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For numerical calculation, the equations derived in chapter 6.4.2 

𝑝𝐾 +  𝑝𝐾
′ = (𝑚𝐾−1−𝛥𝑚𝐾−1)𝑣𝐾𝛾𝑘 + 𝛥𝑚𝐾−1𝑣𝐾

′ 𝛾𝐾
′ = 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1                  (6.84) 

and 

𝑣𝐾
′ =

𝑣𝐾 + 𝑣0
′

1 +
𝑣𝐾𝑣0

′

𝑐2

                                                               (6.85) 

are used. For the determination of 𝑣𝐾 , as already presented in other chapters, the method 

of bisection was chosen (see also the comparison of different numerical calculation meth-

ods in annex D). The basis is the momentum calculation of the total system, consisting of 

the momentum of the rocket 𝑝𝐾 as well as that of the propulsion gas 𝑝𝐾
′  with mass 𝛥𝑚𝐾−1 

moving in the opposite direction, and the determination of the corresponding rocket veloc-

ity 𝑣𝐾 . Due to the law of conservation of momentum, the total value must be constant before 

and after the velocity increase of the rocket including the consideration of mass ejection. 

First, suitable starting values for (𝑣+)0 and (𝑣−)0 must be defined; it makes sense that 

these values should be far apart since it must be ensured that the final result 𝑣𝐾  lies within 

these limits. Thereupon a new index L is defined. Now the mean value 

(𝑣𝐾)𝐿=1 =
(𝑣+)0 + (𝑣−)0

2
                                                      (C. 01) 

is formed and for the velocity calculated here the momentum is determined according to 

equation (6.84). Then the following definitions must be used: 

(𝑝𝐾 +  𝑝𝐾
′ )𝐿=1 > 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1   ⇒ 

 

(𝑣+)1 = (𝑣)1     
(C. 02) 

(𝑣−)1 = (𝑣−)0 

(𝑝𝐾 +  𝑝𝐾
′ )𝐿=1 ≤ 𝑚𝐾−1𝑣𝐾−1𝛾𝐾−1   ⇒ 

 

(𝑣+)1 = (𝑣+)0 
(C. 03) 

(𝑣−)1 = (𝑣)1     

This calculation is repeated with increasing index L until the results for 𝑣+ and 𝑣− are 

equal. Thus, the velocity of the rocket, whose mass is now reduced by 𝛥𝑚𝐾−1, is determined 

for this partial step. Subsequently, the next step is performed for 𝐾 = 2 and so on. 

The time that subjectively elapses inside the rocket between the emission of 2 signals is 

by definition 𝛥𝑡0. For an external observer the view is different, and the value must be sup-

plemented according to 
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𝛥𝑡𝐾 = 𝛥𝑡0𝛾𝐾                                                               (C. 04) 

and the distance covered is 

𝛥𝑥𝐾 = 𝛥𝑡𝐾𝑣𝐾                                                               (C. 05) 

After adding all N single values, the final result is 

𝑡𝑁 = ∑ 𝛥𝑡0𝛾𝐾

𝑁

𝐾=1

                                                           (C. 06) 

𝑥𝑁 = ∑ 𝛥𝑡0𝑣𝐾

𝑁

𝐾=1

                                                          (C. 07) 

At any arbitrary time 𝑡𝐾 , a signal is sent back from the accelerated system S to the ob-

servers A and B. Observer A has moved with the same velocity as the rocket at the beginning 

of the experiment and continues its path without acceleration, while B measures a velocity 

𝑣0 with respect to A. From B's point of view, A is either moving in direction to S or in the 

opposite way during signal propagation. In case of 𝑣0 ≠ 0 the values for acceleration 𝑎𝐾 and 

velocity 𝑣0 can each be positive or negative, so different arrangements must be made for 

performing the calculations. This was already done in a similar form in Chap. 6.4.1 with the 

equations Eq. (6.60) to (6.74), but there the acceleration of the rocket was kept constant 

over the entire course of the experiment. In contrast, here the exit direction of the propul-

sion gas 𝑣′ represents the effect of precondition. If 𝑣′ > 0 then the acceleration is negative, 

at 𝑣′ < 0 it is positive. The equations used in section 6.4.1 must therefore be modified with 

respect to the boundary conditions and read as follows here 

    𝑣′ < 0   (𝑎𝑆 > 0):                          𝑡𝐾,𝑅 =
𝑥𝐾 − 𝑣0𝑡𝐾

𝑐 (1 +
𝑣0

𝑐 )
                                                         (C. 08) 

    𝑣′ > 0   (𝑎𝑆 < 0):                        𝑡𝐾,𝑅 =
|𝑥𝐾 − 𝑣0𝑡𝐾|

𝑐 (1 −
𝑣0

𝑐 )
                                                        (C. 09) 

Thus, for the limiting case applies 

    𝑣0 = 0:                                             𝑡𝐾,𝑅 =
|𝑥𝐾|

𝑐
                                                                    (C. 10) 

Generally follows 

                                    𝑡𝑇(𝐾) =
𝑡𝐾 + 𝑡𝐾,𝑅

𝛾(𝑣0)
                                                           (C. 11) 

In addition, for the determined final velocity 𝑣𝑁 , the following is specified for different sys-

tem velocities 𝑣0 for better comparability of the calculations 

                                  𝑣𝑇 = 𝑣𝑁 − 𝑣0                                                                 (C. 12) 
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C.2 Specific specifications for the calculation 

When defining the boundary conditions for the calculation, the ratio of outflowing mass per 

time interval is relevant.  In order to simplify the representation, here the outflow mass of 

the rocket is normalized to 1 and the standard time interval, valid subjectively inside the 

rocket, is set to 𝛥𝑡0 = 1s. From this it follows, for example, for the case when 0.5% of the 

rocket mass flows out per second for propulsion, that when 50% of the mass is ejected, a 

total of 100 iteration steps have been performed. This case can be defined for the calcula-

tions using the form 

𝛥𝑚0 = 𝛥𝑡0 · 0,5%                   N/𝛥𝑡0 = 100                              (C. 13) 

If, for example, the number of iteration steps is then increased by a factor of 10, the time 

interval and the outflowing supporting mass are reduced by the same factor for the subse-

quent calculations. 

The initial values of the velocities (𝑣+)𝐿=0 and (𝑣−)𝐿=0 for the bisection should be chosen 

far apart, but the mean value must be non-zero, otherwise there will be disturbances during 

the calculation; (𝑣+)𝐿=0 = 0,9𝑐 and (𝑣−)𝐿=0 = −0,8𝑐 were chosen in this case. 

C.3 Flowchart and VBA program code of the process 

A flow chart (Fig. C.1) shows how the running program is designed. It is a process with two 

nested iteration loops; the running indices have been labeled K and L. The representation 

of the VBA program code (Fig. C.2) follows the flowchart representation. The VBA codes 

used for the formula characters are shown in the following listing. 

Symbol VBA-Code Symbol VBA-Code Symbol VBA-Code 

𝑣0 v0 𝑣0
′ v0g 𝛥𝑡0 dt0 

(𝑣+)𝐿 vmax (𝑣−)𝐿 vmin (𝑣+)𝐿=0 vmax0 

(𝑣−)𝐿=0 vmin0 𝑡𝐾 tK 𝑡𝐾−1 tKm1 

𝑡𝑇 tT 𝑥𝐾 xK 𝑡𝐾,𝑅 tKR 

(𝑣𝐾)𝐿 vL 𝑣𝐾−1 vKm1 𝑣𝐾 vK 

𝑚𝐾 mK 𝛥𝑚0 dm0 𝛥𝑚𝐾 dmK 

𝑝𝐾−1 pKm1 (𝑝𝐾 + 𝑝𝐾
′ )𝐿 pL 𝑣𝐾

′  vKg 

(𝑣𝐾)𝐿−1 vLm1 (𝑣𝐾
′ )𝐿 vLg 𝑣𝑇 vT 

𝑎𝐾 aK 𝛾3 Ga3 𝛾3𝑎𝐾 aKGa3 

Tab. C.1:  Formula symbols and referring VBA-Codes 
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Fig. C.1: Flowchart of the calculation process 



Annex C:  Relativistic rocket equation 

232 

 

Sub C() 

Dim v0, v0g, tS, dtS, dm0, mF, vmax0, vmin0, vmax, vmin, mK, tK As Double 

Dim tKm1, tKR, tT, xK, vK, vKm1, dmK, pKm1, pL, vL, vLm1 As Double 

Dim N, K, L, vKg, vT, vLg, c, aK, Ga3, aKGa3 As Double 

Dim F, A1, A2, B1, B2 As String 

'Input 

    F = "B1"            'Define A1, A2, B1 or B2 

                        'A: Linear mass reduction, B: Prop. mass reduction 

                        '1: Def. number of iteration steps, 2: Def. end mass 

    v0 = 0              'Initial velocity in km/s 

    v0g = -4            'Initial velocity gas in km/s 

    dm0 = 0.25 / 100    'Initial output mass in %/s 

'Specific input Def. 1 

    tS = 400            'Time until a signal is emitted 

    N = 1000            'Number of iteration steps 

'Specific input Def. 2 

    dtS = 1             'Iteration time in s 

    mF = 10 / 100       'Mass at end of trial in % 

'Start Calculation 

    If F = "A1" Or F = "A2" Or F = "B1" Or F = "B2" Then 

        GoTo Calc: 

        Else 

        Debug.Print "Input error: Chose A1, A2, B1, or B2" 

        GoTo Out1: 

        End If 

Calc: 

    If F = "A1" Or F = "B1" Then 

        dtS = tS / N 

        End If 

    mK = 1               'Initial value mass 

    vmax0 = 0.9          'Initial value max. for calculation (in rel. to c) 

    vmin0 = -0.8         'Initial value min. for calculation (in rel. to c) 

    c = 299792.458       'speed of light in km/s 

    tK = 0 

    xK = 0 

    vK = v0 / c 

    v0g = v0g / c 

Mainloop: 

        K = K + 1 

        If F = "A1" Or F = "A2" Then 

            dmK = dm0 * dtS 

            Else 

            dmK = dm0 * dtS * mK 

            End If 

        pKm1 = mK * vK / (1 - vK ^ 2) ^ 0.5     'Momentum rocket for K - 1 

        mK = mK - dmK                           'Rest rocket mass for K 

        If mK <= 0 Then 

            K = K - 1 

            mK = mK + dmK 

            Debug.Print "Rocket mass zero" 

            GoTo Out2: 

            End If 

        vmax = vmax0 

        vmin = vmin0                            'Req.: vmin0 unequal -vmax0 

        L = 0 

Do 

        L = L + 1 

        vLm1 = vL 

        vL = (vmax + vmin) / 2 

        vLg = (vL + v0g) / (1 + vL * v0g) 

        pL = mK * vL / (1 - vL ^ 2) ^ 0.5 + dmK * vLg / (1 - vLg ^ 2) ^ 0.5 
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If pL > pKm1 Then 

            vmax = vL 

            Else: vmin = vL 

            End If 

Loop Until vLm1 = vL 

    vKm1 = vK 

    vK = vL 

    vKg = vLg 

    tKm1 = tK 

    tK = tK + dtS * (1 / (1 - vK ^ 2) ^ 0.5 + 1 / (1 - vKm1 ^ 2) ^ 0.5) / 2 

    xK = xK + (vK + vKm1) / 2 * (tK - tKm1) * c 

    aK = (vK - vKm1) / (dtS / (1 - ((vK + vKm1) / 2) ^ 2) ^ 0.5) * c * 1000  

    Ga3 = (1 / (1 - ((vK + vKm1) / 2) ^ 2)) ^ 1.5 

    If v0g > 0 Then 

            tKR = Abs(xK - v0 * tK) / c / (1 - v0 / c) 

            Else: tKR = (xK - v0 * tK) / c / (1 + v0 / c) 

            End If 

        tT = (tK + tKR) * (1 - (v0 / c) ^ 2) ^ 0.5 

        vT = (vK * c - v0) 

        aKGa3 = aK * Ga3 

    If F = "A1" Or F = "B1" Then 

        If K < N Then 

            GoTo Mainloop: 

            End If 

        End If 

    If F = "A2" Or F = "B2" Then 

        If mK > mF Then 

            GoTo Mainloop: 

            End If 

        End If 

Out2: 

Results in view of an observer moving with v0 at beginning of trial 

Debug.Print "vT =", vT 'velocity when signal is emitted in km/s 

Debug.Print "tN =", tK 'Total time until a signal is emitted in s 

Debug.Print "tT =", tT 'Total time for transmission of signal in s 

Debug.Print "mN =", mK 'Rocket mass at emission in relation to 1 

Debug.Print "xN =", xK 'Distance covered at emission of signal in km 

Debug.Print "aN =", aK 'Acceleration in m/s² 

Debug.Print "aNGa3 =", aKGa3     'Acceleration * Gamma ^ 3 in m/s² 

Out1: 

End Sub 

    

Fig. C2:  VBA Program-Code for the calculation process presented in Fig. C1 

In the following tables Tab. C.2, C.3 and C.4 supplementary calculations are shown accord-

ing to Tab. 6.4 from Chap. 6.4.2. Instead of using the program "A1", the variant "A2" could 

also have been selected. In this case, the desired final value of the rocket mass and the iter-

ation time are specified, and the number of iteration steps results from the calculation. Ex-

ample from Tab C2: Parameters "A1" 𝑡𝑆 = 100𝑠, 𝑁 = 1000 correspond to "A2" 𝑚𝐹 = 50% 

and 𝛥𝑡𝑆 = 0,1𝑠. The calculated value for K is then 𝑁 = 1001. The results are very similar, 

but not completely identical. Since in this case the influence of the number of iteration steps 

was in the foreground, calculation "A1" was chosen. 

The values of 𝑡𝑇 are of particular interest for comparisons, since they would be accessible 

for experimental testing due to the simple use of precision clocks. The results of 𝑡𝑇 obtained 

here are shown separately in Tab. 6.6, Tab. 6.7 and Fig. 6.4, but do not show any systematic 

differences, so that the principle of relativity is also observed here as in all other cases. 
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Tab: C.2:  Calculation of relativistic rocket velocity according to program  

Type: “A1”,  𝑣0
′ = − 4 km/s,   𝛥𝑚0 = 0.5%,  𝑡0 = 100s  

a) 𝑣0 = 0,   b) 𝑣0 = 369 km/s,   c) 𝑣0 = 2000 km/s,  d) 𝑣0 = 10000 km/s   
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Tab. C.3:  Calculation of relativistic rocket velocity according to program 

Type: “A1”,  𝑣0
′ = − 4 km/s,   𝛥𝑚0 = 0.09%,  𝑡0 = 1000s  

a) 𝑣0 = 0,   b) 𝑣0 = 369 km/s,   c) 𝑣0 = 2000 km/s,  d) 𝑣0 = 10000 km/s   
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Tab. C.4:  Calculation of relativistic rocket velocity according to program 

Type: “A1”,  𝑣0
′ = − 100 km/s,   𝛥𝑚0 = 0.009%,  𝑡0 = 10000s  

a) 𝑣0 = 0,   b) 𝑣0 = 369 km/s,   c) 𝑣0 = 2000 km/s,  d) 𝑣0 = 10000 km/s   
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C.4  Relativistic rocket equation according to J. Akeret 

Since 1946 there is an analytical solution for the relativistic rocket equation by J. Akeret 

[90]. For this not only the momentum theorem and the relativistic velocity addition are 

necessary (as with the numerical derivation presented so far) but additionally the energy 

conservation theorem is used. 

For the derivation of the equations, formula symbols are used which differ from the orig-

inal text but are consistent with the representations used so far in this presentation. Func-

tions related to the outflowing gas used for causing thrust are denoted by 𝑓′; relations re-

ferring to the moving rocket, on the other hand, are shown without this label. The actual 

mass of the rocket is 𝑚, and 𝑑𝑚′ is the fraction of the propellant gas. This gives rise to the 

equations shown below. 

a) The energy theorem provides: 
  

𝑑 {
𝑚𝑐2

√1 − 𝑣2 𝑐2⁄
} = −

𝑑𝑚′ · 𝑐2

√1 − 𝑣′2 𝑐2⁄
                                (C. 21) 

b) the relation for momentum: 

𝑑 {
𝑚𝑣

√1 − 𝑣2 𝑐2⁄
} =

𝑑𝑚′ · 𝑣′

√1 − 𝑣′2 𝑐2⁄
                                (C. 22) 

 

c) the relativistic addition theorem: 
 

𝑣′ =
𝑣0

′ − 𝑣

1 −
𝑣 · 𝑣0

′

𝑐2

                                                 (C. 23) 

where 𝑣0
′  has the meaning of the (constant) exit velocity of the gas relative to the rocket. 

The equations (C.21) and (C.22) can be further developed to 

𝑑𝑚
𝑐2

√1 − 𝑣2 𝑐2⁄
+ 𝑚𝑐2 · 𝑑 {

1

√1 − 𝑣2 𝑐2⁄
} = −𝑑𝑚′

𝑐2

√1 − 𝑣′2 𝑐2⁄
                  (C. 24) 

 

𝑑𝑚
𝑣

√1 − 𝑣2 𝑐2⁄
+ 𝑚

𝑑𝑣

√1 − 𝑣2 𝑐2⁄
+ 𝑚𝑣 · 𝑑 {

1

√1 − 𝑣2 𝑐2⁄
} = 𝑑𝑚′

𝑣′

√1 − 𝑣′2 𝑐2⁄
    (C. 25) 

 

For the solution, the values of 𝑣′ and 𝑑𝑚′ must be eliminated. To do this, first in equation 

(C.24) in the term on the right-hand side the value for 𝑣′ from equation (C.23) is inserted 

𝑐2

√1 −
𝑣′2

𝑐2

=
𝑐2

√
1 −

(
𝑣0

′ − 𝑣
1 − 𝑣 · 𝑣0

′ 𝑐2⁄
)

2

𝑐2

 

     =
𝑐2 − 𝑣0

′ 𝑣

√1 −
𝑣2

𝑐2 −
𝑣0

′2

𝑐2 +
𝑣2𝑣0

′2

𝑐4

=
𝑐2 − 𝑣0

′ 𝑣

√1 −
𝑣2

𝑐2
√1 −

𝑣0
′2

𝑐2

                          (C. 26) 
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In the same way follows 

𝑣′

√1 −
𝑣′2

𝑐2

=
𝑣0

′ − 𝑣

√1 −
𝑣2

𝑐2
√1 −

𝑣0
′2

𝑐2

                                            (C. 27) 

Equations (C.26) and (C.27) are substituted into Eq. (C.24) and (C.25), respectively, and 

these are resolved to 𝑑𝑚′ and equated. The result is: 

𝑚 {
𝑐2 − 𝑣𝑣0

′

√1 − 𝑣2 𝑐2⁄
} 𝑑𝑣 + 𝑚𝑣0

′ (𝑐2 − 𝑣2) · 𝑑 {
1

√1 − 𝑣2 𝑐2⁄
} + 𝑑𝑚

𝑣0
′ (𝑐2 − 𝑣2)

√1 − 𝑣2 𝑐2⁄
= 0     (C. 28) 

The two differentials with the dependence on 𝑣 must be unified and using the differential 

chain rule it follows 

𝑑 {
1

√1 − 𝑣2 𝑐2⁄
} =

𝑣

𝑐2 {1 −
𝑣2

𝑐2}

3
2⁄

 𝑑𝑣                                    (C. 29) 

After substituting in eq. (C.28) and separating the terms for mass and velocity, the final re-

sult is 
𝑑𝑚

𝑚
= − 

𝑑𝑣

𝑣0
′ (1 − 𝑣2 𝑐2⁄ )

                                                 (C. 30) 

The integration results in 

𝑙𝑛(𝑚) = − 
𝑐

2𝑣0
′  𝑙𝑛 { 

𝑐 + 𝑣

𝑐 − 𝑣
 } + 𝐶                                             (C. 31) 

With the initial value for mass 𝑚0 and the final value 𝑚 the relativistic rocket equation ac-

cording to J. Akeret arises 

𝑚

𝑚0
=  {

1 −
𝑣
𝑐

1 +
𝑣
𝑐

}

𝑐 2𝑣0
′⁄

                                                  (C. 32) 

or 

𝑣

𝑐
=  

1 − (
𝑚
𝑚0

)
2𝑣0

′ 𝑐⁄

1 + (
𝑚
𝑚0

)
2𝑣0

′ 𝑐⁄
                                                   (C. 33) 

In Section 6.4.2, calculations from this equation are contrasted with the classical rocket 

formula of K. E. Tsiolkovsky and the numerical relations derived in this annex. 

  


