑝1 (related to the remaining mass 𝑚1 = 𝑚0 − 𝛥𝑚0) 

and 𝑝1
′  of the propellant mass 𝛥𝑚0 are added and set equal to the momentum 𝑝0 of 

the rocket (using of the law of conservation of momentum). From this, the changing 

velocity of the rocket is calculated. This results in 

𝑝1 + 𝑝1
′ = (𝑚0−𝛥𝑚0)𝑣1𝛾1 + 𝛥𝑚0𝑣1

′𝛾1
′ = 𝑚0𝑣0𝛾0                              (6.83) 

and generally 

𝑝𝐾 + 𝑝𝐾
′ = (𝑚𝐾−1−𝛥𝑚𝐾−1)𝑣𝐾𝛾𝑘 + 𝛥𝑚𝐾−1𝑣𝐾

′ 𝛾𝐾
′ = 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1            (6.84) 

The values for 𝑣 and 𝑣′ show in different directions (this is explaining the “+” in the for-

mula). Relative to the rocket, the gas flow maintains at a constant speed of 𝑣0
′ . The relativ-

istic addition of velocities is leading to 

𝑣𝐾+1
′ =

𝑣𝐾+1 + 𝑣0
′

1 +
𝑣𝐾+1𝑣0

′

𝑐2

                                                        (6.85) 

Using the equations (6.84) and (6.85) for every step 𝐾 the velocity of the rocket can be 

calculated; this means the complete numerical evaluation is following a nested loop with a 

subroutine for any 𝑣𝐾 . 

To perform such a calculation, programming was done in Visual Basic (VBA). The VBA 

program code is compiled in Annex C with the corresponding formulas and a flow chart. 

The main purpose of these calculations is the comparison of systems which are at rest at 

the time of the start of the trial to those which are relatively moved. For this purpose, two 

exemplary calculation variants were programmed, whereby firstly the acceleration and in 

the second case the outflow velocity of the propellant mass were kept constant. The differ-

ences associated with both concepts are presented in the following. 

 

a) Propellant mass proportional to the remaining mass of the rocket 

The precondition of propellant mass proportional to the remaining mass of the rocket re-

sults in constant acceleration values for the rocket over the entire observation period. This 

situation corresponds to the case already described in chapter 6.4.1. 

Table 6.3 shows the results of two calculations with 𝑣0 = 0 and 𝑣0 = 0,5𝑐 as initial ve-

locities. The selected values are quite different and this also the case for the results. In order 

to enable a comparison of the values with each other, the final velocity of the rocket from 
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the view of an observer at rest was defined as the difference 𝑣𝑇 = 𝑣𝑁 − 𝑣0. The value 𝑡𝑇 is 

the total time, which results subjectively from the view of the unmoved system when ap-

plying the Lorentz equations for an observer moving with system velocity 𝑣0 until the arri-

val of a signal from the rocket.  

In addition, the distance 𝑥𝑁 covered by the rocket from the view of the stationary ob-

server up to the emission of the impulse is listed. Furthermore, the result for the remaining 

mass 𝑚𝑁 of the rocket after completion of the experiment is shown (related to the initial 

value 𝑚0 = 1). In addition, the values for the accelerations 𝑎𝑁 and also the calculations for 

𝛾3𝑎𝑁 are presented. 

 

 
Tab. 6.3: Values of 𝑣𝑇, 𝑡𝑇, 𝑚𝑁, 𝑥𝑁,  𝑎𝑁,  𝛾3𝑎𝑁 for proportional reduction of propellant mass.

  Top: 𝑣0 = 0, bottom: 𝑣0 = 0,5 𝑐 (149.896,458 km/s). 

  𝛥𝑚0 = 0,25%/s, 𝑡𝑆 = 400s. The values for 𝑚𝑁 are normalized to 1. 

  Values for 𝑣𝑇 in km/s, 𝑡𝑇 in s, 𝑥𝑁 in km, 𝑎𝑁 and 𝛾3𝑎𝑁 in m/s2. 
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For the calculations a loss of propellant mass per time unit of 𝛥𝑚0 = 0,25%/s was spec-

ified. This leads to an acceleration of 10m⁄s² and thus a comparability with the other al-

ready performed calculations is given. The experimental time chosen was 𝑡𝑆 = 400s, and 

this leaves the realistic magnitude of a residual mass of almost 37% of the initial value after 

the completion of the experiment. For better evaluation, the deviations between the values 

𝛿𝑣𝑇 = 𝑣𝑇(𝐾) and 𝑣𝑇(𝐾 − 1) are shown according to the relationships also used elsewhere 

(e.g., as defined in Eq. (6.79)), and in the same way for 𝛿𝑡𝑇 , 𝛿𝑚𝑁, 𝛿𝑥𝑁 , 𝑎𝑁 and 𝛾3𝑎𝑁, where 

K corresponds here in each case to a potency of ten in the number of calculation steps be-

tween 10 and 107 (cf. Tab. 6.3). First, it should be noted in principle that the values for 𝛿𝑣𝑇 , 

𝛿𝑡𝑇 and 𝛿𝑥𝑁 show unsystematic fluctuations and exhibit the smallest deviations from each 

other considering the number of iteration steps between N = 102 and 104. Hereby it is clear 

that the visible differences are not caused by a physically explainable effect, but only by the 

use of the numerical method. 

Furthermore, it can be seen that the value of the remaining mass 𝑚𝑁 becomes more ac-

curate with each increase by a factor of 10 in the number of iteration steps (Iteration 

103→ 104 = 1.6562 · 10−4;  104→ 105 = 1.6566 · 10−5 and so on, see Tab. 6.3). This is not 

of further importance here and therefore an evaluation is not carried out at this point; how-

ever, this changes in the following considerations for the case of constant propellant mass 

and will be further investigated there. 

The results of the calculations for 𝛾3𝑎𝑁 show again that the ratio for the accelerations 

between differently moving observers reveals the factor 𝛾3. 

The determination made here with a proportional loss of propellant mass with respect 

to the residual mass of the rocket allows a direct comparison with the analytical and nu-

merical results from Section 6.4.1. and the conformity proves to be very good. A detailed 

evaluation is presented in Annex B.4. 

 

b) Propellant mass constant 

This case proves to be significantly more complex with regard to the evaluation compared 

to the situation discussed before. This is due to the fact that the values of 𝑣𝑇 , 𝑡𝑇 and 𝑥𝑁 , 

which are important for the observation, show the same behavior as 𝑚𝑁 before and become 

more precise with increasing number of iteration steps. Therefore, they must be analyzed 

in particular (in contrast to the case before, 𝑚𝑁 does not show this behavior here!). 

This becomes clear when considering the case shown in Tab. 6.4. In the upper part of the 

table, as before, the results of the calculations of the relevant values are given, below − 

marked with section I − the compilation of the deviations 𝛿𝑣𝑇 ,  𝛿𝑡𝑇 , 𝛿𝑚𝑁 und 𝛿𝑥𝑁 follows. 

The first and the last calculation deviate in values from the systematics of the other results 

and were not considered further. Therefore, only the blue colored fields were used for final 

calculations and the values reproduced in section II were extrapolated from them. The re-

sults presented in the lower part of the table show the outcome of these calculations. The 

mass reduction was set to 𝛥𝑚0 = 0,5%/s, which leads to a test duration of  𝑡0 = 100s for 

the final mass value of 50% desired here. 

In the Annex C, besides the derivation of the program structure, further results of the 

calculations for different boundary conditions were presented in the tables C.2, C.3 and C.4. 
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In addition to the figures for the system velocity of 𝑣0 = 0 discussed here, calculated values 

for 369 km/s plus 2,000 km/s and 10,000 km/s were also added to provide a better over-

view. In these cases, a lower remaining mass after the test was also determined with a rest 

of 10%. 

 

 
Tab. 6.4: Values of 𝑣𝑇, 𝑡𝑇, 𝑚𝑁 and 𝑥𝑁 for linear reduction of propellant mass. 

  Section I: Iterations, Section II: Extrapolated. All values in km and s. 

Calc.-Type: “A1”,  𝑣0
′ = − 4 km/s,  𝛥𝑚0 = 0,5%/𝑠,  𝑡0 = 100s,  𝑣0 = 0  
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Again, the most important statement results from the comparison of the calculated val-

ues for 𝑡𝑇 , which represent the signal propagation times until reaching an observer moving 

with 𝑣0, calculated in view of the system at rest. For a better comparison of the times, here 

as in other cases, the comparative formula 

𝛿𝑡𝑇 =
𝑡𝑇(𝑣𝐾)

𝑡𝑇(𝑣𝐾−1)
− 1                                                           (6.86) 

was chosen. Table 6.5 shows the results of values for 𝑡𝑇 and 𝛿𝑡𝑇 , where the calculation was 

based on 𝑡𝑇 using iteration steps of N = 1016. No systematic deviations can be found when 

results for different system velocities are compared. 

 

 
Tab. 6.5: 𝑡𝑇 and 𝛿𝑡𝑇  with constant propellant mass per time unit for different 𝑣0. 

𝛥𝑚0 is normalized to 1. 

1: 𝑣0
′ = − 4 km/s,     𝛥𝑚0 = 0,5%/𝑠,      𝑡0 = 100𝑠 

2: 𝑣0
′ = − 4 km/s,     𝛥𝑚0 = 0,09%/𝑠,    𝑡0 = 1.000𝑠 

3: 𝑣0
′ = −100 km/s,  𝛥𝑚0 = 0,009%/𝑠,  𝑡0 = 10.000𝑠 

For the consideration of the final velocity 𝑣𝑇  the possibility of a comparison with the 

values determined according to the classical rocket formula arises. The formula derived by 

K. E. Tsiolkovsky in 1903 is based on the non-relativistic momentum equation and aims to 

calculate the terminal velocity of a rocket as a function of the exit velocity of the gas for a 

constant propellant mass. For non-relativistic consideration with 𝑣 ≪ 𝑐, first Eq. (6.85) is 

reduced to 

𝑣𝐾
′ = 𝑣𝐾 + 𝑣0

′                                                                  (6.87) 

To solve the equation Eq. (6.84), the stipulation that 𝛾 = 1 (not relativistic) applies. Since 

the mass of the rocket decreases with increasing index K, but the velocity rises, the follow-

ing relations apply additionally 

𝑚𝐾 = 𝑚𝐾−1 − 𝛥𝑚𝐾−1 𝑣𝐾 = 𝑣𝐾−1 + 𝛥𝑣𝐾−1 

In addition, for differential consideration the following definitions are introduced: 

𝑚𝐾 → 𝑚 𝛥𝑚 → d𝑚 

𝑣𝐾 → 𝑣 𝛥𝑣 → d𝑣 

This results in the following approach for Eq. (6.84): 
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(𝑚 + d𝑚 − d𝑚)𝑣 + d𝑚(𝑣 + 𝑣0
′ ) = (𝑚 + d𝑚)(𝑣 − d𝑣)                               (6.88) 

𝑚𝑣 + 𝑣d𝑚 + 𝑣0
′d𝑚 = 𝑚𝑣 −𝑚d𝑣 + 𝑣d𝑚 − d𝑚d𝑣                                   (6.89) 

and because of d𝑚d𝑣 → 0 

𝑚d𝑣 + 𝑣0
′d𝑚 = 0                                                          (6.90) 

If mass and velocity of the outflowing gas (and thus the momentum) are kept constant, 

the integration of eq. (6.90) leads to the classical rocket formula 

∫ d𝑣
𝑣

0

= − 𝑣0
′ ∫

d𝑚

𝑚

𝑚

𝑚0

                                                        (6.91) 

𝑣 = 𝑣0
′  𝑙𝑛 ( 

𝑚0
𝑚
 )                                                           (6.92) 

where 𝑚0 is the mass at the start from an unmoved platform. If the starting point is moving, 

the velocities are simply added. This becomes necessary e.g. at the drop of a rocket stage, 

when the mass decreases and also the momentum changes. 

Besides the classical rocket formula according to Tsiolkovsky, also a relativistic rocket 

formula exists. This was derived in 1946 by J. Akeret [90]. The derivation is clearly more 

complex and requires additionally the use of the energy conservation theorem; the deriva-

tion is shown in the appendix C under point C.4. The result of this relativistic rocket equa-

tion according to Eq. (C.33) is 

𝑣

𝑐
=  
1 − (

𝑚
𝑚0
)
2𝑣0
′ 𝑐⁄

1 + (
𝑚
𝑚0
)
2𝑣0
′ 𝑐⁄
                                                   (6.93) 

If the classical and/or the relativistic rocket equations 𝑣𝑅 are taken as a limiting case to 

the presented solution of the numerically derived relativistic rocket formulas, and the re-

sults from the values for 𝑣𝑇  calculated in appendix C, tables C2, C3 and C4 are related to 

each of them, the following values for a comparison can be obtained 

𝛿𝑅 =
𝑣𝑅
𝑣𝑇
− 1                                                                (6.93) 

The results of these calculations are shown in Fig. 6.4. First, it becomes clear that for low 

system velocities, especially in the case 𝑣0 = 0, no sufficient accuracy is achieved for itera-

tion steps from N = 10 to N = 107 and they are therefore to be considered only with re-

strictions. On the other hand, if the extrapolated values calculated up to N = 1016 are added, 

a significantly improved result is obtained. When the values for classical and relativistic 

rocket formulas are compared, no differences can be found for 𝑣0
′ = − 4 km/s, while for 

𝑣0
′ = −100 km/s, discrepancies can be seen for small system velocities (𝑣0 = 0 und 369 

km/s). To show the differences, the results for the classical rocket formula (Tsiolkovsky) 

and relativistic (Akeret) were presented separately in subplots c) and d). 
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Fig. 6.4: Dependency 𝛿𝑅 between relativistic und classical rocket formula related to  

the number of iteration steps acc. to Tab. C.2, C3 and C4. 

a)  𝑣0
′ = − 4 km/s,  𝛥𝑚0 = 0,5%/s,  𝑡0 = 100s 

b)  𝑣0
′ = − 4 km/s,  𝛥𝑚0 = 0,09%/s,  𝑡0 = 1.000s 

c) and d)  𝑣0
′ = −100 km/s,  𝛥𝑚0 = 0,009%/s,  𝑡0 = 10.000s 

c) classic (acc. to K. E. Tsiolkowski), d) relativistic (acc. to J. Akeret).  

a) to d) at the bottom 𝑣0 = 0 then ascending 𝑣0 = 369, 2000, 10000 km/s  

𝛥𝑚0 normalized to 1. 

To evaluate the behavior at higher velocities, results from the numerical rocket equa-

tions are compared with corresponding values from the classical and relativistic rocket for-

mulas. In Tab. 6.6, the calculated values of the final velocity are entered for the parameters 

𝑣0
′/𝑐 (gas velocity of a rocket in relation to the speed of light) and for the ratio of the masses 

at the final stage compared to the start. 

An evaluation shows that up to a velocity of the propellant gas of 0.01c, there are no 

major differences between the calculations. At 0.1c the differences between the classical 

rocket formula and the other two variants already become clear and at 0.5c the speed of 

a) b) 
 

c) 
 

d) 
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light is exceeded according to the classical nonrelativistic method at a mass release of ap-

prox. 90%. The values according to J. Akeret and those of the own numerical calculation, 

which of course remain below the speed of light, hardly differ. 

 
Tab. 6.6: End velocity of a rocket (values in relation to the speed of light) depending on 

the calculation method 

Parameter top: Values for propellant gas (values in relation to the speed of light) 

Parameter left: Ratio of final mass to the mass at the start 

A: Classical, acc. to K. E. Tsiolkowski 

B: Relativistic, acc. to J. Akeret 

C. Numerical, calculation acc. to annex C ( 𝛥𝑚0 = 10
−5 %/s, 𝛥𝑡𝑆 = 100s) 

The essential difference between analytical and numerical calculation is that for the an-

alytical method no output quantity of the gas per time unit must be given and that therefore 

the result is independent of the acceleration occurring during a rocket launch. Therefore, 

there is also no information about which distance the rocket has covered in which time. 

This means, only the data determined according to the described numerical method can be 

used for the previously performed calculations; the analytical rocket formula does not pro-

vide the necessary information. 

To illustrate this, results for gas ejection velocities of 𝑣0
′ = −0,5c and 𝑣0

′ = −100 km/s 

are presented below. In Tab. 6.7, gas ejection rates of 𝛥𝑚0 = 10
−7  to 10−4/s (correspond-

ing to 10−5  and 10−2 %/s) were selected for the numerical determination and the values 

of 𝑣𝑇 , 𝑡𝑇 , 𝑥𝐾 and 𝑎𝐾 were calculated on these. First, it should be noted that in all cases the 

final velocity 𝑣𝑇  remains constant for the respective gas exit velocity. When the gas ejection 

rate (per time unit) is increased by a factor of ten, the values for the total duration of the 

experiment 𝑡𝑇 as well as the distance traveled 𝑥𝐾  increase by the same factor. The acceler-

ation 𝑎𝐾, on the other hand, decreases by the same amount. 

Finally, an essential difference between the numerical method and the relativistic rocket 

formula must be pointed out. While the latter was derived using the law of conservation of 

energy, the numerical method (as well as the classical rocket formula according to Tsiol-

kovsky) is based exclusively on the law of conservation of momentum. For the calculation, 

this means that the momentum of the propulsion gas could in theory be increased unlimited 

by approaching the speed of light more and more, and thus extremely high rocket velocities 

could be achieved connected with a low mass output. However, in reality this is not possi-

ble, because for the acceleration of the propellant gas considerable amounts of energy (and 

thus because of 𝐸 = 𝑚𝑐² additional mass losses) would be needed, which are not 
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considered in the calculation. For these extreme values, therefore, the numerical method 

presented cannot be used. 

 
Tab. 6.7: End velocity 𝑣𝑇, total time 𝑡𝑇, covered distance 𝑥𝐾 and acceleration 𝑎𝐾 as a 

function of the gas ejection velocity and the gas quantity 𝛥𝑚0 (per time unit). 

𝑣𝑇 in km s⁄  , 𝑡𝑇 in s, 𝑥𝐾 in km, 𝑎𝐾 in m s2⁄ , 𝛥𝑚0 in 1/s (normalized to 1) 

 
The problem of determining the energy requirement for rocket propulsion systems has 

been discussed for a long time and can be solved by defining various loss factors. As an 

example, the representation used by U. Walter [91] is given in Fig. 6.5. 

  

Fig. 6.5: Energy scheme for a relativistic rocket with energy losses and expelled propulsion 
mass and photons (extracted from [91]) 

 

Further information on this topic can be found in the following literature [91,92]. 

  


