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Annex E:  Brief introduction to vector calcu-
lus 

To understand the representation of Maxwell's equations in Chapter 10, a basic knowledge 

of vector calculus is required. The necessary relationships and basic elements for under-

standing field relationships are summarized here in brief. Only the absolutely necessary 

relationships are shown, and the following restrictions apply: 

1. The representations apply to 3 dimensions; these are sufficient for the relationships 

in fields. 

2. Only Cartesian (rectangular) coordinate systems are considered (e.g. no spherical or 

cylindrical coordinates). 

First, the basic properties of vectors are presented and then the differential functions re-

quired to understand Maxwell's equations are explained. 

E.1  Scalar und Vector 

In a coordinate system, physical quantities can be assigned to each point as a scalar or vec-

tor. Vectors are direction-dependent, scalars are not. Examples of scalar quantities are tem-

perature, energy, and pressure. For directional quantities such as forces or fields, on the 

other hand, vectors are used which, in addition to the location in the coordinate system, 

also contain values for the magnitude and direction. For the representation of a vector 𝑎⃗ in 

Cartesian coordinates the following form is used: 

𝑎⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
)                                                                  (E. 01) 

The amount of 𝑎⃗, for example for the magnitude of a force, is determined by 

𝑎 = |𝑎⃗| = √𝑎𝑥2 + 𝑎𝑦2  + 𝑎𝑧2                                                     (E. 02) 

If the direction and magnitude of two vectors are the same, they are identical, but can be 

located at different points in the coordinate system. 

E.2  Vector addition 

For the addition of two vectors 𝑎⃗ and 𝑏⃗⃗ the rule applies: 
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𝑎⃗ + 𝑏⃗⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
) + (

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = (

𝑎𝑥 + 𝑏𝑥
𝑎𝑦 + 𝑏𝑦
𝑎𝑧 + 𝑏𝑧

)                                         (E. 03) 

This addition can also be performed graph-

ically. For this purpose, a representation 

with arrows is used. The position in the di-

agram is the direction, the length of the ar-

row indicates the magnitude. 

For the addition, the arrows 𝑎⃗ and 𝑏⃗⃗ are 

joined together; the resulting line between 

the start and end points is the result of the 

addition in terms of magnitude and direc-

tion. 

        

           Fig.. E.1: Graphical vector addition 

E.3  Scalar product 

The scalar product (or inner product) of two vectors is so called because the result of the 

multiplication is a scalar. This is in Cartesian coordinates 

𝑎⃗ · 𝑏⃗⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
) · (

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧                                  (E. 04) 

or 

𝑎⃗ · 𝑏⃗⃗ = |𝑎⃗| · |𝑏⃗⃗| · cos 𝜑                                                      (E. 05) 

with 𝜑 as the angle between 𝑎⃗ and 𝑏⃗⃗. This operation is often used in physics when energy 

is to be calculated and the angle between the force and the direction of movement does not 

match. Force and direction are vectors, the resulting work is a scalar quantity. The meaning 

becomes clear when a mass in the Earth's gravitational field and an attacking force is con-

sidered. If the mass is moved upwards by the force (𝜑 = 0; cos𝜑 = 1), energy is needed 

and the potential energy increases; if the force acts at 𝜑 = 90°, the mass remains at the 

same height and the energy does not change. 

E.4  Cross product 

The cross product (also known as the vector product or outer product) of the vectors 𝑎⃗ and 

𝑏⃗⃗ in three-dimensional space is a certain vector that is perpendicular to the plane spanned 

by them. The length is equal to the area of the parallelogram, i.e. 

𝑎⃗ ⨯ 𝑏⃗⃗ = |𝑎⃗| · |𝑏⃗⃗| · |sin𝜑|                                                    (E. 06) 

In the three-dimensional Cartesian coordinate system, the cross product is calculated as 

follows 

𝑎⃗ 

𝑎⃗ + 𝑏⃗⃗ 

𝑏⃗⃗ 
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𝑎⃗ ⨯ 𝑏⃗⃗ = (

𝑎𝑥
𝑎𝑦
𝑎𝑧
) ⨯ (

𝑏𝑥
𝑏𝑦
𝑏𝑧

) = (

𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦
𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧
𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥

)                                   (E. 07) 

Examples of the application of the cross product are the Lorentz force or the torque. For 

example, the following relationship applies to the magnetic part of the Lorentz force 

𝐹⃗𝐵 = 𝑞𝑣⃗ ⨯ 𝐵⃗⃗                                                                 (E. 08) 

with 𝑞 as the charge and 𝑣⃗ as its velocity and 𝐵⃗⃗ as the magnetic field. The orientation of the 

resulting Lorentz force is perpendicular to both the velocity and the magnetic field (3-finger 

rule). 

E.5  Fields and Nabla operator 

In physics, a field is defined as the spatial distribution of a physical quantity. In the simplest 

case, there is a scalar field, as is possible for temperature distributions or potentials. If a 

physical vector is dependent on the position of the location, it is referred to as a vector field. 

It can be visualized by field lines, whereby the tangent to the field line indicates the direc-

tion of the vector. The magnitude of the vector is represented by the density of the field 

lines. Electric and magnetic fields are examples of this. These fields are characterized by the 

fact that temporal changes in particular play a role, which must be represented by differen-

tiation. The use of the Nabla operator is helpful here. 

The Nabla operator ▽⃗⃗⃗⃗ is a vectorial differential operator. This means that it can be writ-

ten in vector form and, when applied to a function, performs a differential operation that 

represents a 3-dimensional derivative. With its help, the quantities gradient, divergence, 

and rotation, which are still to be described, can be easily represented. It is defined for the 

3-dimensional Cartesian coordinates 𝑥, 𝑦, 𝑧 as 

▽⃗⃗⃗⃗  =  

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

                                                                (E. 09) 

E.6  Gradient 

A field based on a scalar function 𝑓 assigns an exact value to each point in the definition 

space. Examples of scalar fields in three-dimensional space are the distribution of temper-

atures, density, or potentials. Applying the Nabla operator to 𝑓 results in a vector field called 

the gradient (grad). The gradient points in the direction of the strongest ascent at each point 

in space and its magnitude indicates the increase in this direction. The representation is as 

follows: 
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grad 𝑓 = ▽⃗⃗⃗⃗· 𝑓  =  

(

 
 
 
 

𝜕𝑓𝑥
𝜕𝑥
𝜕𝑓𝑦

𝜕𝑦
𝜕𝑓𝑧
𝜕𝑧 )

 
 
 
 

                                                     (E. 10) 

If the scalar field is a potential, the negative gradient of the field indicates the associated 

force field. This is clear in the case of the gravitational field: Two of the coordinates are 

equal to zero and a body falls in the direction in which the change in its potential reaches 

the maximum. 

E.7  Divergence 

When applying the Nabla operator to a vector field 𝑓, the scalar product ▽⃗⃗⃗⃗· 𝑓 results in a 

scalar field that indicates whether field lines appear or disappear at each point in space. 

Thus, at the location of a positive charge, the divergence of the electric field is greater than 

zero, as field lines arise at this point. Points with positive divergence are called sources, 

points with negative divergence are called sinks. The calculation results in 

div 𝑓 =▽⃗⃗⃗⃗· 𝑓 =  =  
𝜕𝑓𝑥
𝜕𝑥
+
𝜕𝑓𝑦

𝜕𝑦
+
𝜕𝑓𝑧
𝜕𝑧
                                            (E. 11) 

E.8  Rotation 

If we form ▽⃗⃗⃗⃗⨯ 𝑓, we obtain a vector function called rotation (rot), which characterizes the 

closed loop of the vector field 𝑓. If we consider, for example, the magnetic field of a current-

carrying wire, the field lines run in a circle around this wire and are closed. The calculation 

is carried out as follows: 

rot 𝑓 = ▽⃗⃗⃗⃗⨯ 𝑓 =  

(

 
 
 
 

𝜕

𝜕𝑦
𝑓𝑧 −

𝜕

𝜕𝑧
𝑓𝑦

𝜕

𝜕𝑧
𝑓𝑥 −

𝜕

𝜕𝑥
𝑓𝑧

𝜕

𝜕𝑥
𝑓𝑦 −

𝜕

𝜕𝑦
𝑓𝑥)

 
 
 
 

                                               (E. 12) 

  


