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 Annex B:  Exchange of signals during and after acceleration 

Annex B:  Exchange of signals during and af-
ter acceleration 

In this annex it is shown that the reception of signals from an accelerated system by an 

observer at rest at the beginning of the acceleration phase and by an observer in uniform 

motion leads to the same results. The analytic relations valid here were already derived in 

chapter 6.4.1 in the equations (6.60) to (6.80). However, there is also a numerical method 

for the solution of this problem, which will be presented in the following. There are ad-

vantages and disadvantages between the analytical and the numerical method, which be-

come visible in a comparison, also with comparable results of the numerical method from 

Annex C. 

B.1 Numerical solution 

The following general correlation between velocity and acceleration within the moving sys-

tem S apply 

∆𝑣 = 𝑎(𝑣) · ∆𝑡(𝑣) = 𝑎𝑆 · ∆𝑡𝑆                                                (B. 01) 

The values of 𝑎𝑆 and ∆𝑡𝑆 are constant by definition. A numerical solution requires the mul-

tiple calculation of different steps; for this, first the relativistic velocity addition is used, 

then the determination of the increase of time and distance follows for each case. 

1st step: 

𝑣1 =
𝑣0 + ∆𝑣

1 +
𝑣0∆𝑣

𝑐2

=
𝑣0 + 𝑎𝑆∆𝑡𝑆

1 +
𝑣0𝑎𝑆∆𝑡𝑆

𝑐2

                                              (B. 02) 

2nd step: 

∆𝑡1 = ∆𝑡𝑆 ·
𝛾(𝑣1) + 𝛾(𝑣0)

2
                                                 (B. 03) 

3rd step: 

∆𝑥1 = ∆𝑡1𝑣0 +
𝑣1 + 𝑣0

2
∆𝑡1                                                 (B. 04) 

It should be noted that the functions for 𝛾(𝑣) and 𝑣(𝛥𝑣) are not linear and thus the for-

mation of a mean value is only an approximation, and the error must be compensated by 

choosing suitably small intervals for ∆𝑡𝑆. These steps are now to be repeated N times and 

the single results added. In general, it applies 

𝑡𝑁 = ∆𝑡𝑆 ∑
𝛾(𝑣𝐾) + 𝛾(𝑣𝐾−1)

2

𝑁

𝐾=1

                                             (B. 05) 
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𝑥𝑁 = ∑ ∆𝑡𝐾

𝑣𝐾 + 𝑣𝐾−1

2

𝑁

𝐾=1

                                                    (B. 06) 

with 

𝑣𝐾+1 =
𝑣𝐾 + ∆𝑣

1 +
𝑣𝐾∆𝑣

𝑐2

− 𝑣0 =
𝑣𝐾 + 𝑎𝑆∆𝑡𝑆

1 +
𝑣𝐾𝑎𝑆∆𝑡𝑆

𝑐2

− 𝑣0                                 (B. 07) 

At any arbitrary time 𝑡𝐾  a signal from the accelerated system S shall be transmitted back 

to observer A. In case of 𝑣0 ≠ 0 observer A is moving during signal propagation in view of 

B either in direction to S or in the opposite way. Because 𝑎𝑆 and 𝑣0 can be both positive 

and/or negative, for the calculation different regulations are necessary (see also the com-

prehensive presentations in chapter 2.1). If first the situation is discussed that 𝑎𝑆 and 𝑣0 are 

both positive, then observer B will find the situation according to type “b” referring to Fig. 

2.2 as 

𝛥𝑡 = ∆𝑡𝑆 (1 +
𝑣0

𝑐
)                                                        (B. 08) 

When 𝑎𝑆 and 𝑣0 show in different directions, however, the algebraic sign is changing in 

equation Eq. (B.08) according to situation of type “d” from Fig. 2.2. 

In summary, the following combinations arise for the time between two pulses 𝑡𝐾,𝑅 per-

ceived by observer B due to the increasing distance, into which any positive or negative 

values for the velocity 𝑣0 can be inserted: 

𝑎𝑆 > 0:                                               𝑡𝐾,𝑅 =
𝑥𝐾 − 𝑣0𝑡𝐾

𝑐 (1 +
𝑣0

𝑐 )
                                                           (B. 09) 

𝑎𝑆 < 0:                                              𝑡𝐾,𝑅 =
|(𝑥𝐾 − 𝑣0𝑡𝐾)|

𝑐 (1 −
𝑣0

𝑐 )
                                                      (B. 10) 

For 𝑣0 = 0 both equations for any value of 𝑎𝑆 simplify to 

𝑡𝐾,𝑅 =
|𝑥𝐾|

𝑐
                                                                (B. 11) 

The total time from the start of the acceleration to the transmission and subsequent recep-

tion of the signal is then in all cases 

𝑡𝐾,𝑇 = 𝑡𝐾 + 𝑡𝐾,𝑅                                                           (B. 12) 

Further, the signals received by observer A must be adjusted in view of B according to equa-

tion 

𝑡𝐾,𝑇(𝑣0) =
𝑡𝐾 + 𝑡𝐾,𝑅

𝛾(𝑣0)
                                                       (B. 13) 

to cover the effect, that for A in view of B the time is running slower by the factor 𝛾(𝑣0) 

according to the Lorentz-equations. 
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With the relations presented here it is possible to determine the values for the reception 

times of observers moving relative to each other. For this purpose, first the time intervals 

are calculated, with which the accelerated system S transmits the signals. While these are 

subjectively ∆𝑡𝑆 within the system S, from a non-accelerated observer the values for the 

time interval can be determined using the equations presented before. The calculation 

scheme can also be used to define the distance of S when transmitting the signals. Thus, the 

total times for the arrival of the signals can be determined for any arbitrarily moving ob-

server. 

Fig. B.1 shows the program flow chart for the numerical calculation of 𝑣𝑁 , 𝑡𝑁, 𝑡𝑇 and 𝑥𝑁 

according to the equations mentioned (the values for 𝑡𝐾  and 𝑥𝐾 are calculated throughout; 

since only the last results are considered, these correspond to 𝑡𝑁 and 𝑥𝑁). In addition, the 

acceleration 𝑎𝑁 is determined for an observer moving relative to the system S; the value 

deviates from the acceleration 𝑎𝑆, which can be measured subjectively in S. As already 

shown in chapter 6.4.1, the subjectively adjusted acceleration in S and the acceleration 

measured by an external observer moving relative to it with the velocity 𝑣 must differ by 

the factor 𝛾3(𝑣). Therefore, to verify this theoretically expected effect, the value 𝛾3𝑎𝑁 was 

also calculated from the data. The results show a very good agreement between 𝑎𝑆 and 

𝛾3𝑎𝑁. 

The used VBA program (Visual Basic) code is shown in Fig. B.1. In Tab. B.1 the formula 

symbols taken for the calculation program are assigned to those used in the text. The pro-

gram was designed in such a way that the initial velocity 𝑣0, as well as the subjectively valid 

acceleration 𝑎𝑆 and total duration of the experiment 𝑡𝑆 are to be specified. In addition, the 

number of intended iteration steps N can be freely selected, which provides an important 

influencing variable. With the VBA program, values up to N = 107 were investigated. These 

calculations only make sense with such programs, since with a conventional spreadsheet 

each iteration step requires separate program fields, and this would lead to enormous file 

sizes. 

Tab. B.2 shows in the parts a) to c) the results from calculations with the boundary con-

ditions  𝑎𝑆 = 10 m/s2 and  𝑡𝑆 = 1000s. Values of 𝑣0 = 0, 𝑣0 = 369 km/s and 𝑣0 = 0.5𝑐 

were chosen as initial velocities. For all results, 𝛿-values were calculated according to the 

scheme 

𝛿𝑣𝑇 =
 𝑣𝑇(K)

 𝑣𝑇(K − 1)
− 1                                                         (B. 14) 

and compared, where K in this case represents a potency of 10 according to the specifica-

tions in the table. 

The calculations performed show that within a range of about 102 to 104 the differences 

between the results reach a minimum. This suggests that these zones have the largest con-

fidence range. This is primarily dependent on the chosen calculation system; Microsoft Ex-

cel© was used as the method here, which has an accuracy of 15 digits. If computer systems 

with higher accuracy would be used, other results are to be expected. However, the overall 

quality of the calculations can only be verified in the comparison between the analytical and 

numerical methods, which will be carried out subsequently. 
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Fig. B.1:  Flowchart of the calculation process 

Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code 

𝑣0 v0 𝑎𝑆 a0 𝑡𝑆 tS 

𝛥𝑡𝑆 dtS 𝑡𝐾 tK 𝑡𝐾−1 tKm1 

𝑥𝐾 xK 𝑣𝐾 vK 𝑣𝐾−1 vKm1 

𝛾𝐾 GaK 𝛾𝐾−1 GaKm1 𝑡𝐾,𝑅 tKR 

𝑡𝑇 tT 𝑎𝐾 aK  𝛾3𝑎𝐾 aKGa3 

Tab. B.1:  Formula symbols and referring VBA-Codes 
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Sub B() 

Dim c, v0, a0, aK, tS, dtS, tK, tKm1, xK, vK, vKm1, GaK, GaKm1 As Double 

Dim aKGa3, tKR, tT, vT, K, N As Double 

'Input 

    v0 = 299792.458 / 2 'Initial velocity in km/s 

    a0 = 10             'Acceleration in m/s² 

    N = 1000            'Number of iteration steps 

    tS = 1000           'Time for S between transmission of signals in s 

'Start Calculation 

    c = 299792.458       'Speed of light in km/s 

    a0 = a0 / 1000       'Acceleration in km/s² 

    dtS = tS / N 

    tK = 0 

    xK = 0 

    vK = v0 

    For K = 1 To N 

        vKm1 = vK 

        tKm1 = tK 

        GaKm1 = 1 / (1 - (vKm1 / c) ^ 2) ^ 0.5 

        vK = (vK + a0 * dtS) / (1 + vK * a0 * dtS / c ^ 2) 

        GaK = 1 / (1 - (vK / c) ^ 2) ^ 0.5 

        tK = tK + (GaKm1 + GaK) / 2 * dtS 

        xK = xK + (vK + vKm1) / 2 * (tK - tKm1) 

            If a0 > 0 Then 

            tKR = (xK - tK * v0) / c / (1 + v0 / c) 

            Else 

            tKR = Abs((xK - tK * v0) / c / (1 - v0 / c)) 

            End If 

        tT = (tK + tKR) * (1 - (v0 / c) ^ 2) ^ 0.5 

    aK = (vK - vKm1) / (GaK * dtS) * 1000 

    aKGa3 = aK * GaK ^ 3 

    vT = vK - v0 

    Next K 

'Results in view of an observer moving with v0 at beginning of trial 

    Debug.Print "vT", "vK", "tN", "xN", "aN", "aNGa3" 

    Debug.Print vT, vK, tT, xK, aK, aKGa3 

End Sub 

Fig. B.2:  VBA Program-Code for the calculation process presented in Fig. B1 

Basically, it can be stated that all 𝛿-values are very low at 𝑣0 = 0 and then increase 

slightly at higher numbers. In particular, the values for 𝑡𝑇 , which would be well suited for 

experimental verification, hardly differ between the individual values of 𝑣0 within a range 

with constant acceleration 𝑎𝑆. Also, between the different acceleration values the differ-

ences are so small that a systematic influence cannot be assumed, but the effects are due to 

influences of the numerical calculation. 

The deviations between the results for the selected iteration steps between 1 and 107 

show that there are no systematic deviations. In the range of 103 the results show a high 

stability and the smallest differences; therefore, they are particularly suitable for compara-

tive considerations. 

The additional value of 𝑣0 = 369 km/s was chosen because it corresponds to the velocity 

of the sun with respect to the cosmic background radiation and therefore, if an effect would 

show up in the calculations, it could be an appropriate basis for further considerations (see 

also chapter 1.7). 
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It is to be noted, however, that in none of these evaluations a noticeable difference be-

comes recognizable and thus the subjectively determined observations between differently 

moving observers agree. This is also true for the high velocity of 𝑣0 = 0,5𝑐. 

In addition, it should be mentioned that the values of 𝑡𝑁, 𝑥𝑁 etc. used here were named 

in this way exclusively because of the numerical calculation method and correspond to the 

analytically determined data for 𝑡𝐴 and 𝑥𝐴, respectively. Accordingly, these values also refer 

to the measurement results of the observer A moving with the same speed as S at the be-

ginning of an experiment. 
 

 

a)  𝑣0 = 0,  𝑎𝑆 = 10m/s²,  𝑡𝑆 = 1000s 

 

 

b)  𝑣0 = 369 km/s,  𝑎𝑆 = 10m/s²,  𝑡𝑆 = 1000s 
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c)  𝑣0 = 0.5𝑐,  𝑎𝑆 = 10m/s²,  𝑡𝑆 = 1000s 

Tab. B.2: Results for 𝑣𝑇, 𝑡𝑁, 𝑡𝑇, 𝑥𝑁 and 𝛾3𝑎𝑁 acc. to calculations of Program B   

  presented in Fig. B.2 as a function of the number of iteration steps N. 

  Values for 𝑣𝑇 in km/s, 𝑡𝑇 in s, 𝑥𝑁 in km and 𝑎𝑁 in m/s2. 

 

B.3 Improved accuracy by using a Taylor expansion 

If the analytical calculations shown are to be carried out for very small values for time or 

speed, larger differences result depending on the calculation accuracy. This concerns in par-

ticular equation (6.74) for the distance covered during an experiment 

𝑥𝐴 =
𝑐2

𝑎𝑆
 {(1 −

𝑣𝐴
2

𝑐2
)

−1
2⁄

− 1} =
𝑐2

𝑎𝑆
 (𝛾 − 1)                                     (6.74) 

For small values for 𝑣𝐴, the effect arises that the value for 𝛾 deviates only slightly from 1 

and the final result becomes inaccurate because of the difference formation to 1. In the pre-

sent case, the spreadsheet program Microsoft Excel© was used which provides an accuracy 

of 15 digits, and thus for values for 𝑣𝐴 below about 400 km/s, deviations occur which can 

become very high for small values. In this case, instead of using Eq. (6.74), it is recom-

mended to use a Taylor expansion for 𝛾 that contains "1" as the first value. This is: 

𝛾 = (1 −
𝑣𝐴

2

𝑐2
)

−1
2⁄

= 1 +
1

2

𝑣𝐴
2

𝑐2
+

3

8

𝑣𝐴
4

𝑐4
+

15

48

𝑣𝐴
6

𝑐6
+ + ⋯                                 (B. 15) 

1.        2.          3.          4.           Taylor − elements                  

The following table B.3 shows the effect on the results for different test times 𝑡𝑆 or velocities 

of 𝑣𝐴 using different approaches. 
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Tab. B.3: Values of 𝑣𝐴, 𝑡𝐴 and 𝑥𝐴 depending on 𝑡𝑆 acc. to different procedures 

  𝑥𝐴(1): Eq. (6.74) 

  𝑥𝐴(2): Eq. (B.15) Taylor elements 1−3 

  𝑥𝐴(3): Eq. (B.15) Taylor elements 1−4 

  Optimal values for 𝑥𝐴 marked in green. Results in km and s. 

For 𝑡𝑆 values up to 20,000s, the calculation according to 𝑥𝐴(3) using the first 4 Taylor ele-

ments has the highest accuracy, up to 1,000s the solution with 𝑥𝐴(2) is also sufficiently ac-

curate. For values from approx. 40,000s, Eq. (6.74) is preferable (or further Taylor elements 

would have to be added). 

B.4 Comparison of results of the different methods 

Finally, the results calculated from the different methods will be compared. In addition to 

the numerical and analytical methods presented here, the numerically obtained results 

from Annex C based on the relativistic rocket equation have been added. While in the first 

two calculations a constant acceleration is made a prerequisite, the same situation arises in 

the relativistic rocket equation for the special case that the ejection of the propellant mass 

is kept constant in relation to the remaining mass of the rocket. 

Tab. B.4 shows the values determined according to the different methods 𝑣𝑇 = 𝑣𝑁 − 𝑣0, 

𝑡𝐴, 𝑡𝑇 and 𝑥𝑁 for the initial velocities 𝑣0 = 0 as well as 369 km/s and 0.5c. The values listed 

in A were calculated analytically using the equations Eq. (6.60) to (6.74). For the velocities 

𝑣0 = 0 and 369 km/s the Taylor expansion was used as described in Tab. B3, details are 

presented in the table. The values for B are the numerical results corresponding to Annex 

B, and C are from Annex C, type “B1”. The comparison shows that the velocities 𝑣𝑇  for A and 

B agree very well, but this deviates somewhat for variant C, especially for higher initial val-

ues. Moreover, for A, slightly higher values for 𝑥𝑁 result in the range of small velocities. In 

general, however, it can be said that the agreement of the results is good despite the com-

pletely different approaches. 

Furthermore, for a comprehensive overlook the values for 𝛾3𝑎𝑁 were added. It is shown 

in all cases that they correspond very exactly to the value of 𝑎𝑆 subjectively valid for the 

accelerated observer. 
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Tab. B.4: Calculated values for 𝑣𝑇, 𝑡𝐴, 𝑡𝑇, 𝑥𝑁 and 𝛾3𝑎𝑁 using different procedures  

  A: Analytically acc. to calculation using Eq. (6.60) to (6.74) 

  B: Numerically acc. to VBA-Code from Fig. B.2 

  C: Numerically acc. to VBA-Code from Fig. C.2, Type “B1” 

  𝑎𝑆 = 10m/s2. 𝛥𝑡𝑆 = 1.000s. Results in km and s. 

  a) 𝑣0 = 0,  results for 𝑥𝐴 calculated using Eq. (B. 15), 𝑥𝐴(3) and 𝑥𝐴(2) 

  b) 𝑣0 = 369 km/s, results for 𝑥𝐴 calculated using Eq. (B. 15), 𝑥𝐴(3) 

  c) 𝑣0 = 0.5𝑐, results for 𝑥𝐴 calculated using Eq. (6.74) 

 

  


