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8.  The constant phase-velocity of light 

The topics discussed so far showed exact conformance with the explanations presented in 

many other important and undisputed publications. In the following the observations of 

transmitted signals with constant frequency will reveal an aspect, however, that is in con-

tradiction to established interpretations. These can only be solved when the constant phase 

velocity of light is considered; this issue is therefore of great relevance for Special Relativity 

and the most important part of the examinations presented here. Subsequently it will be-

come clear, that the assumption of a system at absolute rest in the universe is generally in 

contradiction to Special Relativity but when using the principle of constant phase velocity, 

it is just a special case inside the theory without violating basic experimental results. 

8.1  Incoherency with Special Relativity using the standard derivation 

In Figs. 8.1a and 8.1b the situation is illustrated, that two observers A and B exchange light 

signals. At the beginning (position no. 1) a signal is transmitted from observer A, and at no. 

2 it is received from B and reflected immediately. At position no. 3 observer A is receiving 

the returning signal and the experiment comes to an end. Observers A and B are either at 

rest relative to each other (case a, d and g) increase the distance (case b and c) or approach-

ing each other (case e and f). The transmitted and received signals are analyzed. It is well-

known that transmitted signals with a constant frequency leaving a moving system are re-

ceived with a higher frequency by a second observer when they approach each other, and 

the frequency is lower in the opposite direction. The relation is described by 

𝑓′ =
1

𝑇′
= 𝑓0 (

1 +
𝑣
𝑐

1 −
𝑣
𝑐

)

1
2⁄

= 𝑓0 · 𝛾 (1 +
𝑣

𝑐
)                                    (8.01) 

 It is considered that the frequency of a moved observer is lower by the factor 𝛾 because 

of time dilatation. The values for the calculated frequency 𝑓, the covered distance 𝑎, the 

necessary time 𝑡 and the number 𝑛 of the oscillations in these intervals are presented in the 

following tables. 
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1: Emitting signal from A 

2: Receiving at B, reflection to A 

3: Receiving at A 

 

Fig. 8.1a: Exchange of signals between observers A and B and analysis of 

  the resulting frequencies and oscillation periods 
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1: Emitting signal from A 

2: Receiving at B, reflection to A 

3: Receiving at A 

 

Fig. 8.1b: Exchange of signals between observers A and B and analysis of 

  the resulting frequencies and oscillation periods 
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 It is not possible for both observers to decide based on a frequency analysis whether 

they belong to system a), d), g) or b), c) resp. e), f). Considering the number of oscillations 

between the observers, however, it should be clear that A and B according to the “principle 

of identity” (see chapter 1.6) in cases d) and g) for the signals coming and going (situation 

2 and 3) should measure the same values. A similar situation exists for b) and c) resp. e) 

and f). It is obvious at first sight and without calculation that this cannot be the case. In the 

following this will be discussed in detail. 

 In the tables of Fig.8.1a and 8.1b the results for the frequencies measured by an observer 

at rest are shown. It is incorporated, that the generated frequencies in a moving system 

appear to be reduced by the factor 𝛾 for an observer at rest. In the second part of the table 

the values for the distance 𝑎, the travelling time for the signal exchange 𝑡 and the number 𝑛 

of the oscillations in these intervals are presented. The number of oscillations is calculated 

using 

𝑛 = 𝑓 · 𝑡                                                                  (8.02) 

 If the light signals are passing through an interferometer and have the possibility for in-

teraction, the observer at rest should be able to monitor interference patterns. Turning the 

system by a degree of 90° towards the direction of motion the interference effect should 

disappear. 

 Out of these considerations it is clear, that a discrepancy between the results of the num-

ber of oscillations between the moving system and the system at rest exists. Corresponding 

to the presented diagrams the observations in these systems should be completely differ-

ent. According to this general theoretical approach the principle of relativity is violated 

here. 

 Not surprisingly in reality this is not the case, however. The explanation for this is that 

measurements by the moving observer cannot directly be compared with that of an ob-

server at rest. Because of the dependency of measurements of electromagnetic waves on 

time and space, the two observers would find different results using this approach. To re-

solve the problem, it is therefore necessary to introduce the phase velocity, which is equal 

to the speed of light for both observers. 

 When considerations of phase velocities are used, the conformity between the numbers 

of oscillations detected by the two observers can be derived without difficulty. This is in 

particular valid for the results in the discussed cases a, d and g. Because of the impact of this 

important feature the effect of phase velocity is discussed in detail in the following chapter. 

8.2  Concept of phase velocity to overcome the discrepancies for observers 

 

During an exchange of signals between two observers, which are generally using light 

beams for transmission, in a standard case harmonic oscillation will be used. It is not pos-

sible to integrate these oscillations directly into a space-time-diagram (i.e. in a Minkowski-

diagram). In short summary waves are typically considered in a way, that one of the varia-

bles (i.e. time) is looked at as constant and the other (for this example: space) is varying. 

Taking the simple example of a wave, which is produced when a stone is thrown into water, 
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the investigation could be performed by taking a picture and measuring the distance of the 

wave peaks (in this case time is constant). If in a further measurement the distance is kept 

constant, e.g. by measuring a small cork moving up and down, then the frequency of the 

wave can be calculated by measuring the time between two defined points e.g. the maxima. 

Out of the combination of these measurements the velocity of the wave, which is travelling 

with a certain phase velocity, can be calculated. It is also possible, however, to observe the 

moving maxima in a direct way and measure the dependencies of time and the traveled way 

by taking a video. 

 The situation can be described as follows: The oscillation is dependent on space (𝑥) and 

time (𝑡) and is corresponding to the following equation [46a] 

 

𝑤(𝑥, 𝑡) = 𝐴0cos (
2𝜋

𝑇
𝑡 −

2𝜋

𝜆
𝑥 − 𝛼)                                        (8.10) 

 In this case 𝐴0 is the amplitude, 𝑇 is the oscillation time (considering a stationary view), 

𝜆 is the oscillation length (considering constant time) and 𝛼 is the angle at the starting point. 

 
 

Fig. 8.2: Oscillation diagram for constant space (𝑥 = 0) and constant time (𝑡 = 0)  

 with starting point 𝛼 = 0 

 

A major simplification is possible, when the variation of space and time of a certain point of 

the wave (i.e. the maximum) is defined as constant (see Fig. 8.3). In this case the cosine 

remains unchanged, and it applies 

 
2𝜋

𝑇
𝑡 −

2𝜋

𝜆
𝑥 − 𝛼 = 𝑐𝑜𝑛𝑠𝑡.                                                   (8.11) 

After differentiation of this equation 

𝛼 = 0, 𝑥 = 0 

𝑤(0, 𝑡) = 𝐴0 𝑐𝑜𝑠
2𝜋

𝑇
𝑡 

𝛼 = 0, 𝑡 = 0 

𝑤(𝑥, 0) = 𝐴0 𝑐𝑜𝑠
2𝜋

𝜆
𝑥 
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𝛥𝑡

𝑇
−

𝛥𝑥

𝜆
= 0                                                                (8.12) 

the phase velocity 𝑢 of this point will be described by 

𝑢 = lim  
∆→0

 
∆𝑥

∆𝑡
=

𝜆

𝑇
                                                          (8.13) 

Without the dispersion by a medium (as it is the case in a vacuum), the formula develops to 

𝑢 =
𝜆

𝑇
= 𝑐                                                                 (8.14) 

This derivation using the mathematical concept of differential quotient and limes provides 

a good explanation of the physical principle [46a], more complex deductions with 4-vector 

and gradient are also possible and obviously come to the same solution [27]. 

 
 
Fig.8.3: Phase velocity 𝑢 as propagation speed of defined parts of the oscillation 

 (i.e. the maximum) 

Thus, the main conclusion is that the phase velocity of an electromagnetic wave measured 

in any arbitrary inertial system is exactly equal to the speed of light. In Fig. 8.4 the phase 

velocity is presented as a function of space and time. Because it obviously shows a linear 

characteristic the graph will be a straight line with origin zero and, after scaling, it will dis-

play an angle of 45° to the 𝑥- and 𝑡-coordinate. The right part of the diagram is showing in 

addition the graphs for a moving observer with velocities of 𝑣 = 0.2𝑐;  0.5𝑐; 0.8𝑐. 

 

Fig. 8.4: Left: Phase velocity as a function of time and space (scaled diagram) 

 Right: Velocities of moved observers with different speed added 

0,2     0,5      0,8    1 

 1  1 

 1  1 

𝑤(𝑥, 𝑡 + ∆𝑡) 𝑤(𝑥, 𝑡) 

𝑢 · ∆𝑡 
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 At this point it becomes clear, that this presentation is exactly coherent with a Minkow-

ski-diagram. This means, that a phase-propagation (i.e. the maximum of a wave) can be 

taken as a short light pulse and therefore it can be incorporated in diagrams of this type and 

evaluated in the same way. 

 In Fig. 8.5 a situation like this is illustrated. The presentation of this diagram seems to be 

unusual at first sight. Having a closer look, however, some important issues can be derived 

from it, so that the appearance of this Minkowski-diagram will be discussed in detail in the 

following. Many important examinations are possible, but a clear arrangement in one dia-

gram would not be reasonable because of the quantity of information. So, it was decided to 

use in Figs. 8.6 and 8.7 the same chart, covering additional information while others were 

skipped. 

 

 
Fig. 8.5: Minkowski diagram for the exchange of signals inside a moving system 

 

 First the general setting of the chosen experiment shall be discussed: A laboratory with 

the length 2𝑎 is moving relative to another observer at rest with the speed 𝑣 = 0,5 𝑐. The 

diagram is scaled to 1 concerning space and time (this means that 𝑎 = 1 for a laboratory at 

rest). At time zero the moving observer starts from point E0 with the transmission of a har-

monic oscillation of 1Hz and is beginning with a maximum. The oscillation is reflected at 

point A and sent back to E. 

 The observer at rest will find, that the moved laboratory has a length of 2𝑎/𝛾. Because 

of his view on the time dilatation in the moved system, he will additionally find that the 

𝑣 = 0,5𝑐 
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oscillation will end at ∆𝑇0 = 𝛾 (at point E1). The following maxima will therefore start at E1, 

E2 etc. and can also be interpreted as separate pulses and so it is possible to record them in 

this diagram as well. 

 
Fig. 8.6: Minkowski diagram for the exchange of signals in a moving system 

  (middle section), variation of Fig. 8.5 

 

The maximum of the oscillation it is moving at a speed of 𝑣 = 𝑐 and is reaching the middle 

at 

𝑡𝑀1
=   

1

γ · (1 −
𝑣
𝑐)

                                                         (8.15) 

(see Fig. 8.6) Point A will be reached after twice the time. When the wave is reflected, the 

point M2 will be passed at 

𝑡𝑀2
=     

2

γ · (1 −
𝑣
𝑐)

+   
1

γ · (1 +
𝑣
𝑐)

= γ · (3 +
𝑣

𝑐
)                            (8.16) 

 This is exactly the value, that would be yielded by a pulse emitted from E2 (equivalent to 

the maximum of a wave) which leads to 

𝑡𝑀2
=  2γ + 

1

γ · (1 −
𝑣
𝑐)

= γ · (3 +
𝑣

𝑐
)                                       (8.17) 

𝑣 = 0,5𝑐 
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 This calculation shows that the situation in the middle of the moved laboratory reveals 

exact the same conditions compared to an observer at rest. In the latter case a signal would 

be emitted by E0, that after reflection arrives back at 𝑡 = 3 in the middle of the laboratory. 

Another signal, that is sent from E0 at 𝑡 = 2 would reach the middle at the same time. This 

is as already presented also valid for the moved observer when phase velocities are consid-

ered. 

 The relations presented here can easily be transferred to other situations, if for example 

frequency, geometry or other conditions are modified. This is leading to the general state-

ment, that the measurement of the number of oscillations under no circumstances can be 

used to measure the state of motion of an inertial system. 

 

 
 

Fig. 8.7: Minkowski diagram for the exchange of signals in a moving system, 

 variation of Fig. 8.5 

 

 Furthermore, the values for oscillation time and frequency of an observer at rest shall be 

derived out of this diagram. If the testing object is increasing the distance the value is 

∆𝑇1 =
1

𝑓1
=

1

𝛾 · (1 −
𝑣
𝑐)

                                                    (8.18) 

and when it is approaching 

𝑣 = 0,5𝑐 
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∆𝑇2 =
1

𝑓2
=

1

𝛾 · (1 +
𝑣
𝑐)

                                                     (8.19) 

 This is in accordance with standard publications (i.e. [46b]). 

 As main result it is possible to prove, that concerning the radiation of light in any arbi-

trary inertial system the phase velocity of the light emitted by one source is equal to the 

measurement of the speed of light in any of these systems (this is of course not the case for 

the simple example of surface waves on water!). The important finding derived by the con-

siderations presented here, is that during the transition from an arbitrary inertial system 

to another not the speed of light, but the phase velocity remains unchanged. It was clearly 

shown that this is required by the theory of Special Relativity and otherwise contradictions 

would appear. 

 In the literature the importance of phase velocity in connection with Special Relativity is 

treated very differently. In a normal case it is not mentioned at all in books, lecture notes or 

publications, but there is an exception in the work of R. K. Pathria [16]. Herein the “invari-

ance of phase velocities” between systems moved relative to each other is examined in ex-

tenso, but no further consequences concerning the theory are discussed. 

The discovered relations are of great importance for the theory. It is interesting, how-

ever, that it is not possible to find this concept in the literature up to now. Because of this 

reason it is necessary to reconsider classical experiments, in particular those of Michelson-

Morley and also Kennedy-Thorndike. It will be demonstrated that the use of the concept 

presented here will lead to a different understanding of the results. This will be presented 

in detail in chapter 9. 

 Finally, it is possible - before developing the theoretical background further - to present 

a first result of the examinations: 

• It is possible, that the universe is at absolute rest and all electromagnetic waves are 

travelling with the speed of light 𝑐 inside this system. 

• Observers in any inertial system with an arbitrary velocity relative it can only meas-

ure the phase velocity of these waves and doing this they will find also the same 

value of 𝑐. 

 At first these perceptions will be used to carry out new interpretations of classical ex-

perimental results. After further discussions finally in chapter 13 a proposal for modifica-

tion of the theory of special relativity will be presented. 

  


