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7.  Non-elastic processes 

The situation concerning the elastic behavior during collisions was already discussed at 

length in chapter 6. The analysis of non-elastic processes is also of great importance for 

further considerations and shall now be examined in detail. At first the non-elastic collision 

will be scrutinized, where during the experimental situation two or more bodies are com-

bined and an energy-absorption takes place. The reversing effect is observed during parti-

cle disintegration; in this case kinetic energy is set free because of conversion of mass into 

energy and carried away by the decay products. Non-elastic collision and particle disinte-

gration can thus be interpreted as complementary processes. 

7.1  Relativistic non-elastic collision 

 

For the relativistic consideration of non-elastic collisions, the situation of observers with 

different velocities will be examined. For that purpose, a simple example shall be looked at 

and, after exact evaluation, the consequences derived will be discussed. The experimental 

conditions are as follows: 

Two bodies are approaching each other and combine after axial contact, which means 

ideal plastic behavior is assumed. The collision shall be completely central and so no rota-

tion will appear. In this case it is not necessary to use a vectorial calculation and the follow-

ing calculation for the momentum can be used 

𝑝3 = 𝑝1 + 𝑝2 = 𝑚1𝛾1𝑣1 + 𝑚2𝛾2𝑣2 = 𝑚3𝛾3𝑣3                                 (7.01) 

where 𝑣1 and 𝑣2 are the velocities before and 𝑣3 after the collision, the same definition is 

valid for the masses 𝑚1, 𝑚2 and 𝑚3. If it is assumed that mass 𝑚3 is at rest after the collision, 

then the values of 𝑝1 and 𝑝2 will neutralize each other because the conservation-principle 

of momentum must be respected. This means, that the absolute values of 𝑝1 and 𝑝2 are equal 

but the algebraic sign is different and so the total momentum after collision 𝑝3 is zero. 

However, the kinetic energy before and after the collision is not equal. This becomes 

clear when the equation of kinetic energy before the collision is considered (see also expla-

nations in chapter 6.1) 

𝐸𝑘𝑖𝑛 = (𝛾1 − 1)𝑚1𝑐2 + (𝛾2 − 1)𝑚2𝑐2                                       (7.02) 
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When again the situation is considered that mass 𝑚3 is at rest after collision, then the 

kinetic energy is zero ether. Because kinetic energy is a scalar and not a vector like it is the 

case for momentum, it is compulsory that it must be transformed into another form. Other-

wise, the conservation principle of energy would be violated. When it is assumed in this 

case that kinetic energy is transformed completely into mass the following equation is valid 

𝛥𝑚3 = (𝛾1 − 1)𝑚1 + (𝛾2 − 1)𝑚2                                           (7.03) 

where 𝛥𝑚3 is the increase of mass according to the transformation of kinetic energy. 

To examine the situation an experiment with two different cases will be looked at, where 

in one instance an observer will be at rest and in another case moving. For simplification of 

the calculations, it is assumed that the masses of the bodies involved are equal, i.e. 𝑚1 =

𝑚2 = 𝑚. The cases will be marked with A and B; this identification will be continuously 

used for the relevant situations as index for the parameters depending on the velocities. It 

will be presumed in the first instance that the simple relation 𝑚3 = 𝑚1 + 𝑚2 is valid. How-

ever, during the following considerations it will become clear that this assumption is lead-

ing to discrepancies, and it will be proven that Eq. (7.03) is valid in any case without re-

strictions. 

 A:  Referring to an observer A at absolute rest the velocity is 𝑣3A = 0  

 Because 𝑚1 = 𝑚2 was presumed this stand for the fact, that before the collision the 

two bodies are moving with equal speed but different directions, this means that be-

side 𝑣3A = 0 also 𝑣1A = −𝑣2A is valid. 

 B:  Referring to an observer B at absolute rest the velocity is 𝑣1B = 0  

 All calculations refer to 𝑣1B = 0. 

The following relations apply: 

 
Observer A 

𝑣3A = 0      𝑣1A = −𝑣2A 

Observer B 

𝑣1B = 0 

Momentum before 

collision 

𝑝1A = 𝑚𝛾1A𝑣1A 

𝑝2A = −𝑚𝛾1A𝑣1A 

𝑝1B = 0 

𝑝2B = 𝑚𝛾2B𝑣2B 

Momentum after 

collision 
𝑝3A = 0 𝑝3B = 2𝑚𝛾3B𝑣3B 

Kinetic energy before 

collision 

𝐸1A

𝑐2
= (𝛾1A − 1)𝑚 

𝐸2A

𝑐2
= (𝛾1A − 1)𝑚 

𝐸1B

𝑐2
= 0 

𝐸2B

𝑐2
= (𝛾2B − 1)𝑚 

Kinetic energy after 

collision 

𝐸3A

𝑐2
= 0 

𝐸3B

𝑐2
= 2(𝛾3B − 1)𝑚 
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In the presented table the results for momentum and kinetic energy are presented which 

apply for identical experimental conditions in view of the observers A and B. These will be 

discussed further in the next chapters using the relativistic addition of velocities for com-

parison. 

7.1.1 Results based on relativistic addition of velocities 

For observer A the simple case 𝑣1A = −𝑣2A is valid. The calculation of the velocity for ob-

server B makes is necessary to use the relativistic addition of velocities, which was already 

described in chapter 4.1. Because of symmetry reasons the relation 𝑣3B = 𝑣1A applies and 

this is leading to 

𝑣2B =
2𝑣1A

1 + (
𝑣1A

𝑐 )
2                                                           (7.04) 

Example: 

 

7.1.2 Results based on relations for momentum 

Observer A is considering the total value of the momentum before and after the collision as 

zero because of the relation 𝑣1A = −𝑣2A and thus 

𝑝3A = 𝑝1A + 𝑝2A = 𝑚𝛾1A𝑣1A − 𝑚𝛾1A𝑣1A = 0                                 (7.05) 

Observer B finds the following relations: 

𝑝1B = 0                                                                    (7.06) 

𝑝2B = 𝑚𝛾2B𝑣2B                                                            (7.07) 

𝑝3B = 2𝑚𝛾3B𝑣3B                                                           (7.08) 

Because of the conservation principle of momentum, the values for 𝑝2𝐵 and 𝑝3𝐵 accord-

ing to (7.01) must be equal, so 

𝛾2B𝑣2B = 2𝛾3B𝑣3B                                                         (7.09) 

 This equation allows the calculation of 𝑣3B depending on 𝑣2B. 

 Because of the structure of the equation an analytical solution is not possible and so a 

numerical solution must be used. In annex D different approaches are presented; here the 

use of simple recursion, a procedure according to Newton and the bisection method were 

chosen to effectuate a solution. In all cases the results for 𝑣3B were calculated using differ-

ent values for 𝑣2B. 

 As expected, all iteration methods lead to the same values; the procedures using simple 

recursion and according to Newton share the advantage, that they converge very quickly 

for small values of 𝑣 𝑐⁄ . However, as a drawback the convergence is reducing for increasing 
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𝑣 𝑐⁄  and the use is no longer possible when extremely high values are taken. Increasing to 

values higher than 𝑣 𝑐⁄ > 0.9𝑐 the bisection method is the only procedure which is still 

working. 

Example: 

 

7.1.3 Results based on relations for energy 

Observer A will consider the case that the kinetic energy of the colliding masses will be 

transformed completely into another form of energy (e.g. heat). This loss of energy has the 

value of 
 

𝐸1A + 𝐸2A

𝑐2
= 2𝑚(𝛾1A − 1)                                                  (7.10) 

For observer B this is implicating that the difference between the kinetic energy before and 

after the collision is balanced and thus 

2𝑚(𝛾3B − 1) = 𝑚(𝛾2B − 1) − 2𝑚(𝛾1A − 1)                                  (7.11) 

𝛾3B =
𝛾2B − 2𝛾1A + 3

2
                                                      (7.12) 

This equation shows a simple analytical solution using 

𝑣3B

𝑐
= ±√1 −

1

𝛾3B
2 = ±√1 −

4

(𝛾2B − 2𝛾1A + 3)2
                              (7.13) 

Example: 

(Negative results of the square root are not relevant because of plausibility reasons.) 

7.1.4 Evaluation of the results 

In Fig. 7.1 the deviations between the velocities according to the different calculations are 

presented. 

 Here the following definitions apply: 

𝛿 =
𝑣3B − 𝑣1A

𝑣1A
                                                             (7.14) 

where 𝛿𝑝 is the percental difference for the momentum (chapter 7.1.2) and 𝛿𝐸  for the en-

ergy (chapter. 7.1.3). It is clear at first sight that the height and also the position of the max-

ima are not sharing any similarities. 
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Fig. 7.1: Difference values 𝛿𝑝 and 𝛿𝐸 depending on 𝑣1 

 It is obvious that for the non-elastic collision the consideration of the relations for rela-

tivistic addition of velocities and the conservation laws for momentum and energy using 

these calculations are leading to completely different results. This means that in these cases 

severe discrepancies would occur between the relativistic principles of identity and equiv-

alence (for definition of the principles see chapter 1.6). 

 Up to now the velocity 𝑣3𝐵 of the two combined masses was calculated based on the va-

lidity of the laws of momentum and energy without any further correction. To find a solu-

tion for the observed problems, in the following the attempt is made to examinate the effect 

on momentum and energy which occurs, when the relativistic addition of velocities is sup-

posed to be valid without further discussion. To realize this, the correction values 𝐶𝑝 for the 

momentum and 𝐶𝐸  for the energy are defined and used in the relevant relations. 

a) Momentum 

Equation Eq. (7.09) is modified to 

𝐶𝑝 · 2𝛾3B𝑣3B = 𝛾2B𝑣2B                                                     (7.15) 

using the relation 𝑣3B = 𝑣1A (see chapter 7.1.1) 

𝐶𝑝 =
√1 − (

𝑣1A

𝑐 )
2

2𝑣1A

𝑣2B

√1 − (
𝑣2B

𝑐 )
2

                                            (7.16) 

Because of Eq. (7.04) is 



7.1  Relativistic non-elastic collision 

119 

𝐶𝑝 =
√1 − (

𝑣1A

𝑐 )
2

2𝑣1A

2𝑣1A

1 + (
𝑣1A

𝑐 )
2

√1 − (

2𝑣1A

𝑐

1 + (
𝑣1A

𝑐 )
2 )

2
 

            = √
1 − (

𝑣1A

𝑐 )
2

[1 − (
𝑣1A

𝑐 )
2

]
2 = √

1

1 − (
𝑣1A

𝑐 )
2 = 𝛾1A                             (7.17) 

This means that using unrestricted application of the relativistic addition of velocities 

the momentum is smaller by the factor 𝛾1𝐴 than required by the law of conservation of mo-

mentum. 

b) Energy 

Equation Eq. (7.11) is modified to 

𝐶𝐸 ·  2(𝛾3B − 1) = (𝛾2B − 1) − 2(𝛾1A − 1)                                   (7.20) 

With 𝑣3B = 𝑣1A applies 

𝐶𝐸 =
(𝛾2B − 1)

2(𝛾1A − 1)
− 1                                                       (7.21) 

To develop a simple solution, first the term 𝛾2B − 1 is considered. This can be trans-

formed using Eq. (7.04) to 

𝛾2B − 1 =
1

√1 − (

2𝑣1A

𝑐

1 + (
𝑣1A

𝑐 )
2 )

2
− 1                                       (7.22) 

and 

𝛾2B − 1 = ± 
1 + (

𝑣1A

𝑐 )
2

1 − (
𝑣1A

𝑐 )
2 − 1 = 2(𝛾1A

2 − 1)                                   (7.23) 

 For this calculation it was decided to take only positive values for the results of the 

square root, because negative values would lead to negative 𝛾2B and physical interpretation 

makes no sense in this case. 

 The result is inserted in Eq. (7.21) 

𝐶𝐸 =
2(𝛾1A

2 − 1)

2(𝛾1A − 1)
− 1                                                       (7.24) 

 

𝐶𝐸 =
(𝛾1A + 1)(𝛾1A − 1)

(𝛾1A − 1)
− 1 = 𝛾1A                                         (7.25) 

This calculation is leading to the same result as already obtained for the momentum. 
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7.1.5 Final approach for calculation 

For final evaluation, the findings developed so far shall be summarized and reviewed first. 

When in case of nonelastic collision examinations concerning the conservation laws of mo-

mentum and energy with invariant mass (this means 𝑚3 = 𝑚1 + 𝑚2;  𝛥𝑚3 = 0) before and 

after collision are conducted, then it becomes clear that the gained results for the velocity 

𝑣3  are different to each other; further the calculated value using the equation of relativistic 

addition of velocities come to another different result. The values of 𝑣3 for the combined 

body using conservation laws are both higher than the calculated result derived by relativ-

istic addition. 

 This would mean that the concept of simple addition of mass before and after collision is 

no option because the basic principles concerning conservation of energy and momentum 

are violated. If the approach presented in Eq. (7.01) of complete conversion of kinetic en-

ergy into mass is used instead, then considering the special case 𝑚1 = 𝑚2 = 𝑚 

𝛥𝑚3 =
𝐸1A + 𝐸2A

𝑐2
= 2𝑚(𝛾1A − 1)                                           (7.30) 

is valid for the generated mass 𝛥𝑚3 by energy conversion (see also Eq. (7.04). For momen-

tum, the relation Eq. (7.07) remains unchanged before collision 

𝑝2B = 𝑚𝛾2B𝑣2B                                                             (7.07) 

but Eq. (7.09) after collision is developing to 

𝑝3B = 2𝑚𝛾3B𝑣3B         𝑝3B = 𝑚3𝛾3B𝑣3B                                     (7.31) 

Because of 𝑣1A = 𝑣3B derived from relativistic addition of velocities this leads to 

𝑝3B = [2𝑚(𝛾1A − 1) + 2𝑚]𝛾3B𝑣3B = 2𝑚𝛾3B
2 𝑣3B                             (7.32) 

 The consideration of complete transformation into mass can be looked at as reverse ob-

servation compared to the conditions during the disintegration of particles and may be des-

ignated as “negative mass defect”. This result is corresponding exactly to the value of the 

missing part of momentum and energy during collision and leads to the conclusion, that for 

relativistic considerations of the non-elastic collision always an increase of mass in the 

amount of the value presented by the transformation of kinetic energy must be presumed 

to prevent the occurrence of discrepancies. 

 This is comprehensible on an atomic scale, for macroscopic objects it is not conforming 

to the general understanding of processes, because e. g. during the generation of heat no 

transformation processes are observed. However, in this case because of the definition of 

heat − which means that a rising heat input is corresponding to increasing velocities of the 

apparent mass − the increase of energy can be interpreted as relativistic consideration of 

the oscillation-velocity of the participating atoms or molecules. When this issue is discussed 

in the literature, normally the transformation of kinetic energy into mass is placed first and 

then verified using the relevant equations, e.g. [47]. The approach presented here, however, 

provides clear evidence that the increase of mass caused by complete transformation of 

kinetic energy is required by the valid conservation laws. 
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7.2  Relativistic considerations of particle disintegration 

As already mentioned before, the disintegration of particles can be interpreted as the re-

version of the situation valid during non-elastic collision (see chapter 7.1). Because the 

mathematical correlations of both effects are exactly the same, it is not necessary to present 

the evaluations again. In this chapter the emphasis is laid on considerations of decay parti-

cles moving in different spatial directions and concerning the conditions, when the kinetic 

energy is not converted into mass as discussed before but is dissipated by electromagnetic 

radiation. 

 To avoid misinterpretations, it shall be generally defined that the dissipating particle is 

indicated with index 1, for the decay products the indices 3 and 4 (and increasing further if 

applicable) are used. An observer moving with a dissipating particle is additionally marked 

as 𝑓′, for an observer at rest 𝑓 is used (without marking). 

7.2.1 Analysis of disintegration into 2 particles 

For the investigation of the situation in arbitrary spatial directions it is necessary to use the 

analytical determination of aberration, which was already derived in chapter 2.3. The geo-

metrical dependencies are presented in Fig. 7.2. The description is completely comparable 

and therefore the calculations will not be repeated. The only valid difference is concerning 

equation Eq. (2.43), where the relation between the velocity of the moving system and the 

speed of light is calculated. These must be replaced by the following relation 

Eq. (2.43):    
𝑏

𝑣
=

𝑑

𝑐
                  

𝑏

𝑣1
=

𝑑

𝑣3
                                    (7.40) 

where 𝑣1 is the velocity of the moving system and 𝑣3 is the speed of an arbitrary particle 

(the equations presented in the following can be derived in the same way for particle 4). It 

is necessary to calculate the velocity 𝑣3 using Eq. (4.20) according to 

𝑣3 =

√𝑣1
2 + 𝑣3

′2 + 2𝑣1𝑣3
′ 𝑐𝑜𝑠𝛼3

′ − (
𝑣1𝑣3

′ 𝑠𝑖𝑛𝛼3
′

𝑐
)

2

1 +
𝑣1𝑣3

′ 𝑐𝑜𝑠𝛼3
′

𝑐2

                              (7.41) 

where in this case 𝑣3
′  is the velocity of the particle relative to the moving system and 𝑣3 is 

the velocity in view of the observer at rest. The calculation leads to the following result [see 

also Eq. (2.48)]: 

𝑡𝑎𝑛𝛼3
′ = ± 

𝑠𝑖𝑛𝛼3

𝛾 (𝑐𝑜𝑠𝛼3 −
𝑣1

𝑣3
′ )

                                                (7.42) 

Here 𝛼3 is the angle, which an observer at rest will find between the motion of a particle 

relative to his system, while 𝛼3
′  is the angle of the same particle in view of the moving ob-

server. When the value of 𝛼3
′  is given then the resulting value for 𝛼3 can also easily be cal-

culated. The only conversion necessary is the change of the algebraic sign (for details see 

chapter 2.3.4) and the result is 
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𝑡𝑎𝑛𝛼3 = ± 
𝑠𝑖𝑛𝛼3

′

𝛾 (𝑐𝑜𝑠𝛼3
′ +

𝑣1

𝑣3
′ )

                                                 (7.43) 

The validity of this relation can also easily be verified by numerical comparison. In table 

Tab. (7.1a) some examples for the calculation of the resulting angles for different velocities 

𝑣1 and 𝑣3
′  are presented. 

  

 

  
  

Fig. 7.2: Definition of parameters to determine the angle of an outgoing beam for a moving 

observer (examples for 𝑣1 = 0.5𝑐, 𝛼3
′ = 45°, 𝛼4

′ = −135°) 

a) Signal emitted in moving direction, 𝛼3 = 19,73° 

b) Signal emitted backwards, 𝛼4 = −64.44°  

𝑣 = 0,5𝑐 

𝑣 = 0,5𝑐 
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Tab. 7.1a: Calculation for momentum and kinetic energy in a moving system. 

Values marked grey: Approximation. 

Values presented in frames: 180 °-angels. 

Equations and dimensions: Tab. 7.1b and text. 
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𝑣3 =

√𝑣1
2 + 𝑣3

′2 + 2𝑣1𝑣3
′ 𝑐𝑜𝑠𝛼3

′ − (
𝑣1𝑣3

′ 𝑠𝑖𝑛𝛼3
′

𝑐
)

2

1 +
𝑣1𝑣3

′ 𝑐𝑜𝑠𝛼3
′

𝑐2

· 𝑐 

[-] 

𝛼3 = 𝑎𝑟𝑐𝑡𝑎𝑛 [ 
𝑠𝑖𝑛𝛼3

′

𝛾 (𝑐𝑜𝑠𝛼3
′ +

𝑣1

𝑣3
′ )

] ·
180

𝜋
 [°] 𝑝̃3 =

𝑝3

𝑚𝑐
=

𝑣3

𝑐
𝛾3 

 

𝑝3𝑋 =
𝑝3𝑋

𝑚𝑐
=

𝑣3

𝑐
𝛾3𝑐𝑜𝑠 (𝛼3) 

[-] 𝑝3𝑌 =
𝑝3𝑌

𝑚𝑐
=

𝑣3

𝑐
𝛾3𝑠𝑖𝑛 (𝛼3) 

[-] 

𝑣4 =

√𝑣1
2 + 𝑣4

′2 + 2𝑣1𝑣4
′𝑐𝑜𝑠𝛼4

′ − (
𝑣1𝑣4

′𝑠𝑖𝑛𝛼4
′

𝑐
)

2

1 +
𝑣1𝑣4

′𝑐𝑜𝑠𝛼4
′

𝑐2

· 𝑐 

[-] 

𝛼4 = 𝑎𝑟𝑐𝑡𝑎𝑛 [ 
𝑠𝑖𝑛𝛼4

′

𝛾 (𝑐𝑜𝑠𝛼4
′ +

𝑣1

𝑣4
′ )

] ·
180

𝜋
 [°] 𝑝4 =

𝑝4

𝑚𝑐
=

𝑣4

𝑐
𝛾4 

 

𝑝4𝑋 =
𝑝4𝑋

𝑚𝑐
=

𝑣4

𝑐
𝛾4𝑐𝑜𝑠 (𝛼4) 

[-] 𝑝4𝑌 =
𝑝4𝑌

𝑚𝑐
=

𝑣4

𝑐
𝛾4𝑠𝑖𝑛 (𝛼4) 

[-] 

∑𝑝𝑋 = 𝑝3𝑋 + 𝑝4𝑋 
[-] ∑𝑝𝑌 = 𝑝3𝑌 + 𝑝4𝑌 

[-] 

𝐸̃𝑘𝑖𝑛,3 =
𝐸𝑘𝑖𝑛,3

𝑚𝑐2
= 𝛾3 − 1 

[-] 
𝐸̃𝑘𝑖𝑛,4 =

𝐸𝑘𝑖𝑛,4

𝑚𝑐2
= 𝛾4 − 1 

[-] 

∑𝐸̃𝑘𝑖𝑛 = 𝐸̃𝑘𝑖𝑛,3 + 𝐸̃𝑘𝑖𝑛,4 
[-] 

 
 

Tab. 7.1b Equations and dimensions used in Tab. 7.1a 

 The equations used in table 7.1a and the connected dimensions are summarized in table 

7.1b. To ensure a clear arrangement the values are presented in a normalized form as 𝑝 and 

𝐸̃ with the dimension 1. This is also valid for the velocities; here the form 𝑣 𝑐⁄  was chosen. 

 The values marked grey were calculated using an approximation process, because for 

𝑣3
′ = 𝑣1 the developing equations contain a division by zero. The values of 𝛼3 and 𝛼4 > 90° 

were calculated using first standard calculations and then the results were reduced by 180°; 

this is marked in the table using a frame (for further details see also chapter 2.3). 

 For the calculations, the following preconditions apply: 
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It is presumed that a particle is disintegrated into 2 decay products of equal size, of which 

one is removing with an arbitrary angle 𝛼3
′ . In this case the second “twin particle” will obey 

an angle of 𝛼4
′ = 𝛼3

′ − 180°  because of symmetry reasons. For these products, the angles 

𝛼3 and 𝛼4 are calculated and the connected velocities 𝑣3 and 𝑣4 also. In a second step the 

values for momentum according to 

𝑝3 = 𝛾1𝑚𝑣3    𝑏𝑧𝑤.     𝑝4 = 𝛾1𝑚𝑣4                                            (7.44) 

were determined. In a further step the fractions in moving direction (𝑥) and perpendicular 

to it (𝑦) according to 

𝑝𝑥 = 𝑝 · 𝑐𝑜𝑠(𝛼)                                                           (7.45) 

𝑝𝑦 = 𝑝 · 𝑠𝑖𝑛(𝛼)                                                           (7.46) 

were calculated. When the angles 𝛼3 and 𝛼4 are added, the results in 𝑥-direction always 

show the same results, in 𝑦-direction they annihilate each other. Further the values for the 

kinetic energy were determined for particle 3 according to 

𝐸𝑘𝑖𝑛,3 = (𝛾3 − 1)𝑚𝑐2                                                       (7.47) 

and for particle 4 
𝐸𝑘𝑖𝑛,4 = (𝛾4 − 1)𝑚𝑐2                                                       (7.48) 

The summation of these values is producing the same result for all angles. It was possible 

to show with these calculations that for the disintegration into 2 decay particles the values 

for momentum and kinetic energy in all cases for an observer at rest and in a moving system 

are resulting in the same results and that it is not possible inside a system to decide whether 

this is moving or not. 

7.2.2 Disintegration into 2 photons 

It is well known from experimental results that a particle can disintegrate completely into 

photons without leaving matter. The 𝜋0-pion for example is an extremely unstable particle 

with an average lifetime of approximately 10−18 s with the specific characteristic that it is 

disintegrating with almost 99% probability into 2 photons. When it is presumed that the 

disintegration is happening at a state of absolute rest the energy can be calculated using 

 

𝐸 = 𝑚0𝑐2 = ℎ𝑓3 + ℎ𝑓4                                                     (7.50) 

where ℎ is Planck’s quantum of action and 𝑓3 as well as 𝑓4 are the frequencies of the emitted 

photons. The momentum of one photon is 

𝑝⃗ = ℎ
𝑓

𝑐
𝑒                                                                 (7.51) 

with 𝑒 as unit vector in moving direction. Because of the conservation laws of energy and 

momentum the frequencies for both photons are the same and their moving directions are 

exactly opposite to each other. The momentum is zero before and after disintegration. 
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If an observer is monitoring a velocity 𝑣1 before disintegration, then because of the rela-

tivistic mass increase the total energy of the particle is 

𝐸 = 𝛾1𝑚0𝑐2                                                               (7.52) 

After disintegration, the emitted photons must carry the total energy and the momentum 

of the particle. The total energy of the photons is 

𝐸 = 𝛾1ℎ𝑓3 + 𝛾1ℎ𝑓4                                                         (7.53) 

and the momentum of one photon 

𝑝⃗ = 𝛾1ℎ
𝑓

𝑐
𝑒                                                                (7.54) 

When these relations are analyzed according to the ratio valid in moving direction, for 

an observer at rest the kinetic energy of the particle and the momentum has also to be car-

ried away completely by the emitted photons. For the energy, the following relation applies 

𝛾1𝑚0𝑐2 = 𝛾1ℎ𝑓3 + 𝛾1ℎ𝑓4                                                    (7.55) 

and for the momentum in moving direction 

𝛾1𝑚0𝑣1 = 𝛾1ℎ
𝑓3

𝑐
− 𝛾1ℎ

𝑓4

𝑐
                                                  (7.56) 

where 𝑓3 is the emission in moving direction (positive) and 𝑓4 opposite to it (negative). Us-

ing subtraction resp. addition of equations Eq. (7.55) and (7.56) then the values for the fre-

quencies are 

𝑓3 =
𝑚0(𝑐2 + 𝑣1𝑐)

2ℎ
                                                         (7.57) 

𝑓4 =
𝑚0(𝑐2 − 𝑣1𝑐)

2ℎ
                                                         (7.58) 

with 
𝑓3

𝑓4
=

𝑐 + 𝑣1

𝑐 − 𝑣1
                                                               (7.59) 

 This relation is exactly corresponding to the macroscopic behavior of moving emitters 

which will be described in chapter 8. 

 For the derivation of the correlations in arbitrary spatial directions first the geometric 

dependencies for emitter and receiver must be examined. In Fig. 7.3 it is demonstrated, in 

which way observer A at the time A1 and A2 is sending specific signals. Depending on the 

distance to receiver B and on the velocity different angles in relation to the moving direction 

will appear. For simplification it will be assumed, that the receiver B, which is at rest, is far 

away and the time between 2 signals is comparatively short and thus for the angles the 

relation 𝛼1 = 𝛼2 = 𝛼 can be presumed. 

 The time between the signals send by the moving emitter A is 

𝛥𝑡𝐴 = 𝛾𝛥𝑡0                                                                (7.60) 
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compared to the relations valid for an observer at rest. Beside the extension caused by time-

dilatation, receiver B will also notice a geometric influence on time, because the emitter is 

either coming or going relative to his position between sending out the signals. In total this 

adds up to 

𝛥𝑡𝐵 = 𝛾𝛥𝑡0 (1 −
𝑣

𝑐
𝑐𝑜𝑠(𝛼))                                                (7.61) 

This is resulting for the frequency detected by receiver B 

𝑓𝐵 =
𝑓0

𝛾 (1 −
𝑣
𝑐 𝑐𝑜𝑠 (𝛼))

                                                     (7.62) 

    

  Fig. 7.3: Radiation geometry 

 

 To provide a final comparison between a particle at rest and moving, calculations for 

different angles for outgoing photons are made. In Tab. 7.2 different angles 𝛼3
′  (in view of a 

moving observer) are defined; the corresponding angles of the “twin” photon are differing 

exactly by 180°, i.e. this means 𝛼4
′ = 𝛼3

′ − 180°. First the angles in view of the observer at 

rest are determined using the equations developed in chapter 2.3 and the value for 𝛼3 is 

calculated. Further the corresponding frequencies are determined, in the next step the mo-

mentum in 𝑥- and 𝑦-direction is calculated (using 𝑐𝑜𝑠 resp. 𝑠𝑖𝑛 of the angle according to Eq. 

(7.45) and (7.46) presented in chapter 7.2.1). Finally, the total energy, which is released 

during disintegration of the particle, is calculated for any angle. 

 The starting value for 𝑓0 was set to 1. To ensure a clear arrangement the values for mo-

mentum end energy are again presented in normalized form as 𝑝 and 𝐸̃; the dimension is 

in this case 1. Detailed definitions and the resulting dimensions are summarized in Tab. 

7.2b. 

 The summation of the values for momentum in 𝑥-direction and total energy are always 

identical and correspond to the expected results; the values in 𝑦-direction add up to zero. 

Further it is easy to show, that the results found for angle 𝛼3
′ = 0 correspond exactly to 

equation (7.59), which was derived for the simple case for emission in moving direction 

and opposite. Thus it was possible to show, that also in this case no differences appear 

whether experiments are viewed by an observer at rest or referring to a moving system and 

so no violations of the principles of relativity occur. 

B
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Tab 7.2a: Calculations of angles, momentum (moving direction: 𝑥, vertical: 𝑦), energy. 

Equations and dimensions see Tab. 7.2b 

𝛼3 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝛼3

′

2
)] ·

180

𝜋
                  Eq. acc. Tab. 2.4, No. 4 

[°] 

𝛼4 = 2 · 𝑎𝑟𝑐𝑡𝑎𝑛 [(
𝑐 − 𝑣

𝑐 + 𝑣
)

1
2⁄

𝑡𝑎𝑛 (
𝜋 − 𝛼3

′

2
)] ·

180

𝜋
          Eq. acc. Tab. 2.4, No. 4 

[°] 

𝑓3 =
𝑓0

𝛾 (1 −
𝑣
𝑐 cos (𝛼3))

 [𝑠−1] 𝑓4 =
𝑓0

𝛾 (1 +
𝑣
𝑐 cos (𝛼4))

 [𝑠−1] 

𝑝3𝑋 =
𝑝3𝑋

𝑚𝑐
=

𝑣

𝑐
𝑓3cos (𝛼3) [-] 𝑝4𝑋 =

𝑝4𝑋

𝑚𝑐
=

𝑣

𝑐
𝑓4cos (𝛼4) 

[-] 

∑𝑝𝑋 = 𝑝3𝑋 + 𝑝4𝑋 
[-]   

𝑝3𝑌 =
𝑝3𝑌

𝑚𝑐
=

𝑣

𝑐
𝑓3sin (𝛼3) 

[-] 𝑝4𝑌 =
𝑝4𝑌

𝑚𝑐
=

𝑣

𝑐
𝑓4sin (𝛼4) [-] 

∑𝑝𝑌 = 𝑝3𝑌 + 𝑝4𝑌 
[-] 𝐸̃ =

𝐸

𝛾ℎ
= 𝑓3 + 𝑓4 

[-] 

Tab. 7.2b Equations and dimensions used for calculations in Tab. 7.2a 

  


